
The Journal of Nutrition
Recent Advances in Nutritional Sciences

Dietary Patterns Affect the Gut Microbiome—
The Link to Risk of Cardiometabolic Diseases
Alyssa M Tindall, Kristina S Petersen, and Penny M Kris-Etherton

Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA

Abstract

Clusters of bacterial species within the gut microenvironment, or gut enterotype, have been correlated with

cardiometabolic disease risk. The metabolic products and metabolites that bacteria produce, such as short-chain fatty

acids, secondary bile acids, and trimethylamine, may also affect the microbial community and disease risk. Diet has a

direct impact on the gutmicroenvironment by providing substrates to and promoting the colonization of resident bacteria.

To date, few dietary patterns have been evaluated for their effect on the gut microbiome, but the Mediterranean diet

and Vegetarian diets have shown favorable effects for both the gut microbiome and cardiometabolic disease risk. This

review examines the gut microbiome as a mediator between these dietary patterns and cardiometabolic disease risk.
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Introduction

The gut microbiome (GM) plays a central role in health
(1, 2). Disruption of the GM, or gut dysbiosis, is associated
with an increased risk of cardiometabolic diseases, such as
metabolic syndrome (MetS), cardiovascular disease (CVD), and
type 2 diabetes mellitus (T2DM) (3–5). Numerous studies
have reported correlations between gut bacteria and CVD
risk (4, 6–11) and despite the relation between the GM and
cardiometabolic disease being of great scientific interest, this
area of research is in its infancy, and there are many questions
that await answers. At present it is proposed that specific
bacterial metabolites produced in the GM vary depending
on the hosts’ gut microbial environment (12), which is
influenced bymany factors including age, genetics, cohabitation,
medication, and diet (13–15). The metabolites produced via the
microbiota are also affected by diet. Therefore, the combination
of foods and nutrients consumed may change the composition
and functionality of the GM. Thus, the role that the GM
plays in nutrient metabolism and production of primary and
secondary metabolites is likely to mediate the relation between
diet and cardiometabolic disease risk (12, 16–18). The objective
of this review is to summarize recent evidence about how
dietary patterns affect the GM and, in turn, how the GM affects
cardiometabolic disease risk.
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There is substantial individual variation in the GM, although
differences in the distinct clusters of bacterial species within the
gut ecosystem (gut enterotype) exist between healthy individuals
and those with chronic diseases, such as T2DM and colorectal
cancer (19–21). Thus, the gut enterotype may be related to
the development of disease but may also affect the response
to pharmacologic and dietary interventions (7, 22–27). The
production of gut-derived metabolites is reliant on the bacteria
present in the GM and their function within the gut ecosystem
(28–30); this is a plausible explanation for how the GM may
influence disease risk. Specifically, there is evidence to support
an association between disease risk and gut-derived metabolites
including SCFAs, trimethylamine (TMA), and secondary bile
acids, which will be a focus of this review.

Greater production of SCFAs is associated with lower risk of
T2DM, chronic kidney disease, and CVD (31–36). Conversely,
TMA may increase disease risk (37–39). TMA can be produced
in the GM through metabolism of choline, phosphatidylcholine,
and l-carnitine; it is further oxidized to trimethylamine N-
oxide (TMAO), a proatherogenic molecule associated with the
development of CVD (40). Finally, the conversion of primary
to secondary bile acids is GM-dependent (41) and the type
of secondary bile acids produced depends on diet and the
composition of the GM.The secondary bile acids produced may
also alter the GM composition. For example, a high dietary
intake of saturated fat increases bile acid secretion and bile
acids in the intestine, which results in the production of hy-
drophobic secondary bile acids (e.g., deoxycholic acid—DCA).
These hydrophobic secondary bile acids can also change the
composition and structure of the GM by affecting microbial
growth (42). Secondary bile acids enter the circulation and
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Disease Risk

FIGURE 1 Schematic of known and proposed
interactions between diet and cardiometabolic
risk illustrates the known risk-reducing properties
of Vegetarian and Mediterranean diets on car-
diometabolic diseases and the proposed interac-
tions between the Vegetarian and Mediterranean
diets with the gut microbiome and gut-derived
metabolites that can reduce cardiovascular disease
risk. The thick, solid-black arrows represent a
large pool of evidence to support a pathway; nar-
row, solid-black arrows represent an intermediate
amount of evidence to support a pathway; narrow,
dotted black lines represent emerging evidence
to support a pathway; and narrow, dotted black
lines with a questionmark represent other possible
mechanistic pathways. Vegetarian and Mediter-
ranean diets can alter the presence or absence
of various bacteria and, in turn, also alter the gut
metabolome. The direct effect of the gut microbial
environment on cardiovascular disease risk is
unknown. Vegetarian and Mediterranean diets can
also affect the production of gut metabolites by
serving as substrate for the resident bacteria.

have been implicated in atherosclerosis, diabetes, and other
cardiometabolic diseases (42–44).

There is substantial evidence showing that diet modifies
the GM; however, less well characterized are the functional
consequences of these modifications and the relation with
cardiometabolic diseases (15). Recent clinical trials have
reported the individual effects of dietary components on the
GM (45–48). Fewer studies have examined the effect of dietary
patterns on the GM. However, examination of dietary patterns
takes into consideration the combinations and quantities of
foods and nutrients consumed and their cumulative effects on
health, and thus is a more robust way of understanding diet-
disease relations (49, 50). The aim of this article is to summarize
how dietary patterns affect the GM and, in turn, how the
GM affects cardiometabolic disease risk. Figure 1 presents an
overview of proposed interactions among diet, the microbiome
and cardiometabolic risk.

To date, few dietary patterns have been evaluated for their
effect on the GM, although several studies have examined
the GM in relation to the Mediterranean diet and Vegetarian
diets (22, 51, 52). Notably, these dietary patterns are also
associated with lower CVD risk (53, 54). Thus, it is reasonable
to hypothesize that the GM may be an important mediator
between these dietary patterns and cardiometabolic disease risk.
Because studies of the effect of dietary patterns on the GM
and CVD risk have predominantly investigated Mediterranean
and Vegetarian diets, this review will focus on these dietary
patterns.

Vegetarian Diet

A large body of evidence has demonstrated the cardiovascular
benefits of following a Vegetarian diet (55–58), including lacto-
ovo-vegetarian, lacto-vegetarian, ovo-vegetarian, and vegan
diets, and it is plausible that the GM plays a role in the observed
effects because the many plant-based constituents (including
dietary fiber) of a Vegetarian diet provide substrates to microbes
in the lower gastrointestinal tract.

Observational data show consumption of a Vegetarian diet
compared with an omnivorous diet differentially affects the gut
enterotype (22, 59). de Moraes and colleagues (22) examined
if gut enterotype correlated with diet and cardiometabolic
risk by comparing vegans, vegetarians, and omnivores. The
investigators separated individuals into 3 enterotypes based
on the abundance of the most prevalent bacterial strains:
Bacteroides, Prevotella, and Ruminococcaceae. The authors
reported that the frequency of vegans was greater in Prevotella
than in the Bacteroides and Ruminococacceae enterotypes;
however, the frequencies in vegetarians and omnivores did
not differ (22). The authors also correlated the enterotypes
with markers of CVD risk and found a favorable association
between the Prevotella enterotype and LDL cholesterol; the
vegans and vegetarians in the Prevotella enterotype had lower
LDL cholesterol compared with omnivores. Matijašić et al.
(59) reported that individuals following a Vegetarian diet
had higher fecal Prevotella present and the proportion of
Bacteroides+ Prevotella (grouped together) relative to all other
bacteria was greater, whereas the percentage of Clostridium
coccoides (Clostridium cluster XIVa) was lower compared
with omnivores. Prevotella bacteria have previously been
associated with a carbohydrate-rich diet and produce SCFAs
(22, 60) whereas C. coccoides have been found in higher
concentrations in individuals with irritable bowel syndrome
(61). Finally, De Filippo et al. (62) reported significant,
advantageous differences in gut microbial composition in
children living in rural Africa compared with children residing
in Europe. The authors suggested that the African children
(aged 1–6 y) had a microbial advantage due to a high-
fiber diet rich in cereals, legumes, and vegetables for several
years.

These observational data are supported by a clinical trial
showing that after short-term (5-d) consumption of an animal-
based or plant-based diet, Bilophila wadsworthia, Alistipes
putredinis, and a Bacteroides sp. were more prevalent in fecal
samples after consumption of the animal-based diet (63). These
bacteria are all bile-resistant, which may be the reason they are
more prevalent after the higher-fat, animal-based diet.However,
a 1-mo study in obese individuals reported there were no
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changes in the gut enterotype after following a vegan diet,
despite reduced CVD risk (64). Currently, it is unclear how
long it takes for the gut enterotype to change and how stable
the GM is over time. There is a need for tightly controlled
studies to explore functional changes that occur in response to a
vegetarian or vegan diet and how long it takes for these changes
to occur.

Enterotypic differences appear to also affect the gut
metabolome, which could contribute to the protective effects
of a Vegetarian diet (22, 52). TMA and secondary bile
acid production are dependent on the GM, and following a
Vegetarian or vegan diet can reduce concentrations of both
compounds; however, it is unclear whether the alteration in
substrate (dietary components) or changes to the gut enterotype
are associated with changes in gut-derived metabolites. Previous
data showed vegan and Vegetarian diets resulted in lower
concentrations of fecal secondary bile acids (65, 66) compared
with omnivorous diets. Recently, David et al. (63) reported
elevated secondary bile acids, including DCA, and the bacterial
gene expression involved in their production, including bile salt
hydrolases and sulfite reductases, after 5 d of consumption of
an animal-based diet compared with a plant-based diet. DCA
has been shown to reduce intestinal barrier function, increase
inflammation, and promote liver cancer (67). Evidence suggests
a plant-based diet may create a different enterotype compared
with an omnivorous diet and promote lower production of
secondary bile acids.

Reduced concentrations of TMA have also been reported
subsequent to following a vegan diet compared with an
omnivorous diet (52). Koeth and colleagues (52) provided
vegan/vegetarian and omnivorous participants with oral carni-
tine and reported that vegans and vegetarians had a reduced
capacity to produce TMA compared with the omnivores. Vegan
and Vegetarian diets are low in choline, phosphatidylcholine,
and L-carnitine owing to the absence of red meat and fish;
therefore, they would be expected to produce less TMA and
TMAO. However, the finding that vegans/vegetarians produce
a lower amount of TMA postcarnitine challenge suggests that a
Vegetarian diet may favorably alter the GM and create a
microenvironment that does not metabolize carnitine into
TMA.

In summary, the GM may be an important mediator in
the reduced cardiometabolic disease risk associated with a
Vegetarian diet, but more studies are needed to understand the
mechanism. A plant-based diet can favorably affect the GM
through changes in bacteria, such as increases in Prevotella taxa,
and reduction of harmful metabolites, such as TMA, but the
effect on gut enterotype and SCFA production requires further
study. The key question that follows is mechanistically how
changes in the GM modulate risk factors for cardiometabolic
disease.

Mediterranean Diet
Prominent components of theMediterranean diet include fruits,
vegetables, legumes, olive oil, nuts, seafood, and wine. Evidence
demonstrates that this eating pattern is associated with a lower
risk of CVD and that adherence to a Mediterranean diet can
affect gut microbial patterns and the fecal metabolic profile of
microbial-derived phenolics (51, 68–70). Thus, the GM may
partly mediate the relation observed between theMediterranean
diet and reduced risk of CVD.

Emerging research suggests that following a Mediterranean
diet is associated with a more-favorable GM composition (68,
69). Mitsou and colleagues (68) examined the association
between the Mediterranean diet and gut microbiota charac-
teristics in an adult population. The authors reported that
participants with higher Mediterranean diet scores had a lower
fecal Escherichia coli count, a higher ratio of Bifidobacteria
to E. coli, and increased concentrations and prevalence of
Candida albicans. Gutiérrez-Díaz et al. (69) also investigated
the association between the Mediterranean diet and the GM,
but reported that better adherence to a Mediterranean diet
was associated with higher Faecalibacterium prausnitzii and
Clostridium cluster XIVa compared with lower adherence. The
authors note that the Clostridium cluster XIVa group contains
butyrate-producing species and F. prausnitzii is a known
butyrate producer, therefore suggesting the Mediterranean diet-
associated GM may be made up of more beneficial bacteria. A
Mediterranean-style diet has been shown to lower the risk of
CVD (53), which may be partly dependent on the GM. Haro
et al. (70) investigated the GM differences between individuals
with coronary heart disease with and without MetS and obesity
from the CORDIOPREV study, following a Mediterranean
diet or low-fat diet for 2 y. This prospective randomized
trial showed that consumption of a Mediterranean diet or a
low-fat diet may restore some bacterial populations that are
reduced in MetS patients with obesity (70). In addition, obese
subjects with MetS in the Mediterranean diet group had an
increased abundance of Roseburia and Ruminococcus genera,
Parabacteroides distasonis, and F. prausnitzii; the low-fat diet
did not change these genera (70). Cross-sectional studies suggest
that the Mediterranean diet may be associated with favorable
changes in the GM, and these observational data are supported
by a prospective trial that showed reduced gut dysbiosis in
obese individuals with MetS. However, the implications of these
shifts in the GM for cardiometabolic health still need to be
elucidated. Thus, more evidence is needed to understand the
microbial shifts that are important for a healthy GM, and
how this, in turn, affects cardiometabolic disease risk and
management.

Following a Mediterranean-style diet is associated with
increased concentrations of SCFAs (51). Two studies reported
that individuals with a higher Mediterranean diet score had
higher concentrations of fecal SCFAs (51, 68). One study
reported a greater ratio of acetate to other SCFAs with
greater adherence to a Mediterranean diet (68) and the other
study reported that individuals with higher Mediterranean
diet adherence scores had increased SCFAs (51). Although
some observational data show greater SCFA concentrations are
associated with obesity, this is believed to be the result of an
oversupply of energy, thus providing gut microbes with more
substrate for SCFA production (71). In conditions of positive
energy balance, excessive energy is consumed and, therefore,
the GM is also provided with more energy than needed, and
works to metabolize as much of the substrate as possible. This
suggests SCFAs are not causally associated with obesity. Clinical
trials have shown that intestinal SCFAs are correlated with
improvements in blood lipid profile, glucose homeostasis, and
inflammation (72–74), although it may take weeks to months
for these changes to occur (73, 75, 76). Therefore, based on
observational evidence, consumption of a Mediterranean diet
could be a promising intervention to increase SCFA production
and reduce cardiometabolic disease risk.

The Mediterranean diet may also reduce circulating choline
metabolites, such as TMAO, and therefore reduce CVD risk.
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De Filippis et al. (51) reported that higher adherence to
a Mediterranean diet was associated with lower TMAO
concentrations. This association was also observed in a
subpopulation of the PREDIMED study. Guasch-Ferré et al.
(77) examined the relation between plasma concentrations
of 5 metabolites in the choline pathway (TMAO, betaine,
choline, phosphocholine, and α-glycerophosphocholine) and
major CVD endpoints in individuals at risk for CVD. The
authors reported that participants classified in the highest
metabolite quartile and assigned to a low-fat control diet had
a higher risk (HR: 2.37; 95% CI: 1.34–4.18) of CVD than
participants in the lowest metabolite quartile and assigned to a
Mediterranean diet. The large proportion of plant-based foods
in the Mediterranean diet may alter the GM to produce less
TMA and favorably change the metabolic profile.

The dietary pattern consumed affects the composition of the
GM through the provision of substrate for the gut microbes.
Various bacteria prefer different energy sources and the type
of foods consumed promotes the residency of bacteria that
favor the energy substrate provided. This results in gut-derived
metabolic products that can alter the structure and function
of the GM and affect disease risk. Moreover, changes in GM
that have emerged with adherence to a Mediterranean diet
suggest it may provide important dietary components that can
improve GM functionality with consequent benefits on the
host. Future research is needed to further investigate how the
Mediterranean diet affects gut enterotype. The present evidence
to date suggests that the Mediterranean diet increases SCFA
production,metabolites that have been shown to reduce the risk
of cardiometabolic diseases.

Conclusions

Vegetarian and Mediterranean diets both reduce
cardiometabolic risk and favorably change the GM. Current
knowledge suggests that consumption of a Vegetarian or
Mediterranean diet generates favorable shifts in the microbes
in the lower gastrointestinal tract and beneficial gut-derived
metabolites may be a product of these alterations. The
temporality of this relation is not well understood and it
may be bidirectional. The composition of the GM affects
the gut-derived metabolic products and these metabolites
may also affect the microbial community and gut enterotype.
Examination of the gut enterotype, microbial functionality, and
gut-derived metabolites could provide a better understanding
of the changes that occur with specific dietary patterns.
The entire gut environment, including present microbes,
relative abundance of microbes, microbial gene expression,
and microbial metabolites, is important to consider relative
to the link between the GM and disease risk. However, the
majority of evidence to support the correlations between these
diets and changes in the GM composition and metabolites
is primarily derived from epidemiologic research. Further
research is needed to increase our understanding of how
dietary patterns alter the GM and, importantly, how alterations
in the GM mechanistically modulate risk of cardiometabolic
diseases.
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