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Abstract
Background: This paper discusses the problem of automated annotation. It is a continuation of
the previous work on the A4-algorithm (Adaptive algorithm of automated annotation) developed
by Leontovich and others.

Results: A number of new statistics for the automated annotation of biological sequences is
introduced. All these statistics are based on the likelihood ratio criterion.

Conclusion: Some of the statistics yield a prediction quality that is significantly higher (up to 1.5
times higher) in comparison with the results obtained with the A4-procedure.

Background
Many biological databanks, both dealing with protein
sequences (e.g., SWISS-PROT) and nucleotide sequences
(e.g., GeneBank), contain not only primary structures of
sequences (i.e., sequences of letters – amino acids or
nucleotides), but also information about functions and
properties of these sequences. This information is stored
in so called description fields of the sequences. There exist
different types of description fields – KW (KeyWords), DE
(Descriptions), ..., FT (Feature Table), ...; elements of
description fields are referred to as words. Words from KW,
DE, ... fields describe a sequence as a whole, while words
from FT fields correspond to certain positions (letters) of
a sequence.

The automated annotation problem can be described as
follows. Consider a biological sequence (referred to as a

query sequence) with known primary structure (i.e. letter
sequence) but unknown properties and functions (i.e.,
description fields). The task is to determine functions and
properties of this sequence (in other words, to restore its
description fields) on the basis of the primary structure.
The annotation should be fully automated. This is the
subject of the current paper.

There are two main approaches to the solution of this
problem. In the first approach (it can be called a static
one) a certain fixed protein classification (grouping pro-
teins according to similarity in structure and/or func-
tions), specified beforehand, is used: for a query protein
the search of a relative group (super family) is performed
on the basis of primary structures, and properties/func-
tions of this group are extended to the query protein. An
example of this approach is described in the paper by W.
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Fleischmann et al. [1], it uses the protein classification
(more than 1000 families), stored in the Prosite databank.

The second approach (it can be called a dynamic or an
adaptive one) does not use protein classification. Instead,
a "dynamic" collection of bank sequences that are similar
to a query sequence is generated, and then common prop-
erties/functions of these bank sequences are extended to
the query sequence. One of the first examples of this
approach was described by M.A. Andrade et al. [2]. In this
paper the prediction was based on so called word reliability
function – a function depending on the degree of similarity
between a query sequence and corresponding bank
sequences. In other examples of annotation procedures
based on the dynamic approach prediction was per-
formed in a "naive" way – all properties/functions of sim-
ilar proteins were extended to a query protein, or using
stochastic methods – only properties/functions that are
most frequent for the collection of similar proteins were
extended (see [3,4]).

The current paper uses the dynamic approach. This paper
is a sequel to paper [5] that describes the A4 algorithm (the
Adaptive Algorithm of Automated Annotation), so results
of the paper [5] are constantly used here. The A4 algorithm
is based on a stochastic approach. More precisely, it is
based on the notion of transfer probabilities. Transfer prob-
abilities are the probabilities of word transfer (extension)
from description fields of one sequence to description
fields of another sequence; they depend on the measure of
similarity between sequences. Transfer probabilities are
evaluated on the basis of word transfer frequencies in the
found collection of sequences similar to a query sequence.
For each word from description fields of sequences
included in the collection the prediction of the fact that
this word belongs (or does not belong) to the description
field of a query sequence is performed; this prediction is
based on transfer probabilities.

In the current paper we introduce and analyze a number
of new statistics for the prediction. All of them are based
on the likelihood ratio criterion [6] (which is the most
powerful criterion). As in [5], all these statistics are evalu-
ated using transfer probabilities. Two approaches to statis-
tics definition are introduced: a "discrete" approach and a
"continuous" approach. A detailed analysis and compari-
son of introduced statistics are performed and the best sta-
tistics are selected.

The emphasis is on a precise description of the way these
statistics can be constructed using well-known concepts
from statistical decision theory.

The current A4 algorithm uses SPKW as a language of
annotation. Of course, it is possible to use GO terms in A4

as well. That would facilitate comparison with other
approaches. However, at the current stage of our research
we test and choose "the best decision making algorithm",
not "the best annotation terminology". Obviously, which
annotation is used hardly matters for the problem of find-
ing the optimal "decision making algorithm"

Results
Algorithm description
Generation of a collection of similar sequences
First, we introduce some notation. For the sake of brevity
we write "a word ω belongs to a sequence π" instead of "a
word ω belongs to description fields of a sequence π". If ω
is a KW-type word (to be definite, further in the paper we
consider only amino-acid sequences and KW-type words),
we write ω ∈ KW[π].

The application of an annotation procedure to an unanno-
tated amino-acid query sequence (i.e., the prediction of
description fields) starts with generating a collection of
sequences similar to this query sequence with known
description fields. These similar sequences are selected
from a certain databank that contains annotated amino-
acid sequences, e.g., SWISS-PROT.

There exist different approaches to the generation of a col-
lection of similar sequences (see [7]). This collections can
be generated on the basis of global alignments between a
query sequence and bank sequences (global alignments
can be constructed, e.g., by CLUSTAL procedure) using an
identity percentage or, more generally, a similarity percentage
as a similarity measure. Another variant is to use local
alignments (i.e., alignments of most similar fragments of
compared sequences, see [7]) instead of global align-
ments. Local alignments can be constructed, for example,
by a well-known BLAST procedure [7,8], in which sum of
weights or a corresponding e-value serves as a measure of
similarity between fragments (and thus between com-
pared sequences). Other alignment procedures are also
acceptable; alignment procedure selection does not play a
critical role.

Since we build on the A4 procedure, we briefly summarize
that approach. In the A4 procedure a collection of similar
sequences is generated on the basis of local alignments of
a special type. These alignments are constructed by the
DotHelix procedure ([9]), in which the "power" (sum of
weights divided by the root of the length of the local align-
ment, see [9,10] for details) serves as a similarity measure.
Each local alignment constructed by DotHelix procedure
is a chain of closely located gapless local alignments. Local
alignments that are generated during the construction of a
collection of similar sequences are referred to as primary
local alignments.
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Each sequence from a collection of similar sequences
π1,...,πn can have several corresponding primary local
alignments, but for the sake of simplicity we assume that
each similar sequence πi has exactly one corresponding
primary local alignment, the one with the maximum sim-
ilarity measure. Let μi denote the similarity measure
(power) of a primary alignment that corresponds to πi.
The value of μi characterizes the measure of similarity
between fragments that constitute this alignment; at the
same time μi can be treated as a measure of similarity
between the whole query sequence π0 and the whole sim-
ilar sequence πi. We assume that similar sequences are
ordered in such a way that μ1 ≥ μ2 ≥...≥ μn.

The exact stochastic formulation of the problem
Let π0 be an unannotated amino-acid query sequence,
π1,...,πn be a collection of sequences similar to π0, and ω be
a word that belongs to some similar sequences (i.e., ω ∈
KW[πi]. for at least one similar sequence πi). The task is to
predict whether this word ω belongs to the query
sequence π0 or not.

Let us put

ξi = 1, if ω ∈ KW[πi], and ξi = 0, if ω ∉ KW[πi] (i = 1,...,n).

we also put

ξ0 = 1, if ω ∈ KW[π0], and ξ0 = 0, if ω ∉ KW[π0].

Variables ξi can be treated as random variates Actually,
they depend on ω. For the sake of brevity we write ξi
instead of ξi(ω).

In this notation the problem can be stated as follows.
Measures of similarity μi between the query sequence π0
and similar sequences πi and values of random variates ξi,
i = 1,...,n, are given. The task is to determine whether the
word ω belongs to the query sequence π0 or not. In other
words, two hypotheses are considered, H1 : ξ0 = 1 (i.e., ω
∈ KW[π0]), and H0 : ξ0 = 0 (i.e., ω ∉ KW[π0]), and the task
is to construct a procedure that allows to decide which
hypothesis is true on the basis of ξ = (ξ1,...,ξn). As
announced in the introduction, we base our procedures
on the likelihood ratio. Let us recall the famous Bayes'
Theorem that can be written as

Here the left part is the posterior odds, that is the ratio of a
posteriori probabilities of hypotheses H1 and H0 (a posteri-

ori means that values ξ1,...,ξn are known). It is equal to the

product of the likelihood ratio  (i.e., the ratio of

probabilities that the set of values ξ = ξ(ω) is realized for

the word ω given the conditions ξ0 = 1 and ξ0 = 0 respec-

tively) and the prior odds, that is the ratio of a priori prob-
abilities of hypotheses H1 and H0.

Statistical decision theory tells us that the optimal predic-

tion procedure should be based on the statistic 

or equivalently on the likelihood ratio. For any statistic a
threshold value should be specified for the procedure: if
the value of the statistic is greater than the threshold,
hypothesis H1 is accepted, otherwise hypothesis H0 is

accepted. The threshold value should be selected in such
a way that the total number of incorrect predictions (i.e.,
the sum of the number of type 1 errors and the number of
type 2 errors) would be minimal. It is clear that if the prior
odds are equal to 1, then a threshold value of one should
be selected for the likelihood ratio; total number of errors
would (theoretically) be minimal for this threshold.
Surely, the assumption that the ratio of a priori hypothesis
probabilities equals 1 does not seem to be natural.
Indeed, the number of considered words that do not
belong to a query sequence is much greater (approxi-
mately 8 times greater) than the number of considered
words that belong to a query sequence. But statistics that
are obtained from the assumption that this a priori ratio
equals 1, and the assumption that this a priori ratio does
not equal 1, but is constant (i.e., it does not depend on a

word ω) are equivalent. Essentially these are the same sta-
tistics (only the threshold value should be changed: a

value  should be taken instead of 1; as it was

noted, this value approximately equals 8 in our data).
Therefore, we assume from now on that the ratio of a pri-
ori hypothesis probabilities equals 1. Thus all considered
statistics are based on the likelihood ratio

Assumption of independence of variables ξi. Transfer probabilities
By virtue of equation (1) we need to estimate conditional
probabilities P{ξ|ξ0 = ε}, where ε = 1 or 0 in order to cal-
culate the likelihood ratio. Our derivation of these esti-
mates uses the assumption that variables ξi, i = 1,...,n, are
independent in the aggregate. Surely, this assumption is
false. In reality variables ξi are dependent, and the
dependence is considerably strong. Nevertheless, in our
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definition of the likelihood ratio statistic (and the statistic
that is the logarithm of the likelihood ratio) we use the
independence assumption. Since variables ξi are not inde-
pendent, one can not assert that the obtained statistics are
the most powerful, but these statistics can be still quite
good. In decision theory, this approach is known as the
naive Bayes procedure.

The independence of variables ξi implies the equality

Each variable ξi has exactly two possible values: 1 and 0.
Thus, everything is reduced to the following four condi-
tional probabilities:

P{ξi = 1|ξ0 = 1}, P{ξi = 0|ξ0= 1}, P{ξi = 1|ξ0 = 0}, P{ξi 

= 0|ξ0 = 0}. (3)

In addition, it is clear that

so actually everything is reduced to two conditional prob-
abilities

P{ξi = 1|ξ0 = 1}, P{ξi = 1|ξ0= 0}.

Conditional probabilities (3) are a special case of condi-
tional probabilities of the type

P{ξi = ε1|ξj = ε2}, where ε1, ε2 = 1 or 0, i, j = 0,1,...,n

(above special case corresponds to j = 0). We call all this
conditional probabilities transfer probabilities and denote
them by

Transfer probabilities depend on i, j (and certainly on the
word ω):

Conditional probabilities play a central role in our proce-
dure. According to equation (4), it suffices to explain how
transfer probabilities p1|1, p1|0 are evaluated.

We suppose that transfer probabilities satisfy the follow-
ing assumptions ("axioms") (the sense of these assump-
tions is obvious).

Assumption 1) For a fixed word ω and for sequences π0,
π1,...,πn (i.e., for the sequence π0 and sequences similar to
π0) transfer probabilities depend only on the measure of
similarity between sequences. Thus, we have:

p1|1 = p1|1 (i, j;ω) = p1|1(μij;ω) = p1|1(μij) = 1 - p0|1(μij),

p1|0 = p1|0 (i, j;ω) = p1|0(μij;ω) = p1|0(μij) = 1 - p0|0(μij),

where μij is the measure of similarity between sequences
πi, πj(i, j = 0,1,...,n).

Particularly, if one of these sequences is the query
sequence π0 and μj is the measure of similarity between πj,
π0, we have

P{ξj = 1|ξ0 = 1} = p1|1(μj), P{ξj = 1|ξ0 = 0} = p1|0(μj).
(5)

Assumption 2) Transfer probabilities (for an arbitrary fixed
word ω) depend on similarity measure μ monotonically:
the probability p1|1(μ) increases (does not decrease) and
the probability p1|0(μ)decreases (does not increase) as μ
increases.

Assumption 3) The inequality

p1|1(μ) > p1|0(μ) (6)

always holds (if μ > 0).

Transfer probabilities are evaluated on the basis of the
measure of similarity between similar sequences for
which it is known whether ω ∈ KW[πi] using the so called
isotonic regression procedure (see [11]). (In [5] this proce-
dure was referred to as monotonization procedure). Results
of this procedure are piecewise-constant monotonous
functions of the similarity measure μ that increase (do not
decrease) for probabilities p1|1(μ) and decrease (do not
increase) for probabilities p1|0(μ).

We briefly recall the isotonic regression problem. Let one
have two number sets (i.e., a set of points in the plain) xi,

yi, i = 1,...,n, for which x1 ≤ x2 ≤...≤ xn. The task is to find val-

ues z1, z2,...,zn, z1 ≤ z2 ≤...≤ zn, that minimize the deviation

.

This is the monotone-increasing isotonic regression prob-
lem. The monotone-decreasing isotonic regression prob-
lem is similar; the only difference is that here z1 ≥ z2 ≥...≥
zn.
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The isotonic regression procedure constructs a monotonic
number sequence z1,...,zn (while in linear regression val-
ues of zi are linearly expressed in terms of xi : zi = αxi + β).

An algorithm for the solution of isotonic regression prob-
lem can be easily constructed. We do not describe it here.
We only note that each zi is the mean value of {yj} over a

window of variable length: . For

different indices these windows either coincide or do not
overlap, and the i-th window contains i.

We also note that the values of xi are not essential in the
isotonic regression problem, only the order of values of yi
is essential.

To obtain the transfer probabilities using isotonic regres-
sion we proceed as follows.

For the evaluation of p1|1 we consider pairs of similar
sequences πi, πj that satisfy the condition ω ∈ KW[πi]. Let
μij denote the measure of similarity between sequences πi,
πj. We put ξij = 1 if the word ω belongs to the sequence πj,
and put ξij = 0 if ω does not belong to πj (recall that the
word ω belongs to πi). Then we apply the monotone-
increasing isotonic regression procedure to the collection
of points (μij, ξij), where μij are in ascending order. The
resulting values are the estimates of the transfer probabil-
ities p1|1(μij).

Similarly, applying the monotone-decreasing isotonic
regression procedure to the collection of points (μij, ξij)
that correspond to pairs of similar sequences πi, πj for
which ω does not belong to πi, we obtain values of the
transfer probabilities p1|0(μij). As we noted, the probabili-
ties p1|1, p1|0 are supposed to satisfy condition (6). There-
fore, if it turns out that functions p1|1(μ), p1|0(μ)obtained
after the application of isotonic regression procedure do
not satisfy this condition for some values of μ, then we
consider that probabilities p1|1, p1|0 are not defined for
these values of μ. Hence, it is possible that transfer proba-
bilities are defined only for sufficiently large values of μ,
but not for all μ. In particular, it is possible that for some
words there are no values of μ such that inequality (6)
holds. These words are referred to as degenerate words.

Statistics description
All statistics considered in this paper are based on the like-
lihood ratio criterion, that is on formula (1) under the
assumption of independence of variables ξi (formula (2)).

Two approaches are used in the definitions of these statis-
tics. One of them can be called a "discrete" approach; the
other can be called a "continuous" approach.

The discrete approach is based directly on formulae (1),
(2) and the definition of transfer probabilities. It follows
from (5) that the following formulae for conditional
probabilities hold:

P{ξi|ξ0 = 1} = p1|1(μi), if ξi = 1,

P{ξi|ξ0 = 1} = p0|1(μi) = 1 - p1|1(μi), if ξi = 0,

and hence

Similarly,

Relations (7), (8) together with (1), (2) imply the follow-
ing formula for the logarithm of the likelihood ratio:

where

One can see that the statistic T(1) can be expressed as a lin-
ear combination of the ξi.

As we noted, theoretically the best threshold value for the
statistic T(1) is equal to 1n1 = 0. However, that is only the-
oretical. As the assumption of independence of variables
ξi is incorrect and the statistic T(1) is only a rough estimate
of logarithm of the likelihood ratio, the best threshold
value is not necessarily equal to zero (and this threshold
does not really equal zero in practice).

Let us put . From the definition of η

and relations (9)–(11) it follows that
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where

We note that

The variable η(ω) can be treated as a second statistic. Its
values lie between 0 and 1. Statistics T(1) and η are linearly
dependent, and hence for a fixed word ω these statistics
are equivalent. However, the coefficients α0 and αi(i =
1,...,n) are different for different words ω, so the relation
between thresholds, used in the prediction, is different for
different words; consequently, the statistics T(1) and η are
not equivalent for the whole totality of words (We will see
later that if thresholds are well-chosen, then η leads to bet-
ter results than T(1)).

The other approach to the definition of statistics, used in
the annotation procedure, starts from a linear combina-

tion  of the ξi as in formula (12). Here coeffi-

cients αi are not necessarily given by (13), but should be

positive and satisfy the relation (14). This approach uses

the assumption that η has the normal distribution. Cer-
tainly this assumption is not correct (at least because the

inequality 0 ≤ η ≤ 1 always holds). Nevertheless, we use
this assumption (and, similarly to the discrete approach,

the assumption of independence of variables ξi(ω)). (As

the normal distribution is continuous, this approach can
be called "continuous").

Thus, we consider a random variable

and assume that it has a normal distribution. Denote by

the conditional expectations and dispersions of η given
that ξ0 = 1 or 0 respectively. We have

M1η = ∑aiM(ξi|ξ0 = 1) = ∑aip1|1(μi), M0η = ∑aip1|0(μi).

Further, the assumption of independence of ξi(ω) implies
that

(We note that it is the only place where the independence
of ξi is used; therefore, the assumption of independence of
ξi is not as essential in this approach as it was in the defi-
nition of the statistic T(1)). It follows from the assumption
of a normal distribution that in cases ξ0 = 1 and 0 the var-
iables

As above, we use the logarithm of the likelihood ratio as a
statistic and in addition assume that the ratio of a priori
hypothesis probabilities is equal to 1. Let us denote this
statistic by T(2). Relation (16) implies that

Another variant of this statistic – statistic  – was used

in the paper [5]. The statistic  is the ratio of type 1
error to type 2 error :

where Φ(x) is the cumulative normal distribution func-

tion: .

The statistics η and  are equivalent for an arbitrary

fixed word ω (although not equivalent for the whole total-

ity of words). At the same time, the statistics η and T(2) are

not necessarily equivalent, as the dependence of T(2) on η
may turn out to be not monotonic. Moreover, it is never

monotonic for all values of η. However, we are interested

only in values 0 ≤ η ≤ 1, and usually (though not always)

the dependence of T(2) on η is monotonous for these val-

ues of η, and in this case the statistics η and T(2) are equiv-

alent (for a fixed word ω). Furthermore, even in the case
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where the dependence is not monotonic, the monotonic-

ity is violated only for the values of η close either to 0 or
to 1, and the lack of monotonicity can be disregarded.

We still have to discuss the question of the choice of coef-
ficients ai in (15). One of the variants was described
above: formula (13) can be applied. Another variant was
introduced in [5]. This variant can be described as follows.

As above, we assume that the variate η = ∑aiξi has a nor-
mal distribution. Each set of coefficients ai and each
threshold value λ have corresponding theoretical frequen-
cies of type 1 and type 2 errors P(1)(λ), P(2)(λ). The idea is
to take the set of coefficients {ai} that gives the minimum
sum P(1)(λ) + P(2)(λ), where λ is the best threshold value
for this coefficient set. However, analytically it is very
cumbersome, so the following simplification was imple-
mented. For a fixed set of coefficients {ai} we select the
threshold value λ such that the frequency of type 1 errors
is equal to the frequency of type 2 errors: P(1)(λ) = P(2)(λ).
Then we find the set of coefficients that minimizes these
frequencies P(1)(λ) = P(2)(λ). Here the search of the coeffi-
cient set can be reduced to a conditional extremum prob-
lem. The A4 algorithm uses an iterated procedure for the
solution of this problem (see [5]).

In order to optimize the automated annotation proce-
dure, that is to increase the prediction quality, certain
modifications of the procedure were introduced. For each

statistic (η, T(1), T(2), ) many variants (up to 36),
including the variant that was described above, were con-
sidered – each variant corresponds to a certain combina-
tion of these modifications. Some variants really turned
out to be better than the variants described above.

A simplified scheme of modifications (and thereby of sta-
tistic variants) can be described as follows.

1) What primary local alignments are considered? In the
described variant of statistics only one primary local align-
ment (the one with the maximum power) was considered.
Meanwhile, all constructed local alignments with suffi-
ciently high power can be considered, as it was done in
[5]. In this case indices i in (9), (12), (15) correspond not
to individual similar sequences, but to primary local
alignments of this sequences.

2) Are the lengths of primary local alignments taken into con-
sideration? In the described variant lengths of primary
local alignments were not taken into consideration, but
these lengths can be considered as well. In this case indi-
ces i in (9), (12), (15) correspond not to similar sequences
or primary local alignments, but to individual positions of
these primary local alignments (as in case of FT-type

words). In this case the total number of variates ξi is equal
to the overall length of all primary local alignments. For
these variants of statistics long local alignments turn out
to be more significant than short local alignments with
the same power.

3) How are the coefficients ai calculated? The coefficients ai
in (15) can be calculated using different methods – either
formula (13) can be used, or an iterative method
(described in [5]) can be applied. (For the statistic T(1) the
coefficients ai are always calculated using formula (13)).

As there are 3 modifications, the total number of basic
variants (in the described simplified scheme) equals 23 =
8 (and for the statistic T(1) it equals 4).

So, variants of the statistics η, T(1), T(2),  are consid-
ered in this paper. Moreover, for the purpose of compari-
son (as in the paper [5]) the simple statistic

(the frequency of occurrence of a word ω in the collection
of similar sequences) is also considered.

Finally we quote a scheme of the A4 algorithm in Figure 1
(this scheme is essentially taken from [5]). A short
description of each stage can be found in [5]. Here we
only note that the most time-consuming stage is the first
one – the generation of a collection of similar sequences.
We also note that in the current investigation regions were
not determined, and the prediction was performed for the
whole query sequence.

ˆ ( )T 2

ˆ ( )T 2

q q
i

i

n

n
= =

∑
( )ω

ξ (18)

A4 algorithm schemeFigure 1
A4 algorithm scheme.
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Testing results
Testing scheme
A collection of 518 sequences, randomly selected from
SWISS-PROT databank, was generated. Note that only ini-
tially annotated sequences (i.e., sequences whose descrip-
tion fields were not obtained by the extension from
similar sequences) were selected. The prediction was per-
formed for KW-type words. All selected sequences were
divided into two groups. The first group contained 210
sequences. This group was used during the "learning
stage": the procedure was applied to all sequences from
the group, and values of procedure parameters (including
optimal threshold values) that minimize the total number
of errors for the first group were selected. The remaining
308 sequences were used for the "main testing" that was
performed using parameter values obtained on the basis
of "learning" results. A list of all these 308 sequences is
given in Additional file 1.

The total number of KW-type words in the description
fields of 308 selected sequences, used as query sequences,
was equal to 1176 (the positive prediction was preferable
for these words). As it was noted, a collection of similar
sequences was generated for each query sequence; the
number of sequences in these collections equaled 100.
Then the list of all KW-type words from description fields
of similar sequences was formed. The majority of these
words belonged only to one similar sequence. All such
words are degenerate, transfer probabilities are not
defined for them. At the same time nearly all these words
did not belong to the query sequence. Hence it was sensi-
ble to perform prediction only for words that belonged to
at least two similar sequences. For all these words transfer
probabilities were evaluated, non-degenerate words (i.e.,
words with defined transfer probabilities) were deter-
mined, and the prediction was performed (for both
degenerate and non-degenerate words).

Table 1 shows certain characteristics of sequences used for
the testing.

The average number of words considered per query
sequence equals 30 and the entire range was from 3 to 67.

Final results
Testing results are presented in Table 2.

The table contains testing results for the basic statistics η,

T(1), T(2),  as well as for the statistics q and SAnd,

included into the table for the purpose of comparison
(See the Discussion section). Each line of the table corre-
sponds to a certain variant of studied statistics. The first
column shows which statistic and which variant of this
statistic corresponds to a line. Variants are given in square
brackets: the first number equals 0 if lengths of primary
local alignments are not considered, and 1 otherwise; the
second number equals 0 if the coefficients ai are calculated

using formula (13), and 1 if the coefficients ai are calcu-

lated using the iterative procedure (for the statistic T(1) the
second number is always 0). The second column contains
the number N1 of type 1 errors (i.e., number of cases when
the prediction for a word that belongs to description fields
of a query sequence is negative). The third column con-
tains the number N2 of type 2 errors (i.e., number of cases
when the prediction for a word that does not belong to
description fields of a query sequence is positive). The
forth column contains the total number of errors Nall = N1

+ N2. The next columns contain sums P(1) + P(2) and P(1) +
P(+), where P(1) is the proportion of type 1 errors, P(2) is the
proportion of type 2 errors, and P(+) is the ratio of false
positive predictions to the total number of predictions:

, ,  (nall is the total

number of words for which the prediction is performed,
i.e., total number of KW-type words in description fields
of all sequences, similar to at least one query sequence, nq

is the number of words (from the list of these nall words)

that belong to query sequences, n+ is the total number of

words for which the prediction is positive; here nall = 9236,

nq = 1176, nall - nq = 8060; the value of n+ of depends on the

threshold evaluated for the given version of statistic at the

ˆ ( )T 2

P N
nq

( )1 1
= P N

nall nq
( )2 2

= − P N
n

( )+ =
+

2

Table 1: Certain characteristics of sequences used for the testing

Total number of query sequences, i.e., sequences used during the main testing 308
Total number of words that belong to query sequences (nq) 1176

Including: non-degenerate words 824
degenerate words 352

Total number of words for which the prediction was performed (nall) 9236
Including: non-degenerate words 7207

degenerate words 2029
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"learning stage"). Lines are ordered according to the pre-
diction quality: higher lines correspond to statistic vari-
ants with lower total number of errors. For a fixed statistic,
lines that correspond to the best variant of this statistic
(i.e., for the variant that leads to the lowest total number

of errors) are marked. Recall that the statistic [1,0] is
exactly the statistic that was considered in [5] (note that it

is the best variant for the statistic ).

The results could also have been presented as a confusion
table as laid out in Table 3, but doing so for all variants
would take a lot of space.

The testing results showed that the first modification
(consideration of all primary local alignments or only one
primary local alignment with the maximum power) did
not significantly affect the prediction quality, so results
are only presented for one case (all local alignments are
considered, similarly to [5]).

Note that the results presented in the Table correspond to
the whole totality of words including degenerate words

(though statistics η, T(1), T(2), , T(nik) were evaluated
only for non-degenerate words, for degenerate words the
prediction was performed on the basis of the statistic q,
i.e., on the basis of word frequency). In particular, the
total number of errors includes errors for degenerate
words. It is worth noticing that the total number of errors
for degenerate words in case of the best choice of thresh-

old q0 for the frequency q(ω) turned out to be surprisingly

small: only 13 (whereas the number of errors for the
whole totality of words was 220); these errors included
twelve type 1 errors and one type 2 error (recall that the
prediction was performed for 2029 degenerate words, and
the prediction was incorrect only in 13 cases). Such a
small number of errors can seemingly be explained by the

fact that for degenerate words the frequency q(ω) is nearly
always close either to 1 or to 0, otherwise in almost all
cases transfer probabilities p1|1, p1|0 can be defined for at

least some values of similarity measure μ and hence a

word ω turns out to be non-degenerate.

We also note that along with type 1 and type 2 errors other
errors can occur, as it is possible that some words from
description fields of a query sequence do not belong to
description fields of similar sequences and hence the pre-
diction is not performed for these words at all. However,
we used a large number of similar sequences (100) for the
prediction, so such errors were extremely rare (only two
words for the whole test set of 518 sequences, whereas the
number of words for which the prediction was performed
equaled 9236). Hence, in our case these errors can be dis-
regarded.

Statistical analysis showed that the precision of the evalu-
ation of N1, N2, Nall is reasonable: it can be checked that
the relative precision of Nall (the standard error of ln(Nall))
is in the order of 7–10% which is in line with the relative
precision of a Poisson random variable that is given by

. However, since the "methods" (the statistics

and their variants) are compared on the same sequences,
the standard error for the comparison between methods is

ˆ ( )T 2

ˆ ( )T 2

ˆ ( )T 2

1/ N all

Table 3: Lay out of the confusion table for the results of Table 2.

word "predicted" word "not predicted" total

word present 1176-N1 N 1 nq = 1176
word absent N2 8060-N2 nall - nq = 8060
total 1176-N1+ N2 N1 + 8060-N2 nall = 9236

Table 2: Testing results for different basic variants of the 
statistics.

Statistic N1 N2 Nall P(1) + P(2) P(1) + P(+)

η[1,1] 118 102 220 0.113 0.188
η[1,0] 130 104 234 0.123 0.201
η[0,1] 136 106 242 0.129 0.208
η[0,0] 164 103 267 0.152 0.232
T(1)[1,0] 213 83 296 0.191 0.260
T(2)[1,1] 172 124 296 0.162 0.256
T(2)[0,1] 216 103 319 0.196 0.281
T(2)[1,0] 180 141 321 0.171 0.277
T(1)[0,0] 200 124 324 0.185 0.283

[0,1]
189 136 325 0.178 0.282

[0,0]
234 111 345 0.213 0.304

[0,0]
205 148 353 0.193 0.307

[1,1]
142 217 359 0.148 0.294

[1,0]
164 224 388 0.167 0.321

q 393 158 551 0.354 0.502
SAnd 332 174 506 0.304 0.489

The table shows the testing results of the different statistics for nall = 
9236 'predictions'. In nq = 1176 cases the "predicted word" belonged 
to the sequence, in nall - nq = 8060 it did not. N1 denotes the number 
of false negatives, N2 is the number of false positives. Nall = N1 + N2, 
P(1) = N1/nq, P(2) = N2/(nall - nq) and P(+) = N2/N2 + (nq - N1)). See the 
main text for the description of the variants.
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ˆ ( )T 2
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much smaller due to the high correlation of results for the
same sequence and is in the order of 2–4%. This implies
that "methods" for which Nall differ by more than 10%
can considered to be significantly different.

This shows that size of the experiment with 210 randomly
selected sequences in the learning stage and 308
sequences in the testing stage is large enough to obtain
valid statements about the accuracy of the proposed meth-
odology and allows statistical comparisons of different
statistics and variants.

When the set of tested sequences is fixed, the total number
of errors Nall is an objective characteristic of prediction
quality, and the optimal threshold values (selected during
the "learning stage") provide exactly the minimum of the
total number of errors. However, if different testing results
(based on different sets of query sequences) are com-
pared, then absolute numbers of errors can not be treated
as a procedure quality measure, and relative quantities
(proportions) should be considered instead of absolute
quantities. Usually a sum of the proportion of type 1
errors and the proportion of type 2 errors P(1) + P(2) is used
as a quality measure; values of this sum are presented in
the fifth column of Table 2. However, in our situation the
number of words nall - nq that do not belong to query
sequences is much larger than nq, and for the majority of
these words it is obvious that they do not belong to a
query sequence. Consequently, in case of optimal param-
eter values the proportion of type 2 errors P(2) is small, it
is considerably smaller than P(1). Thus the quantity P(1) +
P(2) is not representative in our case (see [5]). The ratio P(+)

of the number of wrong positive predictions to the total
number of positive predictions is more representative
than P(2). Hence, it is natural to measure procedure qual-
ity by the sum P(1) + P(+). Exactly this procedure quality
measure was used in [5].

In medical decision making (diagnostic testing) the terms
sensitivity (sens = 1 - P(1)) and specificity (spec = 1 - P(2))
are frequently used to quantify the accuracy of a proce-
dure, while the quantity 1 - P(+) is known as the positive
predictive value. Alternative terminology is discussed in
[12]. The ROC curve plotting sens against 1 - spec is a pop-
ular way of showing the overall performance of a diagnos-
tic test without specification of a cut off value. It is also
used and discussed in [12], but with different labels for
the axes. Figure 2 contains ROC curves for the best vari-
ants of the statistics (i.e., for variants that were marked in
Table 2) applied to the non-degenerate words.

Discussion

Overall comparison of the statistics T(1), η, T(2), 
Mean values of Nall (where averaging is performed over all
variants presented in Table 2) for different statistics are the

following: 241 for η, 310 for T(1), 320 for T(2), and 356 for

 (recall that differences in the order of 10% can be
considered to be significant). These numbers show that
the statistics can clearly be ordered with respect to the pre-

diction quality: the best statistic is η, then comes T(1), then

T(2), and finally . For the comparison of the statistics

η, T(1), as well as for the comparison of statistics the T(2),

 this conclusion is obvious. For the comparison of the
statistics T(1), T(2) it seems to be less obvious, but the con-
sideration of variants in which the calculation of coeffi-
cients ai is performed using formula (13) (i.e., variants

[0,0] and [1,0]; recall that the statistic T(1) has only such
variants) clearly shows that the statistic T(1) is considera-
bly better than T(2). The same conclusion can be drawn
from the comparison of ROC curves presented in Fig. 2.

Testing results show that the prediction quality for the

best variant of the statistic η (see the first line of Table 2)
is much higher (higher by 50%) in comparison with
results of [5] (see the line of Table 2 that corresponds to

ˆ ( )T 2
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ROC curves for the best variants of the statisticsFigure 2
ROC curves for the best variants of the statistics. The 
figure shows the ROC curves (1–5) for the best variants of 
the statistics (i.e., for variants marked in Table 2). Curve 1 
corresponds to η[1,1]; curve 2 corresponds to T(1)[1,0]; 
curve 3 corresponds to T(2)[1,1]; curve 4 corresponds to 

[0,1]; curve 5 corresponds to q.ˆ ( )T 2
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[0,1]). That is the most striking finding of the current
paper.

It is interesting to see that the statistic η turned out to be
better than T(1): the latter would be expected to be better
as it equals the logarithm of the likelihood ratio (in real-
ity, it does not equal this logarithm because the ξi are not
independent). We suppose that this fact can be explained
as follows. Recall that T(1) and η are equivalent for an arbi-
trary fixed word ω. These statistics turn out to be not
equivalent only if they are compared on the whole totality
of words. It is worth noting that the variation of the values
of the statistic T(1) (i.e., the difference between values of
T(1) in cases ξ1 =....= ξn = 0 and ξ1 =....= ξn = 1) significantly
depends on a word ω: for some words these values vary
from -700 to 700, for some other from -0.01 to 0.01. In
principle, the optimal threshold value is different for dif-
ferent words. As the ranges of T(1) values essentially vary,
then it is probable that optimal thresholds also essentially
vary. The optimal threshold for the whole totality of
words is a certain mean value of thresholds over individ-
ual words ω. Since the optimal thresholds are significantly
different for different words, the quality of the mean is
low: for certain words (e.g., words with small variation of
T(1)) this mean is completely unrepresentative. In the
same time, the range of values of η is the same for all
words (these values lie between 0 and 1). Consequently,
the difference between optimal thresholds for individual
words is probably not so significant, and the mean gives
better quality for individual words in comparison with
T(1).

From the point of view of prediction quality the statistic
T(2) turned out to be worse than T(1). It is not surprising,
because during the derivation of the formula for T(2) along

with the incorrect assumption of independence of ξi we

also made the incorrect assumption of the normal distri-

bution of η. This consideration is applicable to  as
well. Since the cut-off points for these statistics are deter-
mined empirically in the test set and validated in the train-
ing set, the violation of the normality assumption does
not invalidate the procedures as such, but might affect
their performance.

Effect of procedure modifications
The next issue is the dependence of prediction quality on
procedure modifications. One can see that for a fixed sta-
tistic the prediction quality significantly depends on the
choice of the variant. Thus, the introduction of modifica-
tions turned out to be effective.

It is interesting that all statistics for which coefficients aj

can be calculated in different ways (these are the statistics

η, T(2) ) prediction quality was better in case when
these coefficients were calculated using the iterative proce-
dure.

At the same time the dependence of prediction quality on
the modification related to the consideration of lengths of
primary local alignments is more intricate: for the statistic

η, and to a lesser extent for the statistics T(1), T(2), the
results are better if lengths of primary local alignments are

considered, but for the statistic  results are better
when lengths of primary local alignments are not consid-
ered. Currently reasons of this fact are not clear for us.

As it was noted, the dependence of results on modifica-
tions dealing with the number of considered primary
local alignments for similar sequences is not essential.
(However, we note that for nearly all variants that were
described above as well as variants that were not
described, prediction quality is better in case when all pri-
mary local alignments are considered).

Comparison with other procedures

For the purpose of comparison we compared our findings

with the simple statistic q(ω) (the frequency of word
occurrence in the list of similar sequences, see (18)) was
also considered, using a threshold of q = 0.422. As

expected, q(ω) gave essentially worse results in compari-

son with T(1), η, T(2),  (see Table 2).

Furthermore, we compared our results with the results,
which predicts all of the words for which there is among
similar sequences at least one sequence with a power
above a certain threshold. Such an approach was used by
Andrade M. et al. [2]. This is the statistics SAnd as already
mentioned in Table 2. It is defined as SAnd(ω) = max μj,
where μj is the measure of similarity between sequences
π0, πj, and the maximum is taken on the j for which ξj(ω)
= 1 (i.e. the word belongs to these sequences). In our
application similarity is measured by the power value (see
[9,10]) as used in the other statistics in this paper and
mentioned before, while [2] used the E-value. That makse
the cut-offs hard to compare. The results for these statistics
are given in the same Table 2. The results were better than
in the statistics q(ω), but worse than in any of our statis-
tics.

Surprisingly, it turned out that the prediction quality is
better when only some similar sequences (e.g., 10 from
100) are used for the evaluation of a statistic (but not for
the evaluation of transfer probabilities!). It means that a
large part of similar sequences only leads to an increase of
"noise". (See [13] for details.)
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We would also like to mention the work [14] on FunCat
categories containing a set of about 7,500 well annotated
proteins and providing a benchmarking for different
methods of automated annotation. It would be interest-
ing to apply our procedure to this database, but that has
not been realized yet.

We did not attempt at this stage to apply our approach to
the GO annotation. It would be interesting further
research to switch to GO data and to compare our
approach with other approaches in the literature.

There is a similarity with the approach of Kajan et al. [15].
They also base their procedures on the likelihood ratio,
but use approximations based on maximal similarity (or
minimal distance), while we attempt to estimate the like-
lihood ratio from pairwise comparisons within the set of
similar sequences.

There is also an interesting relation with the GOPET tool
presented in [16] based on earlier work by the same
authors [17]. These authors use a number of characteris-
tics of the set of found similar sequences for term (word),
such as maximal e-value, frequency of the term etc., as a
coordinates of decision making space. They use more fea-
tures while we concentrate on the similarity. That might
be an advantage for their method. On the other hand we
try to use the information from all similar sequences in an
optimal way relying on statistical decision theory by
means of the use of transfer probabilities and the concept
of likelihood ratio. It is an interesting topic of further
research to compare the two methods.

So far we only predicted the presence of a key word. It is
quite a challenge to obtain a true prediction of function.

Conclusion
The main conclusion of the paper is that the introduction
of the concept of likelihood ratio coming from statistical
decision theory is very helpful in the development of
automated annotation procedures. We obtained a sub-
stantial improvement when compared with our previous
results.

We are sure that there is room for further improvement.
Issues for further research are the size of the set of similar
sequences and the combination of different statistics into
a "super-predictor".
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