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Abstract: Cancer cells normally develop the ability to rewire or reprogram themselves to become
resistant to treatments that were previously effective. Despite progress in understanding drug
resistance, knowledge gaps remain regarding the underlying biological causes of drug resistance and
the design of cancer treatments to overcome it. So, resistance acquisition remains a major problem in
cancer treatment. Targeted therapeutics are considered the next generation of cancer therapy because
they overcome many limitations of traditional treatments. Numerous tumor cells overexpress several
receptors that have a high binding affinity for hyaluronic acid (HA), while they are poorly expressed
in normal body cells. HA and its derivatives have the advantage of being biocompatible and
biodegradable and may be conjugated with a variety of drugs and drug carriers for developing
various formulations as anticancer therapies such as micelles, nanogels, and inorganic nanoparticles.
Due to their stability in blood circulation and predictable delivery patterns, enhanced tumor-selective
drug accumulation, and decreased toxicity to normal tissues, tumor-targeting nanomaterial-based
drug delivery systems have been shown to represent an efficacious approach for the treatment of
cancer. In this review, we aim to provide an overview of some in vitro and in vivo studies related to
the potential of HA as a ligand to develop targeted nanovehicles for future biomedical applications
in cancer treatment.

Keywords: hyaluronic acid; drug carriers; drug delivery; tumor targeting; cancer

1. Introduction

Cancer is considered the highest clinical, social, and economic burden in terms of
cause-specific disability-adjusted life years (DALYs) among all human diseases. In 2020,
there were approximately 19.3 million new cancer cases and almost 10 million cancer
deaths, and by 2018, in Europe alone, the total cost of cancer was EUR 199 billion [1]. For a
long time, several options for cancer therapy have been developed, but successful cancer
treatment remains one of the most important goals of present medical science. Current
treatment approaches include surgery, chemotherapy, radiotherapy, targeted therapy, and
immunotherapy. Even though they present a good cytotoxicity capacity, chemotherapy and
radiotherapy lead to acute side effects (such as neuropathies, suppression of bone marrow,
gastrointestinal and skin disorders, hair loss, and fatigue) and high risk of recurrences. In
the case of targeted therapy, multi-drug resistance commonly occurs, limiting therapeutic
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efficacy, and in immunotherapy, in addition to the increased risk of autoimmune disease, a
reduced efficiency against solid tumors has also been observed [2].

With the aim to enhance patients’ response to the considered anticancer treatments and
to improve their general healthcare status, new advances in nanotechnology have made
it possible to develop new and promising therapies based on the fundamental biology of
cancer [2]. In the last several years, nanoparticles have shown great potential in numerous
biomedical applications. Among them, silver nanoparticles have been studied owing to
their specific physicochemical properties and their great potential in killing cancer cells [3].
Recently, it has been shown that starch-capped silver nanoparticles, synthesized through a
green method, successfully induced damage in cytoplasmic membranes and mitochondria,
leading to cell cycle arrest and consequent blockage of cell proliferation and death in
prostate cancer cells, showing the potential of silver nanoparticles as anticancer agents [4].
Nanomedicine has been shown to overcome some of the limitations of current drugs used
in cancer treatment, such as poor water solubility, lack of specificity to the tumor site, and
systemic side effects [5–7]. In fact, several nanocarrier-based drug delivery systems have
already been proposed, using materials such as liposomes, micelles, protein conjugates,
and polymers, and are being tested in clinical trials [8].

Hyaluronic acid (HA) is a polymer with a much wider range of applications than the
facial treatments with which it is typically associated. Recent findings and progression
in research aim to demonstrate the various formulations of HA to design drug carriers
and advances in HA-based drug delivery systems for promising improved cancer thera-
pies [9]. Considering the great interest in HA from different fields and the fast-growing
number of studies, a comprehensive review is needed regarding this polysaccharide and
its potentialities.

2. Hyaluronic Acid

Hyaluronic acid is a natural anionic polysaccharide with a simple chemical structure
(Figure 1) composed of two alternating repeats: disaccharide units of β-1,3-N-acetyl-D-
glucosamine and β-1,4-D-glucuronic acid. It can be obtained by extraction from animal
tissues, microbial production, or enzymatic synthesis. This polysaccharide is physiologi-
cally synthetized at the plasma membrane by three different hyaluronan synthases (HAS
1–3) and its molecular weight (MW) may range from 5 to 20,000 kDa in vivo [9].

Figure 1. Chemical structure of Hyaluronic Acid. Created with ChemDraw Software version 12.

It is quite difficult for the body to absorb a polysaccharide. In 2008, Nozomi Hisada
and co-workers performed a study in which, using Caco-2 cells (intestinal epithelial model),
they revealed that HA with a MW greater than 100 kDa is rarely absorbed. In fact, the
amount of HA absorbed by Caco-2 cells increases as the MW of HA decreases to 70, 20,
or 5 kDa [10]. Thus, HA is not absorbed into the body as a high-MW polymer after
ingestion. The half-life of HA is very short (approximately 1–2 days in the skin and 24 h
in the bloodstream). Its degradation in the human body is carried out by two distinct
mechanisms: one is specific, mediated by enzymes (hyaluronidases, HYALs), while the
other is non-specific, determined by oxidative damage due to reactive oxygen species
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(ROS). By catalyzing the hydrolysis of HA, HYALs decrease the viscosity of HA, thereby
increasing tissue permeability [11].

The balance between the synthesis and degradation processes of HA plays an essential
regulatory role in the human body, as it determines not only the amount of HA, but also
its MW, and the MW determines the various biological actions/functions of the HA [9].
HA synthesis and degradation depends on the tissue microenvironment and is regulated
by intra- and intercellular signaling factors. In cancer, the degradation of HA by HYALs
is highly affected by malignancy, angiogenesis, and metastasis. The hypoxic status of a
tumor and its microenvironment has a positive effect in HYALs’ activity, resulting in the
production of small-sized HA fragments that promote angiogenesis and help the cancer to
spread in the body. In fact, high levels of HYALs have been observed in various tumor types
such as brain, bladder, and metastatic breast cancer [12]. There is no rigorous definition of
high-MW and low-MW HA, but generally speaking, high-MW HA is responsible for the
maintenance of the homeostatic condition, with anti-angiogenic, immunosuppressive, and
anti-inflammatory properties; low-MW HA plays an opposite effect, having a key role in
pathological conditions [13].

Since HA is produced by almost all cell types, in normal biological conditions, HA has
multiple essential biological functions. HA can be involved in several cellular interactions
(differentiation, proliferation, development, and antigen recognition) and biological func-
tions (lubrication, hydration, matrix structure, and steric interactions). Its natural negative
charge (due to the carboxylate groups) allows it to bind to a large amount of water, forming
a highly viscous gel. This gel lubricates joints and acts as a buffer for the surrounding tis-
sues, as well as contributing to tissue regeneration and remodeling processes, for example,
during the healing process [14].

Owing to its high hydrophilicity, biodegradability, good biocompatibility, low toxicity,
and modification flexibility, HA possesses great potential in biomedical and pharmaceutical
applications, such as drug delivery systems, ophthalmic surgery, osteoarthritis treatment,
and tissue engineering. It is also used in cosmetics applications, notably as dermal fillers
and moisturizers [15,16]. Moreover, due to the differential expression of HA receptors in
different tissues, HA also presents selectivity to target-specific sites, which increases its
potential in these applications.

3. Hyaluronic Acid Receptors

HA is an important constituent of the extracellular matrix (ECM) that binds to ECM
molecules and cell surface receptors (Figure 2), thereby regulating cellular behavior via con-
trol of the tissue’s macro- and microenvironments [11]. The three main classes of cell surface
receptors for HA binding are: (1) cluster of differentiation 44 (CD44), a membrane glyco-
protein, (2) receptor for hyaluronate-mediated motility (RHAMM), and (3) intercellular
adhesion molecule 1 (ICAM-1).

The receptor CD44 is considered the main HA receptor and their interaction activates
many pathways involved in biological processes such as inflammation, wound healing,
morphogenesis, and cancer. It is endogenously expressed in different cells in normal tissues,
but in low levels, and requires activation [17]. CD44 is subject to extensive alternative
splicing and, thus, is a transmembrane glycoprotein family with several isoforms. In
normal physiology, this receptor is involved in the cell adhesion process (aggregation
and migration), inflammatory process, and repair system [18]. However, in the case of
pathological physiology, as cancer, it is involved in invasion and metastasis [19]. This
is due to the activation of HER2 tyrosine kinase and Src, RhoA, and Rac1, as well as
to the promotion of association of CD44 isoforms to cytoskeleton proteins caused by its
interaction with HA [20]. Nevertheless, in cancer cells, the structure of CD44 is modified.
These cells stimulate alternative splicing and post-translational modifications, producing
different isoforms of CD44 protein with enhanced binding to HA [19]. Thus, the CD44
gene can encode more than 100 isoforms, from 80 to 200 kDa. The standard isoform,
CD44s, is the smaller form (85–95 kDa) without variable exons, encoded by conserved
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exons and is ubiquitously expressed, being composed of a single-chain molecule with
various domains: N-terminal, a membrane-proximal region, comprising ligand-binding
sites, a cytoplasmic domain, and transmembrane domain [16]. The isoform CD44v is the
major form upregulated in cancer cells and CD44v6, a specific CD44v isoform, has been
identified as the major isoform of this receptor which is overexpressed in many types of
tumors, and not in normal tissue [16,21]. Additionally, CD44 has already been identified
in cancer stem cells (CSCs), improving their motility, and in macrophages, making these
tumors immunosuppressive [22,23].

Figure 2. Summary of HA cell surface receptors: cluster of differentiation 44 (CD44), receptor for
hyaluronic acid-mediated motility (RHAMM), Intercellular Adhesion Molecule 1 (ICAM); lymphatic
vessel endothelial hyaluronan receptor (LYVE-1), hyaluronic acid receptor for endocytosis (HARE),
and Toll-like receptors (TLRs) and some of their actions when bonded to HA. Created with “https:
//biorender.com/, accessed on 28 September 2022”.

RHAMM (also designated CD168) is an ECM glycosaminoglycan which is alternatively
spliced, and its truncated forms can be found not only in the cell membrane, but also
in cell cytoplasm, the nucleus, and the cytoskeleton [20,24,25]. It has a role in many
biological functions such as cellular growth, differentiation, and motility. When bonded
to HA, the cell surface receptor RHAMM mediates and promotes cell migration, and the
intracellular RHAMM mediates the cell cycle, namely the formation and integration of
the mitotic spindle [11]. This interaction is important in inflammation and tissue repair
because it triggers many signaling pathways and controls cells such as fibroblasts and
macrophages [26]. In the case of human cancer, it is present in solid tumors in the following
organs: stomach, prostate, breast, colon, and lungs [27,28]. RHAMM is poorly expressed
in the majority of common normal tissues, but shows increased expression in tumor
cells, which has already been correlated with tumoral progression, invasion, metastasis
development, and poor survival rate [25]. The RHAMM receptor co-exists with the CD44
receptor, which is the major cell surface HA-binding protein, but in 23% of cases, RHAMM
is overexpressed in the absence of CD44 [29].

https://biorender.com/
https://biorender.com/
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ICAM-1 (also known as CD54) is a cell surface metabolic receptor for HA and is
naturally expressed on endothelial cells and leukocytes. Its structure is characterized by
heavy glycosylation and the protein extracellular domain is composed of multiple loops
created by disulfide bonds within the protein. The binding of HA to this receptor triggers
a regulated cascade of events that feed the endocytic vesicles. This molecule may also be
responsible for the release of HA from body fluid and plasma, which is responsible for
most of its turnover throughout the body [30].

In addition to these HA receptors, others have been identified: the lymphatic vessel
endothelial hyaluronan receptor (LYVE-1), the hyaluronic acid receptor for endocytosis
(HARE), and Toll-like receptors (TLRs) [31].

CD44 and RHAM’s overexpression in most tumors and their correlation with poor
prognosis lead to the development of therapeutic approaches through signaling targeting
and drug delivery mediation by HA [16]. HA oligosaccharides (oHA) were able to abrogate
signaling pathways such as the PI3K/Akt pathway and the association between CD44 and
receptor tyrosine kinases. Additionally, they were able to inhibit CD44 clustering on the
plasma membrane as well as block its interaction with emmprin and with different drug
transporters [32]. Additionally, because of HA’s strong binding affinity for these receptors,
HA has been used through targeted delivery of chemotherapeutic drugs or other novel
treatments with different studies showing successful results both in vitro and in vivo [16].

4. Therapeutic Applications of HA in Cancer

HA represents a key molecule in a variety of medical, pharmaceutical, nutritional,
and cosmetic applications since it has many useful advantages, including biocompatibility,
chemical versatility, non-toxicity, biodegradability, and high hydrophilicity [31]. For many
years, it has been used in the treatment of osteoarthritis, cosmetics, and in ophthalmology,
but there has been a growing interest in HA’s application in other fields of medicine such as
skin wound healing, tissue engineering, dentistry, and targeted drug delivery systems [13].
In recent years, HA has been studied as an anticancer delivering system, not only for drugs,
but also for imaging agents, gene plasmids, and photosensitizers [16]. In fact, in the field of
cancer therapy, the progress of nanotechnology facilitated the development of nanodrug
delivery systems that are highly tumor-selective and allow for the slow release of active
anticancer drugs, which pose as great advantages since unfunctionalized nanomaterials are
potentially cytotoxic and lack cell-specific function. The concept of the “3S” transition has
been recently proposed in nanotechnology referring to stability, surface, and size transition
and states that if these three concepts are satisfied in drug delivery systems, all barriers in
delivery processes can be overcome and the drug will be effective. HA-based nanomaterials
are said to be one of the few biopolymers that can satisfy the “3S” transition approach for
anticancer drugs [33]. Size is, indeed, an important factor affecting half-life in vivo and
accumulation in tumor tissue. Large particles tend to stay in the tumor tissue, but their
penetration ability is low, whereas small particles have the opposite characteristics, and are
easily removed from blood circulation. Thus, to reach a good enhanced permeability and
retention effect, drugs need to be kept in a large amount in the blood circulation and less
near the tumor tissue. In the case of nanomaterials containing HA—CD44, LYVE-1, and
RHAMM function as selective tumor targets. After being taken up by cancer cells through
receptor-mediated endocytosis, HA is degraded to low-molecular-weight components
by hyaluronidase [11]. Additionally, HA’s several functional groups (carboxylic acid,
hydroxyl, and N-acetyl groups) allow several chemical conjugations and modifications and
the consequent delivery of synergistic cancer therapies.

Because of these properties, HA-based nanomaterials have been studied as drug
delivery systems through passive and active targeting [16]. Drug delivery systems have
raised attention in overcoming drug resistance as well as increasing the therapeutic index
and decreasing side effects of treatments [34]. An example of such drug delivery systems
are polymeric conjugates of chemotherapy drugs. These are endocytosed, accumulating in
lysosomes which leads to a release of the drug from the polymer closest to its target and
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makes it less prone to membrane-linked drug efflux mechanisms. Their size also constrains
the extravasation of the drug to normal tissues, which diminishes toxicity. Additionally,
they retain the ability to cross the irregular neo-vasculature characteristics of solid tumors
and are capable of accumulating in tumor interstitium [35]. The use of nanomaterials to
improve immunotherapy results has also been raising attention, since their combination
can potentiate the cancer-immunity cycle through enhancement of antigen release, antigen
processing, antigen presentation, and immune cell-mediated tumor killing [36]. In the same
way, research regarding gene therapy has been increasing. Gene therapy delivers genetic
material (such as RNA or DNA), through a vector, into the target or is used to reshape cells
removed from the host which are then re-administered [37]. The use of nonviral delivery
vectors, such as nanomedicine, led to lower immunogenicity and toxicity, was easier to
prepare, and was able to load a higher capacity [38]. Therefore, the use of HA-based
nanomaterials to deliver non-coding RNAs such as siRNAs, miRNAs, and lnc-RNAs has
been studied in the last several years. Thus, the present review intends to summarize the
current evidence regarding these nanomaterials and their potential application in cancer.

5. Evidence Acquisition

A literature search in PubMed was conducted using the search term “Hyaluronic acid-
based nanomaterials in cancer”. Papers between January 2017–March 2022 were included.
A total of 366 papers were selected and after analysis and 207 papers were excluded due to
the following exclusion criteria: they were review papers; we did not have access to the full
text; they did not fit into the main classes of HA nanomaterials; or they were not related to
cancer. The papers were then divided into major categories, corresponding to the four main
classes of HA nanomaterials (Figure 3): HA–drug conjugates, HA-based hydrogels, HA micelles,
and HA-based nanoparticles and their evidence was summarized in the following tables.

Figure 3. Different formulations of HA-based nanomaterials and their possible applications in cancer
therapy. Created with “https://biorender.com/ accessed on 28 September 2022”.

6. HA–Drug Conjugates

Taking into account the specific binding of HA to receptors on the surface of cancer
cells, it can be used as a carrier of other drugs through the formation of conjugates, generat-
ing new compounds with promising antitumor effects [9]. This direct conjugation made by
covalent bonds is not easily broken in the blood, but can be disrupted through hydrolysis
by intracellular enzymes after reaching the target and releasing the drug [39]. Besides this
targeting ability, HA–drug conjugates can improve drug solubility, stability, circulation
time, and change its distribution in vivo, increasing its accumulation in tumor tissue by
enhancing the osmotic retention effect. In fact, hyaluronan has already been conjugated
to different antineoplastic drugs, generating new compounds with promising antitumor
effects (Table 1).

https://biorender.com/
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Table 1. Recent application of HA-based drug conjugates in cancer models.

Compound/Drug Status Model Effect Role of Nanomaterial Ref.

Curcumin In vitro
In vivo Breast cancer Efficiently accumulates in tumor site via EPR effect and CD44-mediated

endocytosis; Antitumor effect. Nanocarrier [40]

Doxorubicin In vitro
In vivo Breast cancer Efficient delivery into cancer cells; Increases the therapeutic and the

apoptotic activity of DOX; Effectively suppress tumor growth in vivo. Chemosensitizing agent [41]

Cinnamaldehyde and
protoporphyrin

In vitro
In vivo Melanoma Improves bioavailability and selective tumor accumulation; Induces

cytotoxic ROS generation; Improves antitumor performance.
Delivery system and

photodynamic therapy [42]

Doxorubicin In vitro
In vivo Hepatocellular carcinoma Excellent antitumor capability. Drug delivery system [43]

Doxorubicin In vitro Cervical cancer Much better cellular uptake and higher cytotoxicity in tumor cells than
normal ones. Drug delivery system [44]

siRNA In vitro
In vivo Glioblastoma Efficiently delivers into tumor cells/tissues and mediates less

cytotoxicities in normal cells; Significantly enhances antitumor ability. siRNA delivery [45]
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Lai and collaborators have proposed the conjugation of curcumin and hyaluronic
acid to form amphiphilic HA–ADH–CUR conjugates. These conjugates were efficiently
internalized through CD44 receptor-mediated endocytosis by breast cancer cells and in
an in vivo context. Moreover, curcumin was successfully released in an acidic lysosome
environment, which is characteristic of the tumoral microenvironment, and was able to
achieve significative therapeutic effects for tumor growth suppression, showing potential as
a promising nanocarrier for curcumin to enhance cancer therapy with good biosafety [40].
On the other hand, DaEun Kim and collaborators conjugated S-nitrosoglutathione with HA
to improve doxorubicin anticancer activity and observed that it was capable to generate
NO within cells that made breast cancer cells vulnerable to doxorubicin, reinforcing its
apoptotic activity. At the same time, the drug conjugate alone exhibited negligible cytotoxic
effects. These results were reinforced in vivo where there was effective accumulation in
the solid tumor and effective tumor growth suppression [41]. Additionally, Xiaoyu Xu and
collaborators have conjugated cinnamaldehyde with hyaluronic acid and encapsulated
the photosensitized protoporphyrin combining a ROS-based dual chemo/photodynamic
treatment modality. The generated ROS was used as a mechanism to avoid undesired
elimination of protoporphyrin and, in fact, this drug conjugate was able to induce antitumor
effects both in vitro and in vivo [42].

These studies show the potential of drugs conjugated with HA as a new class of
bioconjugated and tumor-targeted chemotherapeutic drugs for cancer treatment due to
their innovative carrier-mediated drug delivery systems characterized by CD44-mediated
endocytosis of HA and intracellular drug release with great potential.

7. HA-Based Hydrogel

Hydrogels are three-dimensional hydrated polymeric networks (with high water con-
tent), formed from crosslinked polymer chains with highly porous structures that enable
drug release in a controlled manner [46]. In recent years, on account of their advantages
such as low cytotoxicity, viscoelasticity, and bioconjugation, as well as prevention of enzy-
matic degradation, hydrophilic hydrogels have been widely investigated for biomedical
applications such as cell therapy, tissue engineering, drug delivery, and diagnostics [47,48].
HA does not natively form physical gels alone and is susceptible to endogenous degra-
dation; thus, the hydroxyl- and carboxyl-reactive groups in HA are often subjected to
chemical modifications, crosslinking, and gelling agents to develop HA-based hydrogels
with structural, mechanical, and degradation properties while maintaining native biological
functions [49]. Thus, HA-based hydrogels are macroscopic networks of randomly intercon-
nected HA chains at crosslinking points established by covalent bonds, such as hydrogen
bonds, hydrophobic/hydrophilic interactions, and ionic/electrostatic interactions [50]. In
the last several years, they have been studied for the controlled release of loaded anticancer
drugs (Table 2).
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Table 2. Recent application of HA-based hydrogels in cancer models.

Compound/Drug Status Model Effect Role of Nanomaterial Ref.

Quercetin combined with
Temozolomide In vitro Brain cancer (Glioblastoma

multiform)

Proficient in mediating site-specific delivery of quercetin via CD44
receptor; Improves the therapeutic efficacy of temozolomide by

modulating brain tumor microenvironment.
Drug delivery system [51]

Auraptene and Cisplatin In vitro
In vivo Breast cancer Excellent physiological stability and fluorescence effects; Selective

internalization; Antitumor effects and lower systemic toxicity.
Dual-targeted delivery and

synergistic therapy [52]

Doxorubicin In vitro
In vivo Melanoma

High biosafety; Tumor microenvironment responsiveness; Ability to
target CD44 overexpressed in melanoma cells; Ability to suppress

tumor growth in vivo.
Drug delivery system [53]

Oncolytic viruses In vitro Colorectal Cancer
Prostate Cancer

In vitro cytotoxicity assays demonstrate good oncolytic activity of
OV-loaded nanohydrogel against cells. Delivery system [54]

Coumarin In vitro
In vivo Cervical Cancer The results provide novel insights into several aspects of the in vitro

and in vivo behavior of nanogels. Drug delivery system [55]

EF2-Kinase inhibitor In vitro Breast cancer
Pancreatic cancer

Inhibition of cell proliferation and colony formation of breast and
pancreatic cancer cells. Drug delivery system [56]

Quercetin and Everolimus In vitro Breast cancer Synergistic cytotoxic effects; Antitumor and
anti-inflammatory properties. Nanocarrier [57]

Polypyrrole and doxorubicin In vitro
In vivo Breast cancer Significant inhibition of a subcutaneous tumor model through

combined photothermo-chemotherapy under laser irradiation. Drug delivery system [58]

Paclitaxel and interferon
gamma In vitro Lung carcinoma Positive effects on cancer cells and fewer side effects on healthy ones. Drug delivery system [59]

Doxorubicin In vitro Hepatocellular carcinoma Excellent DOX-loading capacity; Cytotoxicity induction. Drug delivery system [60]

C14-Gemcitabine In vitro Colon and Pancreatic cancer Controlled release of drug; Potential for intratumoral delivery of
anticancer agents. Drug delivery system [61]
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Barbarisi M and collaborators synthesized a nanohydrogel that was able to carry
quercetin combined with temozolomide and was administrated to glioblastoma cells
in vitro. This nanocarrier increased the internalization of quercetin, which, when co-
delivered with temozolomide, contributed to an improved anticancer effect as well as a
reduction inIL-8, IL-6, and vascular endothelial growth factor (VEGF) production. The
increased internalization was due to the ability of the nanohydrogel to recognize the CD44
receptor through an energy- and caveolae-dependent internalization mechanism, demon-
strating the ability of hyaluronic acid nanocarriers in targeting glioblastoma cells [51].
Interestingly, Zhiwen Cao and collaborators synthesized a nanogel using hyaluronic acid
and β-cyclodextrin derivative to carry auraptene and cisplatin. This nanogel showed excel-
lent physiological stability and its delivery was affected by pH value, favoring a selective
release to the tumor microenvironment. Additionally, it demonstrated a selective cytotoxic-
ity to breast cancer cells compared to normal ones, which is a great indicator of biosafety.
This is enhanced by the in vivo results, since the nanogel was able to reduce tumor volume
while showing reduced systemic toxicity [52]. Nanogel application in theranostics has
been demonstrated by Pan et al. [53]. They reported a one-step assembly of an HA-based
multifunctional theranostic nanoplatform. Histidine was conjugated with HA and Mn2+
was used as a magnetic resonance imaging (MRI) contrast agent. Doxorubicin and chlorin
e6 were then loaded as chemotherapeutic agents. This nanogel showed high biosafety and
tumor microenvironment responsiveness in a melanoma cell line. The targeted responsive
release of doxorubicin, chlorin e6, and Mn2+ was able to induce cell death in vitro and
suppress tumor growth in vivo, showing potential both in combined chemo-photodynamic
therapy and T1-weighted MR imaging [53].

Thus, the optimal formulations of hydrogels can increase the therapeutic efficacy of the
local treatment of cancer, resulting in promising injectable formulations for the treatment
of local and metastatic tumors.

8. HA Micelles

The functional groups presented in HA can be modified with hydrophobic substances
such as hydrophobic drugs or polymers via esterification or amidation, allowing the binding
of hydrophobic macromolecules with positive charges via electrostatic interactions to form
micelles or micellar NPs for loading drugs [32]. Thus, HA can form self-assembling micelles
generating amphiphilic nanocarriers. Micelles have an amphiphilic nature, displaying a
spherical structure with a hydrophilic shell and hydrophobic core [62]. Therefore, they have
the ability to carry hydrophobic drugs and increase their bio-availability and half-life. There
are several characteristics that have made micelles the target of study in the last several
years (Table 3), of which high dissolution capacity, high stability along with prolonged
release, long-term circulation and the capacity to stay in the tumor for a greater amount of
time are examples [63].
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Table 3. Recent application of HA-based micelles in cancer models.

Compound/Drug Status Model Effect Role of Nanomaterial Ref.

Doxorubicin and Cisplatin In vitro
In vivo Breast Cancer

Enhanced drug release under acidic conditions and higher cellular
uptake; Stronger cellular growth inhibition and lower systemic toxicity

than free drugs.
Drug delivery systems [64]

Doxorubicin In vitro
In vivo Breast cancer

Combined with radiotherapy, ROS-sensitive micelles disintegrated and
released great drug cargos, enhancing cytotoxicity; Prolonged

circulation time and improved tumor accumulation.

ROS-sensitive drug delivery
system [65]

Curcumin and Baicalin In vitro
In vivo Lung cancer Good cellular penetration and tumor cytotoxicity; Effective antitumor

activity and reduced side effects. Drug delivery system [66]

Vitamin E
Paclitaxel

In vitro
In vivo

Breast Cancer
Melanoma

Strong antineoplastic effects due to redox responsiveness; Excellent
tumor-targeting ability and prolonged retention time compared to Taxol

in vivo.
Drug delivery system [67]

Cisplatin In vitro
In vivo Ovarian cancer Prolonged blood circulation and preferential tumor accumulation;

higher antitumor efficacy. Drug delivery system [68]

Gambogic acid In vitro
In vivo Lung cancer Higher apoptosis induction and cytotoxicity. Drug delivery system [69]

Lauroyl-gemcitabine and
honokiol

In vitro
In vivo

Glioblastoma
multiforme Stronger inhibition of glioma proliferation and apoptosis induction. Delivery system [70]

Doxorubicin In vitro Cervical cancer Nanomicelles could be disassembled upon UV light; Inhibition
of proliferation. Drug delivery system [71]

Tocopherol succinate In vitro
In vivo Melanoma Greater tumor accumulation; Higher antineoplastic responses. Drug delivery system [72]

Indocyanine green derivative
and paclitaxel

In vitro
In vivo Breast cancer

Improved stability and reduced systemic toxicity; High stability, smart
release behavior, and excellent tumor-targeting ability; Great synergy in

tumor inhibition.
Delivery system [73]

Tirapazamine In vitro
In vivo Breast cancer

Efficient activation of mitochondrial apoptosis cascade and oxygen
depletion in the tumor intracellular environment to amplify the

hypoxia-dependent cytotoxic effect of TPZ.
Delivery system [74]

Tamoxifen In vitro
Ex vivo Breast cancer

Safe and compatible against macrophages; Efficiently kills cancer cells;
non-toxic nature in contrast to pure TMX; Augmented intracellular
uptake with strong targeting potential for anti-proliferative activity.

Drug delivery system [75]

Oxygen In vitro
In vivo

Ocular choroidal
melanoma Increased generation of O2 and elevated phototoxicity. Delivery system [76]

Doxorubicin In vivo Breast cancer Remarkable therapeutic effect and minimized toxicity in vivo. Light-activated drug release [77]
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Tao Yu and collaborators synthesized an HA-based nanocarrier, incorporating doxoru-
bicin and cisplatin as a CD44-targeting anticancer drug delivery system. These micelles
with dual cargo were tested in breast cancer and normal cells, showing an increased drug
release under acidic conditions, which is characteristic of the tumoral microenvironment.
Additionally, the studies indicated a good cellular uptake and a higher cellular growth
inhibition than doxorubicin and cisplatin alone. It is important to note that this was not
observed in the normal breast cells, meaning there was a great polarity of the micelles to
CD44+. These micelles were also tested in vivo, using a mammary cancer-bearing mouse
model and, when compared to the free drugs, there was a higher inhibitory effect of the
micelles, a lower toxicity, and higher tumor accumulation. These results showed the impor-
tance of HA in the formulation of nanocarriers of existing cancer drugs. [64]. On the other
hand, an interesting work performed by Ying Yu and collaborators was the incorporation
of a chemical radiosensitizer, doxorubicin, into the micelle’s core. These DOX-loaded ROS-
sensitive nanomicelles were tested in breast cancer cells and, upon radiation stimulus, they
were oxidized, generating ROS and leading to the micelles’ destruction and doxorubicin
release. Additionally, when combined with radiotherapy, the DOX released by the micelles
showed enhanced cytotoxicity and a sensitization of the cells to radiotherapy. This was
further shown in in vivo studies in which these micelles showed longer circulation time,
better tumor accumulation, and a greater tumor inhibition rate. In fact, when the tumor
sites were irradiated, the release of doxorubicin was combined with the cytotoxic effect
of radiotherapy with a tumor inhibition rate of about 70%. The study is an indication
of the possibilities opened up by nanomedicine using HA in encapsulating anticancer
drugs, maximizing their effect in combination with radiotherapy [65]. Recently, Bingjie
Wang and collaborators synthesized a novel nanocarrier material for synchronous delivery
of curcumin and baicalin, targeting both lung cells and tumor-associated macrophages,
to effectively overcome tumor resistance. They demonstrated through in vitro cellular
studies that these micelles have good cellular penetration and tumor cytotoxicity. In vivo
antitumor experiments confirmed effective antitumor activity and reduced side effects in
A549 tumor-bearing nude mice [66]. Even though these and other studies point to micelles
as promising carriers for the delivery of anticancer drugs, there is little clinical research that
proves their safety and clinical antitumor effect [78,79].

Another frequently used method is the coating of HA onto other nanocarriers, such as
liposomes or inorganic nanoparticles, made by electrostatic attraction or covalent bonds,
especially unstable bonds. A carrier system must be biocompatible, inert, and able to
efficiently carry a high concentration of drug [80]. The slow release of drug from the carrier
allows the drug to remain in the tumor tissue at a higher concentration and lower plasma
drug concentration [81]. In Table 4, we summarize the studies with HA-based nanoparticles
and their possible applications in cancer.



Pharmaceutics 2022, 14, 2092 13 of 34

Table 4. Recent application of HA-based nanoparticles in cancer models.

Compound/Drug Status Model Effect Role of Nanomaterial Ref.

Gemcitabine and Quercetin In vitro Pancreatic ductal
adenocarcinoma

Improved cytotoxicity and cellular uptake; Improved anti-inflammatory
properties of quercetin and decrease in interleukin cellular levels. Drug delivery system [82]

Curcumin In vitro
In vivo Breast cancer

Cellular uptake and higher cytotoxicity; Higher lactate dehydrogenase
release, cell cycle arrest in G2/M, S phases, ROS generation, and

apoptosis; Stronger inhibitory effect on tumor growth and
pulmonary metastasis.

Drug delivery system [83]

Doxorubicin In vitro Gastric cancer Preferentially taken up by cancer cells; Mainly accumulated in
mitochondria; Efficiently killed cancer cells. Drug delivery system [84]

Doxorubicin and paclitaxel In vitro
In vivo

Lung and Breast
cancer

High stability, excellent active targeting effect and controllable
intracellular drug release and, ultimately, better anticancer efficiency

than individual drugs.
Co-delivery system [85]

Docetaxel In vitro
In vivo Breast cancer Antitumor effect. Drug delivery system [86]

Pentamidine isethionate In vitro
Lung

Adenocarcinoma
Breast cancer

More cytotoxic in comparison to the free drug, suggesting an enhanced
internalization of encapsulated drug by cancer cells. Drug delivery system [87]

Hyaluronic acid-ceramide In vitro
In vivo Breast cancer

Additional tumor-targeting and penetration potential together with
enhanced permeability and retention (EPR) effect (passive tumor

targeting) and HA–CD44 receptor interaction (active tumor targeting).

Nanocarrier for imaging and
therapy [88]

IR780Doxorubicin In vitro Breast cancer
Increased photothermal potential and cytocompatibility of IR780;

Higher internalization by cancer cells than by normal ones; Decrease in
spheroid cell viability.

Cancer chemo-phototherapy
Co-delivery system [89]

Catalase In vitro
In vivo Breast cancer

Minimal cytotoxicity in the dark and high toxicity under 660 nm light
irradiation at normoxic conditions; Selective tumor accumulation in

tumor-bearing nude mice; Significant tumor regression after intravenous
injection under light irradiation compared to control system without

loading catalase.

Photodynamic therapy [90]

Doxorubicin In vitro
In vivo

Lung
Adenocarcinoma Antitumor effects and minimal systemic toxicity. Nanocarrier [91]

Curcumin In vitro
In vivo Breast cancer

Cell death by ROS induction, cell cycle arrest, and modulation of NF-κB
and Bax-mediated apoptotic pathway; Decreased tumor volume in

tumor-bearing mice due to increased bioavailability and higher cellular
uptake in tumor tissue.

Drug delivery system [92]

Doxorubicin and cisplatin In vitro Breast cancer DOX and cisplatin exhibited a synergistic cell-killing effect in human
breast cancer MCF-7 cells.

Synergetic targeted combination
chemotherapy [93]

Doxorubicin In vitro Breast Cancer Excellent targeting of cancer cells. Drug delivery system [94]



Pharmaceutics 2022, 14, 2092 14 of 34

Table 4. Cont.

Compound/Drug Status Model Effect Role of Nanomaterial Ref.

Cisplatin In vitro
In vivo

Human ovarian
cancer; Ehrlich tumor
(solid)-bearing mice

Higher cytotoxicity than the free drug; in vivo antitumor activity. Drug delivery system [95]

Lapatinib In vitro
In vivo Breast cancer Improved antiproliferation potential, apoptotic efficacy, and

mitochondrial destabilizing activity; tumor growth suppression. Drug delivery system [96]

Paclitaxel In vitro
In vivo

Colorectal and Breast
cancer;
Lung

adenocarcinoma;
Hepatocellular

carcinoma; Melanoma

Effective tumor ablation with minimal adverse events; Significantly
inhibited melanoma tumor growth. Drug delivery system [97]

Doxorubicin In vitro
In vivo Breast cancer Greater cellular uptake and cytotoxicity; Significant tumor-targeting

capabilities and tumor growth inhibition activity with less cardiotoxicity. Drug delivery system [98]

IRDye800CW Camptothecin In vitro
In vivo Breast cancer High-precision tumor therapy with no tumor recurrence and metastasis.

Drug delivery system
Chemo-photothermal

therapy
[99]

Zinc(II) phthalocyanine-based
photosensitizer

In vitro
In vivo

Colorectal
adenocarcinoma;

Lung adenocarcinoma

Upon irradiation, NPs caused significant temperature increase at the
tumor site and ablation of the tumor. Effective photothermal agent for

targeted photothermal therapy.

Nanocarrier for photothermal
therapy [100]

Thio-tetrazolyl analog of a
clinical candidate, IC87114 In vitro Pancreatic cancer

Breast Cancer

Higher cytotoxicity and enhanced intracellular accumulation of NPs in
high-CD44-expressing cells; Induction of premature senescence with

increase in senescence-associated β-galactosidase activity and
senescence-specific marker p21 expression through modulation of

Pi3K/Akt/NF-kB.

Nanocarrier [101]

Doxorubicin In vitro Cervical cancer Higher cellular uptake via CD44 receptor-mediated endocytosis and
higher cytotoxicity in Hela cells compared to normal ones. Drug delivery system [102]

Horseradish peroxidase or
indole-3-acetic acid In vitro Bladder cancer Reduction of the cell viability of human bladder carcinoma cell line. Delivery of enzyme/prodrug

systems [103]

Gefitinib and Vorinostat In vitro
In vivo

Lung cancer
(2D and 3D cultures)

Stronger inhibition of orthotopic lung tumor growth compared to
free drugs. Co-delivery system [104]

Zinc oxideGinsenoside Rh2 In vitro
Lung and Colorectal

adenocarcinoma;
Breast cancer

Induction of apoptosis through generation of ROS by activation of the
Caspase-9/p38 MAPK pathway. Drug delivery system [105]

Curcuminoid In vitro
In vivo Malignant glioma Effectively targeted and accumulated within the gliomas after enhanced

permeation through blood–brain barrier. Drug delivery system [106]
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Table 4. Cont.

Compound/Drug Status Model Effect Role of Nanomaterial Ref

Olaparib In vitro
In vivo

Triple-negative breast
cancer Antitumor effect. Drug delivery system [107]

Honokiol In vitro
In vivo Breast cancer

Improved antiproliferative and proapoptotic activities;
Downregulation of the expressions of Vimentin and upregulation of

E-cadherin.
Drug delivery system [108]

TRAIL plasmid and gambogic
acid

In vitro
In vivo Breast cancer Significantly augmented apoptotic cell death; inhibited TNBC tumor

growth; efficiently co-delivered GA and pTRAIL. Co-delivery system [109]

Doxorubicin In vitro
In vivo Breast cancer Improved the cellular uptake and cytotoxicity; Inhibited tumor growth. Drug delivery system [110]

Doxorubicin In vitro
In vivo Breast cancer Specific uptake by the tumor; Better therapeutic efficacy. Drug delivery system [111]

Diaminocyclohexane-platinum In vitro
In vivo Lung cancer Anticancer activity; Ability to modulate immunogenic cell death. Drug delivery system [112]

Docetaxel In vitro
In vivo Lung cancer Fast cellular uptake; Improved tumor accumulation and repression and

lower side effects compared with free docetaxel. Drug delivery system [113]

Doxorubicin, cisplatin and
resiquimod In vivo Osteosarcoma The growth of tumors and lung metastasis was greatly inhibited. Intelligent co-delivery platform [114]

Doxorubicin In vitro
In vivo Breast cancer Mitochondrial destruction and nuclear DNA leakage led to cell cycle

arrest and cell apoptosis; Effective tumor inhibition. Drug delivery system [115]

Doxorubicin In vitro
In vivo Colorectal cancer Significantly increased DOX circulation time by 12.5 times; Efficiently

targeted tumor tissues; Antitumor effect. Drug delivery system [116]

Camptothecin In vitro Lung cancer Recognizes normal cells and cancer cells and has good anticancer effects. Drug delivery system [117]

Doxorubicin In vitro
In vivo

Breast Cancer Brain
Metastases

Selective cytotoxicity to metastatic breast cancer cells rather than
astrocytes; Efficient loading into dual-targeting NPs; Significantly

extended the median survival time of mice with intracranial metastatic
breast cancer.

Delivery system [118]

OligoRNA and Doxorubicin In vitro
In vivo

Hepatocellular
carcinoma

Effective delivery of doxorubicin and oligoRNA into cells via CD44
receptor-mediated endocytosis; Significantly inhibited cell proliferation;

Efficient accumulation in tumor.
Co-delivery system [119]

Gambogic acid In vitro Melanoma Improved cytotoxicity; Induced apoptosis and mitochondrial
depolarization; Inhibited tumor metastasis. Drug delivery system [120]

Berberine and Doxorubicin In vitro
In vivo

Hepatocellular
carcinoma Enhanced antitumor activity, tumor accumulation, and biocompatibility. Co-delivery system [121]

Paclitaxel In vitro Breast cancer Improved cellular uptake. Drug delivery system [122]
Photosensitive drug
indocyanine green

In vitro
In vivo Lung cancer Excellent drug loading and stability; Significant uptake. Photothermal/photodynamic

therapy [123]
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Table 4. Cont.

Compound/Drug Status Model Effect Role of Nanomaterial Ref.

Dopamine In vitro
In vivo Breast cancer Enhanced cellular accumulation efficiency, antiproliferation property,

tumor penetration efficiency, and spheroid growth inhibitory effect.
Tumor-targetable and penetrable

nano-system [124]

Doxorubicin and photothermal
reagent indocyanine green

In vitro
In vivo Cervical cancer Improved effectiveness of photothermal therapy; Excellent

synergistic therapy. Bimodal imaging [125]

Doxorubicin In vitro
In vivo Liver cancer

Prolonged drug blood circulation time; Increased accumulation of drug
in the liver and decreased cardiotoxicity and nephrotoxicity;

Tumor targeting.
Drug delivery system [126]

Mitoxantrone In vitro Breast cancer Specifically bound to and significantly inhibited CD44
receptor-positive cells. Drug delivery system [127]

Doxorubicin In vitro Cervical cancer Higher tumor cell inhibition ratio; Efficient cellular uptake. Drug delivery system [128]

Paclitaxel In vitro
In vivo Breast cancer Anticancer efficacy; NPs accumulated in tumor site; Enhanced

apoptosis; Reduced tumor growth. Drug delivery system [129]

Docetaxel and Disulfonate
Tetraphenyl Chlorin In vitro Breast cancer

Cervical cancer Synergistic drug/treatment interaction; Induced cell mortality. Co-delivery system [130]

Curcumin and 5-fluorouracil In vitro
In vivo Breast cancer Synergistic anticancer, proapoptotic, and anti-migration effects;

Anticancer activity against metastatic breast cancer. Co-delivery system [131]

Berberine chloride In vitro
In vivo

Cervical and breast
cancer

Ehrlich Ascites
Carcinoma

Faster release of BRB and increased cytotoxicity; Enhanced apoptosis,
sub-G1 content, life span, mean survival time, and ROS levels with

subsequent decrease in mitochondrial membrane potential and
tumor burden.

Delivery system [132]

Triptolide In vitro
In vivo Breast cancer

High drug loading efficiency; Selective tumor cellular uptake and high
tumor tissue accumulation capacity; Suppression of cell proliferation;
Blockage of proapoptotic and cell cycle activities; Strong inhibition of

cell migration and invasion.

Drug delivery system [133]

Doxorubicin and Ce6 In vitro
In vivo Lung carcinoma

Tumor site-specific light irradiation generated high levels of ROS and
greatly enhanced the hypoxic levels to induce NP dissociation and drug

release. A synergistic anticancer efficacy and reduced side effects to
normal cells.

Co-delivery system [134]

Tirapazamine and Ce6 In vitro
In vivo Breast cancer Effective tumor accumulation; High levels of ROS. Drug delivery system

(photodynamic therapy) [135]

Dissolving microneedles and
photothermal agent (CuS)

In vitro
In vivo Melanoma Improved specific uptake and distribution of targeted tumor; Delivers

drug locally; Releases drug intelligently and spatiotemporally. Co-delivery system [136]

Paclitaxel and lethal-7a (let-7a),
a microRNA (miR)

In vitro
In vivo Ovarian cancer

Effective cellular uptake; Significant downregulation of P-glycoprotein;
Efficient drug release and induction of apoptosis; Synergistic

growth inhibition.
Co-delivery system [137]
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Compound/Drug Status Model Effect Role of Nanomaterial Ref.

Camptothecin In vitro Lung cancer Easily taken up by mitochondria; Severe mitochondrial dysfunction;
Rising cell death rate. Drug delivery system [138]

Doxorubicin In vitro Breast and Liver
cancers

Exhibited an endosomal escape function to accelerate drug release in
cancer cells, leading to low IC50. Drug delivery system [139]

Melittin and condensed
epigallocatechin gallate

In vitro
In vivo Melanoma Synergistic amplification of oxidative stress and prolonged ROS

retention in cancer cells; Enhanced anticancer efficacy. Drug delivery system [140]

5-Amino levulinic acid and
artemisinin

In vitro
In vivo Hepatoma Tumor targeting; antitumor effect; Good multi-functional therapeutic

delivery system. Co-delivery system [141]

All-trans-retinoic acid In vitro
In vivo Lung cancer Tumor growth inhibition; Efficient system for targeted delivery of

antitumor drugs to eliminate cancer stem cells. Drug delivery system [142]

Doxorubicin and a
near-infrared dye (indocyanine

green)

In vitro
In vivo Breast cancer

Fluorescence imaging ability and release of the drug; Generation of high
heat upon NIR irradiation and induction of apoptosis; Inhibition of
tumor growth with minimal systemic toxicity upon NIR irradiation.

Multifunctional drug delivery
system for cancer therapy

and imaging
[143]

Gambogic acid In vitro
In vivo

Hepatocellular
carcinoma

Induction of reduction-activated charge conversion from about -25 to
+30 mV with up to 95% drug release within 48 h; Excellent

tumor inhibition.
Delivery system [144]

Antitumor immune regulator
(R848) and Doxorubicin

In vitro
In vivo

Immune cells and
Breast cancer

Strong immunoregulatory activities; Inhibited the breast cancer cell
growth; Excellent tumor-targeting ability and inhibition of tumor

growth by regulation of tumor immunity.
Co-delivery system [145]

Cisplatin–indocyanine green In vitro
In vivo

Hepatocellular
carcinoma

Ultra-high drug loading efficiency and glutathione/NIR light
dual-responsive drug release; Efficient internalization and

apoptosis-inducing ability; Efficient tumor accumulation, biosafety, and
synergistic effect of combined photodynamic chemotherapy on

inhibiting tumor growth.

Co-delivery system [146]

Anti-Glypican-1, oridonin,
gadolinium, and Cy7 dye

In vitro
In vivo Pancreatic cancer

Long-time stability and fluorescent/MRI properties; Significant
inhibition of viability and apoptosis enhancement; Enabled multimodal

targeted imaging.

Theranostic platform for
simultaneous diagnosis and

effective treatment
[147]

Hydrophobic rapamycin and
hydrophilic herbal drug,

berberine

In vitro
In vivo Lung cancer

Enhanced internalization and cytotoxicity; Anticancer efficacy;
Decreased lung weight and reduction in both number and diameters of

lung adenomatous foci and angiogenic markers.

Drug delivery
Inhalable nanocomposites [148]

Gambogic acid and
Doxorubicin

In vitro
In vivo

Tongue squamous cell
carcinoma

Gradual release of DOX and GA under different tumor-specific
physiological conditions (low pH and rich HAase); Tumor growth

inhibition and significantly prolonged survival rate.
Drug delivery system [149]

Mn3O4–Ce6 In vitro
In vivo Breast cancer

Homogeneously distributed in whole tumor and significantly reduced
the level of intracellular GSH; Intracellular ROS production; Induction

of cell death; Complete inhibition of tumor growth.
Sustainable ROS Generator [150]
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Doxorubicin
In vitro

(3D)
In vivo

Lung cancer
Higher cellular accumulation efficiency and antiproliferation potentials;
Superior tumor penetration capability, ROS production level, and cancer

cell-killing capacity; Higher tumor accumulation efficiency.
Drug delivery system [151]

Platinum In vitro Lung cancer Inhibited proliferation, migration and invasion, and induced apoptosis
in comparison with cisplatin and carboplatin. Drug delivery system [152]

Docetaxel In vitro Glioblastoma Multi-target capability and stronger penetration ability into 3D tumor
spheroids’ core; Migrated efficiently across the BBB. Drug delivery system [153]

Epigallocatechin-3-gallate and
Docetaxel

In vitro
In vivo Prostate cancer

Inhibition of cell growth via induced G2/M phase cell cycle arrest;
Significantly attenuated tumor growth and increased M30 protein

expression without causing organ damage.
Co-delivery system [154]

MoS2 quantum dotsCe6 In vitro
In vivo Breast cancer

Appropriate particle size can not only degrade and excrete in a
reasonable period induced by redox responsiveness of glutathione but

also exhibits a high tumor uptake due to the longer blood
circulation time.

Delivery system [155]

Ultra-small gadolinium oxide In vitro
In vivo Breast cancer Rapidly degraded and excreted after reacting with glutathione (GSH) by

the redox response; high tumor uptake.
Multimodal imaging;

photothermal/radio therapy [156]

Ultra-small gadolinium oxide
and aluminum phthalocyanine

In vitro
In vivo Breast cancer Enhanced tumor uptake effect; photothermal effect.

Polymer-based multifunctional
theranos-

tic/fluorescence/magnetic
resonance/photoacoustic imaging

[157]

Chlorin e6 (Ce6) In vitro
In vivo Cervical cancer

High colloid stability, good biocompatibility, and suitable transverse
relaxation rate; High photothermal conversion efficiency and excellent
ROS generation efficiency under NIR light irradiation; Significantly high

tumor growth inhibition.

Multifunctional nanotheranostic
agent

Photodynamic/photothermal
combined therapy

[158]

Palladium In vivo Melanoma Efficient targeting and effective therapy for CD44-positive tumors such
as melanoma. Drug delivery system [159]

Disulfiram In vitro
In vivo Breast cancer Induces strong cytotoxicity; Passively accumulates in tumors and elicits

potent tumor growth inhibition. Drug delivery system [160]

Doxorubicin In vitro Cervical cancer
Good stability in vitro; Drug release mediated by pH gradient; Lower
cytotoxicity in normal cells and higher inhibition ratio in tumor cells;

Efficient internalization.
Drug delivery system [161]

Ce6 In vitro
In vivo Breast cancer Good biocompatibility; Inhibition of tumor growth. Delivery system [162]

Methotrexate and
10-hydroxycamptothecin

In vitro
In vivo Breast cancer

High drug entrapment efficiency and pH/esterase-controlled release
behavior; Significant increase in efficiency of selective internalization;

Highly synergetic tumor cell-killing and tumor growth inhibition.
Dual-targeting delivery system [163]
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Azobenzene; ammonium

polyamidoamine and
carboxylatopillar [5]arene

In vitro
In vivo Colon cancer Good biocompatibility and CRC treatment capability with negligible

side effects. Delivery system [164]

Doxorubicin In vitro
In vivo

Squamous cell
carcinoma

Favorable biocompatibility; relatively low cytotoxicity; good drug
loading capability and strong photoacoustic imaging signals; synergistic

chemo-photothermal therapy; better therapeutic effects than
chemotherapy alone; accumulates at the tumor sites and achieves

complete ablation of tumors.

Multifunctional platform in
photoacoustic imaging-guided
photothermal chemotherapy

[165]

Mitoxantrone and verapamil In vitro Breast cancer Significant cytotoxicity. Drug delivery system [166]

Cisplatin In vitro
In vivo Lung cancer

Specific tumor-targeting ability and redox-responsive drug release
manner; effective antitumor performance along with minor side effects

and systemic toxicity.
Drug delivery system [167]

Granzyme B protein In vitro
In vivo

Glioblastoma and
Breast cancer

Induced cell apoptosis; accumulated in the solid tumor through
enhanced permeability and retention (EPR) effect; Induced tumor cell

apoptosis in vivo.
Delivery system [168]

Curcumin and IR780 In vitro
In vivo Breast cancer

Uniform size, high drug loading ability and excellent colloidal stability;
under the NIR condition, IR780 could be triggered to exhibit both

PTT/PDT dual-pattern therapy effects, leading to an enhanced therapy
efficiency of Cur with good biocompatibility.

Delivery system [169]

Gemcitabine and imiquimod In vitro
In vivo Breast cancer

Anticancer activity; suppressed the volume of tumor; imiquimod
potentiates the effect of gemcitabine by activating immune cells to

suppress tumors.
Drug delivery system [170]

Photosensitizer (NIR770) and
doxorubicin

In vitro
In vivo Lung cancer

Specifically internalized by tumor cells; preferentially retained in
mitochondria; highly efficient photothermal therapy and photodynamic

therapy upon NIR irradiation; DOX molecules were mainly
accumulated in the nucleus.

Synergistic treatment [171]

Gossypol, Cu(II) and AQ4N In vitro
In vivo Prostate cancer

Multiple-tumor-targeting ability; accumulates and significantly releases
drugs at the tumor region; High antitumor efficiency with negligible

side effects.
Delivery system [172]

Paclitaxel and IR780 In vitro
In vivo Lung cancer Combinatorial antitumor effects of paclitaxel and IR780 associated with

microtubule destruction and mitochondrial apoptotic pathway. Drug delivery system [173]

microRNA-31 and Doxorubicin In vitro Cervical and Lung
cancer

Promoted intracellular accumulation of drugs via the active transport at
tumor site; microRNA-31 directly targeted to mtEF4 to promote cell

death; synergistic effects.
Co-delivery system [174]
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Folic acid and Dopamine In vitro
In vivo Melanoma

Improved blood circulation half-life of the drug and prevented
premature intravascular drug leakage from the nanocarrier; efficient

tumor penetration has shown potential in improving anticancer efficacy.
Co-delivery system [175]

R820 and Catalase In vitro
In vivo Melanoma

Selectively targeted melanoma cells with high expression of CD44, and
generated oxygen by catalyzing H2O2, inhibiting tumor

growth significantly.

Nanotechnology-based
photodynamic therapy [176]

MnO2-mSiO2 In vitro
In vivo Breast cancer Almost total suppression of tumor growth without

observable recurrence. Multifunctional nanotheranostic [177]

Doxorubicin and IR780 In vitro
In vivo Cervical cancer Selective tumor targeting; synergistic dual-mode chemo-photodynamic

therapy against cancers. Co-delivery system [178]

Peptide A20-36 (selectively
binds to the Ig-BCR of A20

lymphoma cells)

Ex vivo
In vivo B lymphoma Targeting specificity and kinetics of the NPs; multimodal imaging

contrast agents.
Imaging and theranostic

applications [179]

siRNA In vitro laryngeal cancer
Downregulation of genes was confirmed; entrapment efficiency of

siRNA of 36.8-61.2; significant inhibition of cell growth and induction
of apoptosis.

siRNA delivery system [180]

Doxorubicin In vitro Hepatocellular
carcinoma

Exhibited H2O2-responsive release of about 80% DOX and displayed
sevenfold selectivity for killing cancer cells over normal cells. Drug delivery system [181]

Doxorubicin In vitro
In vivo

Hepatocellular
carcinoma

Cellular uptake demonstrated that this system could bind specifically
with cancer cells; excellent therapeutic effect by

photothermal-chemotherapy.
Drug delivery system [182]

Doxorubicin In vitro
In vivo Lung cancer

Suitable drug loading efficiency, excellent solubility, very low hemolytic
effect; induction of apoptosis; DNA intercalation, cell cycle arrest at the
S phase, light-induced ROS production; inhibition of tumor growth with

good safety.

Drug delivery system [183]

Zinc phthalocyanine In vitro
In vivo Breast cancer

Good ability for infrared thermal, photoacoustic, fluorescence, and X-ray
computed tomography imaging, high photo-heat conversion efficiency
for photothermal therapy; tumor growth inhibition; excellent combined

therapeutic effect.

Smart theranostic nanoplatform
multimodal imaging-guided

combined phototherapy
[184]

Cyclodextrin and amantadine In vitro Breast cancer Excellent fluorescence; internalized into tumor cells via HA receptor
CD44-mediated endocytosis; effective targeted tumor cell imaging. Cancer diagnosis and treatment [185]

Doxorubicin In vitro Lung cancer Higher cytotoxicity; inhibited tumor cell invasion and metastasis by
downregulating N-cadherin expression. Drug delivery system [186]

Doxorubicin In vitro
In vivo Ovarian cancer

High selectivity resulting in strong killing; long elimination half-life,
elevated tumor accumulation and effective inhibition of the

ovarian tumor.
Drug delivery system [187]
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Doxorubicin and CuS In vitro
In vivo Breast cancer Good biocompatibility; targeting effect; synergistic combination of

chemo- and phototherapy; potential for tumor diagnosis and treatment. Drug delivery system [188]

Mn-modified phthalocyanine
derivative and docetaxel

In vitro
In vivo Lung cancer Activated tumor immunity through cGAS–STING and chemotherapy;

effectively inhibited tumor cell growth. Delivery system [189]

MicroRNA-34a In vitro Lung cancer

Successful delivery and uptake resulted in altered ATP levels, decreased
glycolytic flux, Nrf-2, and glutathione levels, ultimately resulting in

caspase-3 activation and apoptosis; underlying molecular changes in
epigenetic status of D loop on the mtDNA and transcription of

mtDNA-encoded genes.

Delivery system [190]

Chitosan In vitro Breast cancer Low hemolysis; high resistance to bovine serum albumin adsorption;
efficient internalization; non-toxic to human skin fibroblasts.

Drug Nanocarrier or drug
delivery system [191]

siRNA In vitro
In vivo Melanoma

Significant inhibitory effect against melanoma cells; siRNA liposomes
may inhibit tumor growth by downregulating surviving;

survivin–siRNA cationic liposome nanoparticles were able to effectively
inhibit proliferation and migration of melanoma cells in vitro and

in vivo, probably by inhibiting survivin–mRNA and protein expression.

siRNA delivery [192]

MicroRNA-125b In vitro
In vivo Lung cancer

Increase in M1 to M2 macrophage ratio and 300-fold increase in the
iNOS (M1 marker)/Arg-1 (M2 marker) ratio; intraperitoneally

administered macrophage-specific NPs can successfully transfect
tumor-associated macrophages (TAMs) in lung tissues of both naïve

mice and a KP-GEM NSCLC mouse model; successful TAM
repolarization toward M1 phenotype has significant implication in

anticancer immunotherapy.

Transfection system [193]

Paclitaxel in combination with
MicroRNA-125b

In vitro
In vivo Ovarian cancer

Specifically targets TAMs in the peritoneal cavity and can repolarize
macrophages to an immune-activating phenotype; enhances antitumor
efficacy of paclitaxel during later stages of disease progression as seen

by significant reduction in ascitic fluid and peritoneal VEGF levels; does
not induce systemic toxicity.

Delivery system [194]

miRNA 145 In vitro
In vivo Colon cancer

High up-conversion emission and good monodispersity; Excellent
biocompatibility; High level of cellular uptake and miR-145 expression,

resulting in significant cell cycle arrest in G1 and inducing CCND1,
CDK6, and CCNE2 protein downregulation; inhibition of tumor growth.

Delivery system [195]

Plasmid DNA In vitro Cervical and Lung
cancer Higher transfection efficiency; stable up to a week at 4 degrees. Delivery and transfection system [196]

MTH1 inhibitor–TH287 and
MDR1 siRNA In vitro Oral cancer Effective in controlling drug release and internalization; reduced tumor

burden; inhibited MDR1 function and enhanced cell-killing effect. Delivery system [197]
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Cyanine 3 (Cy3)-labeled siRNA In vitro
In vivo Lung cancer

Effectively delivered Cy3-labeled siRNA to cancer cells via receptor
CD44 and inhibited cell proliferation by BCL2 downregulation;

Inhibition of tumor growth by BCL2 downregulation.
Delivery system [198]

Anti-miR21 and Resveratrol Gastric carcinoma
Higher cellular internalization; anticancer effect of the optimized

formulation and synergistic effects of anti-miR21 and RSV; induction of
apoptosis and cell necrosis.

Delivery system [199]

Paclitaxel In vitro
In vivo Lung cancer Antitumor growth activity. Nanocarrier [200]

Paclitaxel In vitro Ovarian cancer Selectively targeted and entered CD44-overexpressing cancer cells via
receptor-mediated endocytosis. Drug delivery system [201]

siRNA
Doxorubicin In vitro Ovarian Cancer

Colorectal Cancer

Formation of stable complexes with siRNA; prevented RNase-mediated
siRNA degradation; increased cancer cell specificity and enhanced

cytotoxic effect in CD44+ cells.
Co-delivery system [202]

Doxorubicin (DOX) and
photosensitizer chlorin e6 (Ce6)

In vitro
In vivo Melanoma

Higher cellular uptake and remarkably better tumor-targeted
accumulation than free drugs; with laser irradiation, anticancer activities

were enhanced both in vitro and in vivo.
Chemo-photodynamic therapy [203]

Dexamethasone and
Doxorubicin

In vitro
Ex vivo

Breast cancer
Colorectal Cancer

Human whole blood

DEX suppressed cytotoxicity of DOX; synergistically enhanced
cytotoxicity;in an ex vivo human whole blood sample, found activation

of complement and coagulation cascade in one group of donors.
Encapsulation of DOX within the nanoparticle core eliminated such

deleterious side effects.

Drug delivery system [204]

Doxorubicin In vitro
In vivo

Breast cancer Colon
cancer

High targeting and antitumor activity against CD44 receptors; longer
circulation time and higher accumulation in 4T1 tumors. Drug delivery system [205]

Oleic acid In vitro Breast Cancer
Melanoma

Efficient delivery of oleic acid; greater uptake by cancer cells (expressing
CD44 receptors) than normal cells. Drug delivery system [206]

Paclitaxel In vitro
In vivo Lung cancer Greater in vitro cytotoxicity and apoptosis; much higher antitumor

efficacy and improved safety profile. Drug delivery system [207]

anti-Gasdermin B antibody In vitro
In vivo Breast cancer Reduces diverse protumor functions (migration, metastasis, and

resistance to therapy) Delivery system [208]

5-Fluorouracil In vitro
In vivo Skin cancer Non-irritant; permeability properties; cytotoxic effect; favorable

biosafety; good antitumor effects. Topical gel for drug delivery [209]

Doxorubicin In vitro Hepatocellular
carcinoma

Effectively avoids biological barriers; provides long blood circulation
and achieves high tumor accumulation; fast elimination from tumor and

released the loaded drugs for chemotherapy after UV-induced
dissociation; good targetability to CD44 receptors.

Drug delivery system [210]
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Carla Serri and collaborators synthesized biodegradable NPs coated with HA and
loaded with gemcitabine and quercetin [82]. These HA–NPs enhanced the cellular uptake
and cytotoxicity in two cell lines of pancreatic ductal adenocarcinoma, highlighting the
effect of HA on targeting CD44 overexpressed in cancer cells. Furthermore, a result
demonstrated the capacity of the NPs to slow the release of the incorporated drug and
allow it to remain at higher concentration due to the enhancement in the anti-inflammatory
properties of quercetin, showing a decrease in the interleukin cellular levels, in both cell
lines pre-stimulated with lipopolysaccharides. This is an interesting result taking into
account the role of interleukins in progression, metastatic processes, and drug resistance
of human pancreas cancer cells, and is a study that demonstrates the benefits of using
HA–NPs to improve cancer therapy [82]. Another study performed by Shaoxuan Yu and
collaborators combined the advantages of curcumin, zeolitic imidazolate framework-8
nanoparticles, and hyaluronic acid for breast cancer therapy. They concluded that during
storage in different media, these NPs had good stability and that under acidic conditions,
a characteristic of the tumoral microenvironment, the NPs showed a slower drug release.
The in vitro results obtained with these nanoparticles indicated that they have good cellular
uptake which leads to several anticancer effects such as higher cytotoxicity and higher
release of lactate dehydrogenase, cell cycle arrest, induction of apoptosis and production
of reactive oxygen species. In this study, in vivo experiments were also performed, using
mammary cancer-bearing mice models, showing that these NPs are able to strongly inhibit
the tumor growth and pulmonary metastasis, remarking the properties obtained with the
introduction of HA in the nanoparticles [83].

Taking into account that combinational cancer therapy has been considered a promis-
ing strategy to achieve synergetic therapeutic effects and suppression of multidrug
resistance, in 2018, Yang Li and collaborators developed a dual-targeting delivery sys-
tem [163]. These NPs were based on a ligand of CD44 receptors (1,2-distearoyl-sn-
glycero-3-phosphoethanolamine-hyaluronic acid) and a selective ligand of folate recep-
tors (MTX) with a focus on combining methotrexate (MTX), which act on cytoplasm, and
10-hydroxycamptothecin (HCPT), an alkaloid acting on nuclei, to treat breast cancer. The
efficiency of selective internalization of these NPs via CD44/folate receptors was confirmed
by cellular uptake results. Additionally, in vivo studies indicated NP accumulation at
the tumor sites through passive-plus-active targeting, leading to synergetic tumor cell
death and inhibition of tumor growth, showing that these NPs can be an efficient delivery
system for tumor-targeting therapy [163]. Another example of a dual-targeting delivery
system was performed in 2019 by Safia Naz and collaborators based on mesoporous silica
NPs, which performed as a drug delivery system, demonstrating enzyme-responsive and
multistage-targeted anticancer effects with doxorubicin (DOX) as a cargo. To obtain this
delivery system, the authors grafted the mesoporous silica NPs with triphenylphosphine
(TPP) and capped them with HA. The resulting NPs had dual-targeting, CD44 (HA), and
mitochondrial-targeting properties (TPP), which was confirmed by the results showing that
cancer cells favorably uptake these NPs via CD44 receptor-mediated endocytosis and are
largely accumulated in mitochondria. In cancer cells, overexpressed HAase enabled HA
degradation leading to the enzyme-responsive release of DOX, killing cells while exhibiting
much lower cytotoxicity than normal ones [84].

Additionally, Mengjiao Zhou and collaborators synthesized carrier-free drug NPs that
carry paclitaxel and DOX modified with cis-aconitic anhydride, coated with a crosslinker
based on HA. Based on the unique pH and redox environment of tumor tissues, the
objective of the authors was to obtain NPs with pH- and redox-responsive release capable
of CD44 targeting. The results showed that these NPs at a neutral pH level, such as that of
the blood stream, are stable and have a very low drug release. However, at acidic pH levels,
such as that in the tumor environment, they observed a significant increase in drug release.
The authors also tested the tumor selectivity, using normal and cancer cells, concluding that
these NPs preferentially target cancer cells, expected, due to the presence of HA. Further,
In vivo studies showed high accumulation in tumors and excellent inhibition of tumor
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growth. The authors observed a greater anticancer effect than the individual paclitaxel and
DOX; together, these results presented the ability of HA–NPs in targeting cancer cells and
increasing the drug availability [85]. In 2018, Dalia Kabary and collaborators, focusing on
lung cancer therapy, developed inhalable nanocomposites with the ability to deliver the
hydrophobic mTOR inhibitor rapamycin (RAP) and the hydrophilic herbal drug berberine
(BER) [148]. In order to decrease the delivery gap between the two drugs, the authors
created two types of multi-compartmental nanocarriers by enveloping a BER hydrophobic
ion pair-lipid nanocore within a shell of RAP-phospholipid complex bilayer. Then, they
were coated with cationic lactoferrin and anionic hyaluronate to improve their tumor
targeting. The authors performed in vivo studies using lung cancer-bearing mice, in order
to compare the anticancer efficiency of inhaled free drugs to the inhalable nanocomposites,
and it was possible to see a remarkable decrease in lung weight and in the number and
diameters of lung adenomatous foci and angiogenic markers. This study showed a potential
application of NPs for localized delivery to tumor cells via inhalable multi-compartmental
nanocomposites, which is promising in the management of lung cancer [148]. In 2020,
Jinying Liang and collaborators created and characterized lipid/hyaluronic acid (HA)-
coated DOX–Fe3O4 and determined its safety and effectiveness on breast cancer [98]. As it
was described, DOX was conjugated onto the Fe3O4 NP surface and then coated with a
tumor cell-targeting HA ligand, phosphatidylcholine (PC) lipid, in order to obtain a dual-
targeting NP. The objective of the authors was to obtain a drug delivery system capable
of transporting DOX into cancer cells, decreasing its cardiotoxicity and addressing any
MDR problems. The results showed the synergistic interaction of this coated PC/HA
surface with DOX–Fe3O4, resulting in good antitumor efficacy for MDR cancer therapy
and diminutive DOX cardiotoxicity, showing the potential of PC/HA@DOX–Fe3O4 NPs
as efficient nanocarriers to overcome MDR tumors and the cardiotoxicity of DOX [98]. In
the same year, Jing Yang and collaborators used HA as an alternative to plasmid DNA to
construct a novel type of cationic liposome carrier that can carry siRNA [192]. The objective
of the investigators was to create a carrier that targets melanoma survivin and evaluate
the efficacy of this carrier and the potential of this target. They concluded that these NPs
inhibit melanoma proliferation in time and dose matters, in vitro, and target survivin. In
addition, NPs inhibited the metastatic ability of melanoma cells. In the in vivo experiments,
the cationic liposome NPs were injected into a mouse tumor model, and an inhibition of
tumor growth and a significant reduction of the expression of survivin mRNA and protein
were observed. This is a good study that shows that siRNA cationic liposome NPs are
highly stable and have notable properties of low immunogenicity and toxicity, and can
effectively inhibit melanoma cells by inhibiting survivin expression [192].

Together, the studies discussed here and the ones presented in the Table 4 show that
HA–NPs are a highly promising nanocarrier and are efficient as a delivery system to
perform enhanced cancer therapy with good biosafety.

9. Conclusions and Future Perspectives

Considering the numerous publications in recent years, it is clear that nanomaterials
with hyaluronic acid as a biomaterial designed to target different tumors are perceived as a
promising and attractive strategy to improve cancer therapy.

The application of nanomaterials in the field of biomedicines has had a great impact on
the delivery of anti-neoplastics. In the last several years, the development of nanodrug de-
livery systems for targeted tumor treatment has been the focus of many researchers, namely
regarding glycosaminoglycans that target CD44, since this receptor is overexpressed in
different tumor cells. HA-based nanomaterials have potential applications in chemotherapy,
gene therapy, immunotherapy, and combination therapy for cancer treatment due to the
negatively charged surfaces that make them beneficial for prolonged blood circulation,
protecting drugs from absorption by endothelial cells. Additionally, all biological properties
of HA—such as the cell surface receptors with which HA can interact, including the CD44
receptor, which is widely expressed in cancer cells when compared to normal ones—are a
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relevant aspect. It is the interaction with these receptors that enables targeted delivery to
target locations, resulting in greater cellular uptake and, therefore, beneficial results.

Nevertheless, there are some major points of potential improvement in order to
overcome some of the possible obstacles that make it difficult to translate HA-based
nanomaterials to clinical applications. Firstly, more extensive and in-depth investigation
needs to be performed in order to improve the uptake of the different biomaterials, namely
regarding CD44 binding. Secondly, some chemical modifications in the HA structure may
affect CD44 targeting and also affect HA degradation, causing undesirable cellular uptake
and drug release. Thus, the study of drug release and nanomaterial degradation kinetics
is highly needed to improve the ability to apply these biomaterials in the clinical practice.
One of the main concerns regarding hyaluronic acid’s ability to target the nanomaterial
to tumor cells is that CD44 is expressed in normal cells, even if in a lower concentration.
Therefore, the possibility to improve these nanomaterials would involve modifying it in
order to target CD44v, an isoform of CD44 expressed in tumor cells. The path to clinical
implementation of a drug is long, and both 3D spheroids and in vivo studies are needed to
strengthen the potential of these nanomaterials and their biosafety in order to apply them
both as therapeutic agents and also as theranostic agents. More specifically, there is a lack of
studies regarding biodistribution, toxicity, and availability in physiological conditions. The
study of these parameters is strongly needed in order to clinically implement hyaluronic
acid-based nanomaterials.
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