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Abstract
The opioid system regulates affective processing, including pain, pleasure, and reward. Restricting the role of this system to
hedonic modulation may be an underestimation, however. Opioid receptors are distributed widely in the human brain, including
the more Bcognitive^ regions in the frontal and parietal lobes. Nonhuman animal research points to opioid modulation of
cognitive and decision-making processes. We review emerging evidence on whether acute opioid drug modulation in healthy
humans can influence cognitive function, such as how we choose between actions of different values and how we control our
behavior in the face of distracting information. Specifically, we review studies employing opioid agonists or antagonists together
with experimental paradigms of reward-based decision making, impulsivity, executive functioning, attention, inhibition, and
effort. Although this field is still in its infancy, the emerging picture suggests that the mu-opioid system can influence higher-level
cognitive function via modulation of valuation, motivation, and control circuits dense in mu-opioid receptors, including
orbitofrontal cortex, basal ganglia, amygdalae, anterior cingulate cortex, and prefrontal cortex. The framework that we put
forward proposes that opioids influence decision making and cognitive control by increasing the subjective value of reward
and reducing aversive arousal. We highlight potential mechanisms that might underlie the effects of mu-opioid signaling on
decision making and cognitive control and provide directions for future research.
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Introduction

Pleasure and pain are powerful motivators that determine a
great deal of our behavior in daily life. Opioid drugs are
known to dampen pain and increase pleasure (Kringelbach
& Berridge, 2009; Leknes & Tracey, 2008). The subjective
reports of people taking opioids for pain relief or recreation

(De Quincey, 2000) have been corroborated by findings that
rodents will work to obtain an opioid but also to avoid opioid
blockade (Mucha & Iversen, 1984). Accordingly, many influ-
ential theories describe the opioid system as the brain’s regu-
lator of affective states (Barbano & Cador, 2007; Berridge &
Kringelbach, 2015; Koob & Le Moal, 2001).

Opioid drugs are the Bgold standard^ treatment for periop-
erative pain, for example. These drugs also dampen other
aversive experiences, such as the sensation of breathlessness
(Hayen et al., 2017), psychosocial stress (Bershad, Jaffe,
Childs, & de Wit, 2015; Bershad, Miller, Norman, & de Wit,
2018), and depressive symptoms (Peciña et al., 2018).
Evidence from nonhuman animal studies highlights the im-
portance of the opioid system in regulating not just aversive
experiences but also motivation and Bliking^ of food (Baldo,
2016; S. Peciña & Smith, 2010), social contact (Loseth,
Ellingsen, & Leknes, 2014), and other rewards (Laurent,
Morse, & Balleine, 2015). The available human literature is
still limited but is suggestive of a similar hedonic regulation
by the human opioid system. A recent review of positron
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emission tomography (PET) studies with opioid receptor-
specific tracers posit a central role of the opioid system for
positive affective states (Nummenmaa & Tuominen, 2017).
Drug studies in both human and nonhuman animals show that
blocking opioids reduces food pleasantness and consumption,
especially for high-calorie foods (Drewnowski, Krahn,
Demitrack, Nairn, & Gosnell, 1992; Eikemo et al., 2016;
Price, Christou, Backman, Stone, & Schweinhardt, 2016;
Yeomans, 1995; Yeomans & Gray, 2002).

For aversive stimuli, blocking opioid signaling can en-
hance or maintain responses in aversive learning tasks
(Eippert, Bingel, Schoell, Yacubian, & Büchel, 2008;
Haaker, Yi, Petrovic, & Olsson, 2017). Opioid blockade can
also increase the aversiveness of pain (Anderson, Sheth,
Bencherif, Frost, & Campbell, 2002), although this effect is
rarely observed with short-lasting experimental pain stimuli
(Berna et al., 2018; Eippert et al., 2008; Grevert & Goldstein,
1977). Very recently, studies indicate that social reward pro-
cesses are similarly modulated by opioids in humans. Indeed,
opioid agonist and/or antagonist drugs have been reported to
modulate the perceived attractiveness and motivation to view
faces of beautiful women (Chelnokova et al., 2014), the rela-
tive pleasantness of nude images and frustration at missed
opportunity to view these (Buchel, Miedl, & Sprenger,
2018), visual exploration of faces (Chelnokova et al., 2016),
and perception of faces with emotional expressions (Bershad,
Seiden, & de Wit, 2016; Loseth et al., 2018; Syal et al., 2015;
Wardle, Bershad, & de Wit, 2016).

Overall, these findings are in line with the notion that mu-
opioid receptor stimulation by endogenous and exogenous
opioid peptides causes a shift in valuation along a Bhedonic
gradient,^ ranging from displeasure to pleasure. This shift is
not limited to the "liking" of stimuli. Learning and motivation
typically increase with increased valuation (Berridge,
Robinson, & Aldridge, 2009). Evidence from nonhuman an-
imal studies also shows opioid modulation of learning inde-
pendently of Bliking^ responses (Laurent et al., 2015).
Moreover, microstimulation with opioid peptides has been
shown directly to increase motivation for different reward
types in rodents (Mahler & Berridge, 2012) through distinct
neural mechanisms (Wassum, Ostlund, Maidment, &
Balleine, 2009a).

In rodents, wanting, liking, and reward learning can be
modulated by manipulations of opioid receptors in the ventral
and dorsal striatum, ventral pallidum, and the central nucleus
and basolateral parts of the amygdala (Berridge &
Kringelbach, 2015; Wassum, Cely, Balleine, & Maidment,
2011; Wassum, Cely, Maidment, & Balleine, 2009b;
Wassum, Ostlund, et al., 2009a). Recently, Bhedonic hot-
and coldspots^ involved in sweet taste Bliking^ responses also
were identified in the rat insula and prefrontal cortices (Castro
& Berridge, 2017). Studies using PET imaging and pharma-
cological MRI in humans suggest that opioids may indeed

exert their effects on reward-related behavior through recep-
tors in the orbitofrontal cortex, amygdala, thalamus, insular
cortices, ventral and dorsal striatum, and cingulate cortices
(Hsu et al., 2013; Love, Stohler, & Zubieta, 2009; Murray
et al., 2014; Nummenmaa et al., 2018; Petrovic et al., 2008;
Rabiner et al., 2011). A largemeta-analysis of fMRI activation
associated with subjective value processes showed that the
striatum and ventro-medial prefrontal areas (including the
orbitofrontal cortex) are key to the valuation process, whereas
a different network comprised of the anterior insula,
dorsomedial prefrontal cortex, dorsal and posterior striatum,
and thalamus may be recruited in response to arousal or sa-
lience during valuation (Bartra, McGuire, & Kable, 2013).

Recently, rodent researchers have argued convincingly for
opioid involvement in choice behaviors beyond the regulation
of reinforcement and aversion (Laurent et al., 2015). Indeed,
the widespread distribution of opioid receptors throughout the
human brain is consistent with a wider role of this
neuromodulator for cognition and behavior (Figures 1 and 2).
Opioid activation and inhibition also affects other neurotrans-
mitter systems important for cognition, such as dopamine and
norepinephrine (Chaijale et al., 2013; Fields &Margolis, 2015;
Valentino & Van Bockstaele, 2015)

Opioid regulation of cognitive control
and decision making?

By altering motivational processing and/or learning, opioid
drugs could exert profound effects on cognitive control and
reward-based decisions even after a single drug administra-
tion. Work in rodents indeed shows opioid-induced impair-
ments in some measures of sustained attention and response
inhibition (for an up-to-date review see, Jacobson, Wulf,
Browne, & Lucki, 2018). Despite decades of nonhuman ani-
mal research, much less is known about acute opioid modula-
tion of cognition and decision making in humans. Although a
general assumption has been that opioid drugs will impair
concentration, human drug studies collecting measures of
cognitive control and executive function have typically lacked
a strong theoretical motivation for task inclusion.

One recurrent idea in the human literature is that opioids
might impair concentration by reducing arousal and discom-
fort, whereas this same arousal-reducing property might im-
prove cognitive function when participants are tested in stress-
ful situations (Evans & Witt, 1966). Research from the past
decade has renewed interest in how arousal can influence
cognitive control (Aston-Jones & Cohen, 2005). Some studies
have highlighted the specific effects of aversive arousal, i.e.,
heightened arousal in combination with negative valence
(Saunders & Inzlicht, 2015; van Steenbergen, 2015). In
models that describe affect as a two-dimensional space with
the factors arousal and valence (Russell, 2003), aversive
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arousal can be conceptualized as a diagonal in the quadrant
that combines high levels of arousal with negative valence
(Thayer, 1989; Yik, Russell, & Barrett, 1999). Aversive arous-
al is an integral affective response in many tasks requiring
cognitive control (Inzlicht, Bartholow, & Hirsh, 2015).
Recent accounts have suggested that aversive arousal tunes
goal-directed behavior (Dreisbach & Fischer, 2015; van
Steenbergen, Band, & Hommel, 2009) and can be
counteracted by the induction of incidental positive affect
(van Steenbergen, 2015). Accordingly, it is conceivable that
positive affect induced by an opioid drug might downregulate
aversive arousal, thereby influencing cognitive control. Such

opioid effects would be consistent with emerging work on the
stress-relieving properties of opioids (Valentino & Van
Bockstaele, 2015).

In the present paper, we present a synthesis of current
knowledge of opioid regulation of decision making and the
control of goal-directed behavior in the healthy human brain.
The studies reviewed have used pharmacological manipula-
tions in healthy humans together with decision-making and
cognitive-control tasks. Where possible, we also draw on rel-
evant evidence from PET imaging. Our primary objective is to
gain a better understanding of the mechanisms of acute opioid
modulation of cognitive processes. We also discuss the

Fig. 1 Neural circuits involved in decision making (A) and cognitive
control (B) based onmeta analyses (analysis date 24May 2018), showing
forward inference maps of statistically significant (false discovery rate, p
< 0.01) activations in Neurosynth (Yarkoni, Poldrack, Nichols, Van
Essen, & Wager, 2011). (C) Density of mu-opioid receptor expression
as revealed by [11C]-carfentanil PET (mean nondisplaceable binding
potential (BPND) image of 89 PET scans from healthy volunteers; cour-
tesy of Dr. Lauri Nummenmaa). The circuits involved in decision making
and cognitive control show particular high density of mu-opioid receptors

in the limbic system (including thalamus, basal ganglia, and cingulate
cortex) and a moderate density of mu-opioid receptors in cortical regions,
such as insular and lateral-prefrontal cortex. Note that mu-opioid recep-
tors regulate many functions. As shown above, receptors are expressed
throughout the brain, including in regions less commonly associated with
cognition, such as the midbrain (periaqueductal gray), hypothalamus, and
cerebellum. These maps and their conjunctions are available at
Neurovault (Gorgolewski et al., 2015): https://neurovault.org/
collections/4841/
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possible role of the mu-opioid system in indirect modulation
of decision-making and cognitive control via changes in af-
fective states (Braver et al., 2014; Chiew & Braver, 2011;
Dreisbach & Goschke, 2004; Isen & Means, 1983;
Notebaert & Braem, 2016; van Steenbergen, 2015; Vinckier,
Rigoux, Oudiette, & Pessiglione, 2018) and stress (Shields,
Sazma, & Yonelinas, 2016). After a description of the
methods used for our literature review, we will briefly sum-
marize the main results of the reviewed studies for the do-
mains of decision making and cognitive control. This is
followed by an integrative discussion of the reviewed litera-
ture in which we put forward a framework that aims to capture
the reviewed findings and generate testable hypotheses for
future research. Specifically, we propose that opioids influ-
ence decision making and cognitive control by increasing
the subjective value of reward and reducing aversive arousal.
Other avenues for future research are highlighted before we
present some general conclusions.

Literature inclusion

To synthesize the available evidence for acute opioid drug
effects on cognition in healthy human volunteers, we searched
for studies combining opioid agonist and antagonist drugs
with experimental paradigms to investigate decision making,
impulsivity, executive functioning, attention, inhibition, and
effort.We used Pubmed, Scopus and Google Scholar to search
for relevant literature, using a combination of the keyword
"opioid" or drug names, such as naltrexone, naloxone,
remifentanil, buprenorphine, oxycodone, and morphine and
the particular cognitive function (e.g. attention, impulsivity,
decision-making). In addition, we included relevant articles
cited in recent papers or in earlier reviews by Zacny (1995)
and Ersek et al. (2004). Studies were included in this
semisystematic review if they were published as an article in
a peer-reviewed scientific journal, had tested healthy human
volunteers, included a pharmacological manipulation with an

Fig. 2 Left panel: Drugs can affect the opioid system via different
receptor subtypes. The opioid system is made up of four different
opioid receptor types, the mu-, delta, kappa-, and the nociceptin
receptors (Corbett, 2009). Several types of endogenous ligands, such as
endorphins, enkephalins, dynorphins, endomorphins, and nociceptin ac-
tivate these (Calo, Guerrini, Rizzi, Salvadori, & Regoli, 2000; Fichna,
Janecka, Costentin, & Do Rego, 2007). Drugs, such as morphine and
heroin, are considered mu-opioid agonists, i.e., they act primarily on the
mu-opioid receptor (Pasternak, 2001). The drugs that block endogenous
opioid signaling (antagonists, such as naloxone or naltrexone) in humans
typically inhibit activity at both mu- and kappa-receptors. To date, the
mechanism of action of the mu-opioid receptor is best understood. Both
the analgesic and the euphoric effects of opioid drugs are thought to be
mediated by this receptor type (Fields & Margolis, 2015). Although mu-
opioid receptors are widely distributed in the brain (and in other parts of
the body as well), they are in particular highly expressed in limbic brain
areas, such as the basal ganglia, thalamus, and anterior cingulate. They
also are expressed to a moderate extent in cortical areas, such as lateral
prefrontal and insular regions (Henriksen &Willoch, 2008). Right panel:
Mu-opioid receptors are activated by a large number of different drugs,
and they are commonly compared in terms of their efficacy to relieve pain
at a particular dose and administration method. Opioid drugs are often
given as pills (per oral; PO) but also intravenously (IV), transnasally
(TN), subcutaneously (SC), and intramuscularly (IM). We have calculat-
ed a rough estimate of Bmorphine equivalence^ on the basis of available
evidence of analgesic effects. This conversion was primarily based on the

values provided in earlier work (Knotkova, Fine, & Portenoy, 2009;
Zacny, 1995). It is important to emphasize that dosages with similar
analgesic properties can have different effects on cognitive function,
and a simple conversion does not capture the different pharmacokinetics
of different drugs. To emphasize that the conversion is coarse for the
present purposes, we do not report the exact equianalgesic doses of mor-
phine. Instead, we have categorized the dose as a low, medium, or high
dose, using 4 mg and 7 mg IVof morphine as the minimal cutoff values
for the medium and high dose, respectively. As for the opioid antagonists,
these were categorized on the basis of available PET evidence about the
proportion of mu-opioid receptors blocked by a given drug dose
(Mayberg & Frost, 1990). Doses covering 90-100% of receptors are con-
sidered full antagonists (Weerts et al., 2013). Where doses administered
were much higher or lower than this range, this is specified in the text. In
addition to drugs acting primarily as agonists or antagonist to opioid
receptors, the literature also contains several reports from Bmixed
agonists,^ i.e., drugs that act simultaneously as agonists and antagonists
at different opioid receptors (Jacob, Michaud, & Tremblay, 1979). This
category also covers drugs that act as partial agonists and antagonists,
such as buprenorphine, which binds strongly to mu-opioid receptors, but
causes less activation of the receptor than the endogenous ligand.
Buprenorphine is also a kappa-opioid antagonist. These drugs were also
categorized on the basis of their analgesic effects at the doses used in the
literature. Figures were produced with graphics from Servier Medical Art
(smart.servier.com) under Creative Commons BY 3.0 license.
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opioid agonist and/or antagonist drug, and included one or
more paradigms related to the domains of decision making
or cognitive control. Both behavioral results and/or neural
effects using EEG or fMRI were included in the review. For
reasons of clarity and feasibility, papers published before 1957
and studies that measured the relevant drug effects during pain
or in combination with another drug were not considered.
Beyond these limitations, we strived to include all relevant
studies rather than reviewing a subset. Accordingly, we con-
sider our approach a semisystematic review, in the sense that
we did not knowingly exclude evidence contrary to (or con-
sistent with) our own opinions about the topic at hand. To
compare the different drugs and their doses, we calculated a
rough estimate of Bmorphine equivalence^ on the basis of
available evidence of analgesic effects (Figure 2).

A quantitative meta-analysis of effects in the reviewed lit-
erature was not possible due to 1) variable drug types, doses,
and administration methods used across studies, 2) variable
tasks and outcome measures reported, and 3) the failure to
report means and variance information for relevant outcomes
in much of the (earlier) literature. Note that this literature has
typically been statistically underpowered, and for topics
where both null and positive effects are reported, we give
relatively less weight to null findings identified using
frequentist statistics only.

Review of studies on decision-making

Reward-based decision-making

Only a handful of studies have investigated the behavioral,
neural, and psychophysiological responses to reward-based
decisions following pharmacological manipulation of the opi-
oid system in healthy humans. In general, these studies are
consistent with the available evidence on opioid modulation
of rewards presented outside of a decision context. Petrovic
and colleagues (Petrovic et al., 2008) used opioid blockade
(10 mg IV naloxone, placebo-controlled) to assess the role of
endogenous opioids during a gambling task with rewards and
losses in 15 healthy men (within-subject). Following nalox-
one, monetary losses were rated as more aversive and the
opioid blockade increased activation in regions such as the
ACC and anterior insula. Pleasantness ratings of wins were
unaltered by opioid blockade, which nevertheless decreased
ACC responses to these rewards. Another study reported no
clear effects of opioid blockade (50 mg naltrexone) on BOLD
responses to monetary wins and losses (Monetary Incentive
Delay task) in 35 healthy participants (Nestor et al., 2017).
Very recently, a third fMRI study using naloxone and an in-
centive delay task with monetary gain and erotic images in 21
healthy men (within-subject) found that compared with place-
bo, opioid blockade decreased the relative pleasantness of

both types of high-value rewards but with a significantly
stronger effect on erotic images (Buchel et al., 2018). The
authors observed reduced BOLD response to erotic images
in bilateral striatum, orbitofrontal cortex, the amygdalae, pre-
frontal cortex, and hypothalamus but no reduced response to
(symbolic) receipt of monetary gains. During the anticipation
phase, a small reduction in medial prefrontal cortex and right
lateral orbitofrontal cortex activity was observed during cues
signaling potential monetary gains (but not erotic images).

Thus, initial evidence of opioid modulation of pleasantness
and fMRI responses to rewarded decisions in humans is mod-
est but consistent with the evidence that opioids promote the
pleasantness of rewards received outside of a decision context
(Chelnokova et al., 2014, 2016; Drewnowski et al., 1992;
Eikemo et al., 2016; Murray et al., 2014; Price et al., 2016;
Yeomans, 1995; Yeomans & Gray, 2002). Whether opioid
agonist drugs increase the liking of choice outcomes in
humans remains to be seen.

Reward learning and motivation in decision making

What about opioid modulation of reward learning and moti-
vation in humans? Studies using measures of motivation and
learning have shown more consistent opioid modulations than
those on reward responses. Using a Pavlovian instrumental
transfer (PIT) task with chocolate reinforcement, Weber
et al. (2016) found a significant reduction in the difference
between button presses for rewarded and unrewarded stimuli
following 50 mg naltrexone (n = 40) compared with placebo
(n = 40), indicating reduced motivation to exert effort for
rewards after opioid blockade. Eikemo et al. (2017) tested
the effects of 50 mg of naltrexone, 10 mg of morphine, and
placebo on rewarded choice in healthy men (n = 30, within-
subjects). Using a drift diffusion model, they found that mu-
opioid agonism enhanced and blockade decreased, processing
efficiency in the reward task, which they interpreted as a mea-
sure of motivation to obtain reward. Morphine also increased
the bias towards the high-value response option (associated
with high reward probability). Using opioid blockade (50 mg
of naltrexone, n = 21) and placebo (n = 20) before a slot-
machine task and roulette task, Porchet et al. (2013) found
that naltrexone moderately attenuated the motivational ratings
after near-misses compared with placebo. However, contrary
to the above reviewed findings, participants under opioid
blockade also exhibited signs of increased reward sensitivity
(a larger change in the skin conductance response to wins and
higher confidence following winning-streaks). Finally, a study
of opioid effects on financial decisions (trading game) sug-
gested that opioid blockade (naltrexone 50 mg, n = 62) de-
creases reinforcement learning compared with placebo (n =
116) in healthy participants (Efremidze, Sarraf, Miotto, &
Zak, 2017).
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In summary, the available evidence provides some support
for involvement of the endogenous opioid system in value-
based decisionmaking, suggesting that blocking opioid recep-
tors may reduce, and stimulating receptors may enhance, the
motivational value of and learning about high-value stimuli
and choices for these options. However, pharmacological
studies in healthy humans are still scarce, and results are not
homogenous. So far, the opioid effects on value-based deci-
sion making appear broadly consistent with the extensive ev-
idence from rodent research (Berridge & Kringelbach, 2015;
Laurent et al., 2015; Lutz & Kieffer, 2013), but more research
into this area in humans is needed.

Impulsive choices

Impulsivity is a broad construct related to impulsive choice (as
measured by probability discounting, gambling tasks, and de-
lay discounting) and impulsive action (e.g., failure to inhibit
prepotent responses, see Inhibition and Effort). Correlations
between trait impulsivity and performance on tasks measuring
impulsive choice or action are low, as are correlations of per-
formance between these tasks. Nevertheless, trait impulsivity
has been related to opioid receptor binding in a PET study.
Specifically, NEO Personality Inventory (Costa & McCrae,
1992) measures related to lack of control over cravings or
desires, correlated with receptor-binding potential in medial
frontal cortex, nucleus accumbens/ventral pallidum, and the
right amygdala in 19 young males (Love et al., 2009).

A handful of opioid drug studies have investigated impul-
sive choices using delay discounting tasks where subjects
choose between smaller immediate rewards or larger delayed
rewards. Two initial studies reported no significant effect of
naltrexone (50 mg PO) on impulsive choice ratio in nine
(Mitchell, Tavares, Fields, D’Esposito, & Boettiger, 2007)
and ten healthy controls (Boettiger, Kelley, Mitchell,
D’Esposito, & Fields, 2009). In a larger study by Weber
et al. (2016), a trend towards reduced impulsive choice was
reported in 40 healthy people receiving naltrexone (50 mg)
compared with a placebo group of the same size. Few studies
report effects of opioid agonism on impulsivity measures in
healthy humans. In Zacny and de Wit (2009), a battery of five
tasks measuring aspects of choice and motor impulsivity was
administered following three separate doses of oxycodone (5,
10, or 20 mg PO) compared with placebo (within-subject; n =
12). They did not find any significant effect on any of the
tasks, including delay discounting, even at the higher oxyco-
done doses where participants reported feeling the drug ef-
fects. Furthermore, Eikemo et al. (2017) found no credible
effects of either 50 mg of naltrexone or 10 mg of morphine
on reward-related impulsivity as measured by speed-accuracy
trade-off in a probabilistic reward task.

Together, these results indicate that blocking the majority
(>90%) of the μ-opioid receptors in the brain using 50 mg of

naltrexone (Weerts et al., 2013) does not cause a large reduc-
tion in measures of impulsive reward choices in healthy
humans. Rodent work similarly indicates limited or no effects
of opioid blockade on tests of impulsive behavior (Kieres
et al., 2004; Pattij, Schetters, Janssen, Wiskerke, &
Schoffelmeer, 2009). For opioid agonism, the preliminary ev-
idence in humans is at odds with rodent findings that acute
opioid administration increases impulsivity.

Review of studies on cognitive control

Neuropsychological tests of executive functions

The nonhuman animal literature yields minimal information
about opioid modulation of executive function. These func-
tions are typically impaired in opioid dependence, but this
impairment could be related to other factors and mechanisms
than opioid receptor functioning. Indeed, working memory
training was shown to increase future orientation and decrease
delay discounting in opioid-dependent individuals (Bickel, Yi,
Landes, Hill, & Baxter, 2011). While the little evidence avail-
able from opioid antagonist studies do not suggest a central
role of the endogenous opioid system in executive function,
studies employing acute doses of opioid agonists do report
modulation of executive functions.

Most consistent evidence for an impact of opioid drugs on
executive function comes from studies implementing the digit
symbol substitution task (DSST, also known as the coding
task), which requires participants to substitute symbols and
digits using a particular key. The DSST is the most commonly
included task in opioid administration studies. A speeded sub-
test of the Wechsler Adult Intelligence Scale, it is designed to
measure functions related to Bprocessing speed^ (Wechsler,
2014). However, recent work has shown that the DSST task
does not asses basic psychomotor speed, but instead reflects a
mixture of executive functioning processes including inhibi-
tion, shifting, and updating (Knowles et al., 2015).

An early study reported that a low dose of the opioid ago-
nist codeine impairs coding performance in medical troops
tested at 2,000 feet (610 meters) altitude but improved perfor-
mance when they performed this test at 15,000 feet (4,572
meters) elevation (Evans &Witt, 1966). Few subsequent stud-
ies have assessed context-sensitive effects of opioids on cog-
nition. Instead most studies have simply included DSST per-
formance as part of a cognitive test battery in a standard psy-
chopharmacological protocol with no systematic manipula-
tion of context. More than 30 such studies have investigated
the effects of various types of opioid agonists. The majority of
these studies have observed coding impairments (Table 1).
Two studies using opioid antagonists reported no effect on
coding performance (File & Silverstone, 1981; Zacny,
Coalson, Lichtor, Yajnik, & Thapar, 1994a). As Figure 3 (left
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panel) shows, most performance impairments have been re-
ported in studies using high doses of opioid agonists only,
although some studies have observed performance decre-
ments at medium doses (e.g., hydrocodone, oxycodone, and
partial agonists). This suggests that the effect of opioid ago-
nists on coding performance might be dose-related, even
though a clear link between plasma concentrations and
DSST impairments is currently lacking (Strand, Arnestad,
Fjeld, & Mørland, 2017).

Another commonly investigated function in the context of
opioid drugs is logical reasoning. Effects of opioid agonists on
a logical reasoning task were first reported by Evans and
Smith (1964) who observed that a low dose of morphine in
four participants improved performance on a test assessing
logical judgements compared with four placebo-treated peo-
ple. However, the majority of subsequent studies in larger
samples have failed to replicate this effect with low opioid
drug doses (Table 2), although some impairments in logical
reasoning have been observed with medium and high doses of
full and mixed agonists (Figure 3, right panel). We are not
aware of studies that have reported the effects of opioid an-
tagonists on logical reasoning.

Working memory is a central aspect of executive function-
ing that is well known to be modulated by catecholamine
systems that directly modulate prefrontal brain activity
(Robbins & Arnsten, 2009). Interestingly, across a wide vari-
ety of doses and drugs in 16 studies, opioid agonists and
antagonists typically do not affect working memory perfor-
mance (Table 3). Three studies did observe effects on working
memory (Ghoneim, Mewaldt, & Thatcher, 1975; Martín del
Campo, McMurray, Besser, & Grossman, 1992; Székely,
Török, Karczag, Tolna, & Till, 1986) but showed findings in
opposite directions and had small study samples (8 or 10
males per study).

The handful of studies assessing effects of opioid agonist
and antagonist treatment on mathematical skills are summa-
rized in Table 4. The available evidence suggests that high
doses of opioids drugs might impair several aspects of math-
ematical skills, including the speed at which participants com-
plete oral and written addition tasks as reported by Smith and
colleagues (Smith, Semke, & Beecher, 1962). However, other
studies using low or moderate doses of opioid agonists failed
to observe effects (Cleeland et al., 1996; Kornetsky,
Humphries, & Evarts, 1957; Cherrier, Amory, Ersek, Risler,
& Shen, 2009). Opioid blockade has not been shown to mod-
ulate arithmetic skills (Martín del Campo et al., 1992).

Cognitive flexibility, another key aspect of executive func-
tion, is rarely investigated in the context of opioid drug stud-
ies. In an early study, Primac et al. (1957) did not find an effect
of a low dose of the opioid agonistMeperidine administered to
ten participants on the Wisconsin Card Sorting Test (WCST).
More recently, Quednow and colleagues (Quednow, Csomor,
Chmiel, Beck, & Vollenweider, 2008) using a low dose of

10 mg PO of morphine in 18 males did not observe effects
on the Stockings of Cambridge tasks or extradimensional set
switching. However, their low dose of morphine did reduce
the error rate on intradimensional set shifts, suggesting that
low doses of opioids might help to improve the application of
a task rule within the same perceptual dimension.

The effects of opioid drugs on neuropsychological tests of
executive function have most often been investigated in the
domains of coding, logical reasoning, and working memory.
While a large proportion of studies did observe opioid agonist-
induced impairments in coding and logical reasoning, there
are no consistent effects of opioid drugs on working memory.

Attention

In an early study, Arnsten et al. (1983, 1984) hypothesized
that blocking endogenous opioid activity might improve the
selectivity of attention. Using a small dose (2 mg IV) of nal-
oxone in an EEG study of ten male participants, they indeed
observed that naloxone increased a late frontal event-related
potential component, which is thought to reflect attention to
auditory stimuli. Findings were consistent with their prior
findings in animals (Arnsten et al., 1981) and were suggested
to be driven by interactions with the locus-coeruleus-
norepinephrine system. However, a more recent study testing
four females and nine males using a higher dose of the opioid
antagonist naltrexone (50 mg PO) to block >90% of mu-
opioid receptors observed an effect in a direction opposite to
the findings by Arnsten and colleagues (Jääskeläinen et al.,
1998). These authors speculated that the observed impairment
in selectivity of attention in their study might be due to nausea
induced by naltrexone in their participants. Thus, a full opioid
blockade (>90%) appears to cause the opposite attentional
effect of weak opioid blockade. Other studies using high doses
of opioid agonists did not observe clear impairments in divid-
ed attention task performance (Saarialho-Kere, 1988;
Saarialho-Kere, Mattila, & Seppälä, 1989; for procedural de-
tails of these studies see Table 1). These null-effects were
supported by the finding that a low dose of infused
remifentanil (n = 14, within-subjects) impaired attention in a
letter detection task only when participants expected that the
drug would be administered but not when they did not expect
the drug (open vs. hidden administration; Atlas, Wielgosz,
Whittington, & Wager, 2014).

The ability to regulate sensory input by filtering out irrele-
vant stimuli (to prevent sensory overflow) can also be en-
hanced by opioid agonists, as suggested by a study where a
low dose of morphine (10 mg PO) in 18 males enhanced
modulation of the startle reflex to a noise burst following a
prestimulus, a phenomenon called prepulse inhibition
(Quednow et al., 2008). At first sight, these findings seem
difficult to reconcile with the findings reported by Arnsten
et al. (1983, 1984). As we will discuss in more detail later,
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one possibility is that the task by Quednow et al. (2008) in-
volved increased levels of distress because of the loud audito-
ry noise involved in the task. Opioids might help to downreg-
ulate stress responses under such conditions, perhaps improv-
ing sensorimotor gating relative to placebo. However, as
reviewed elsewhere (Jacobson et al., 2018), effects of opioid
drugs on prepulse inhibition in rodents are mixed, showing
that additional systematic research is needed.

Inhibition and effort

The effects of blocking opioid receptors on response inhibi-
tion were investigated by Martin del Campo et al. (1992)
using the Stroop task and more recently in a Stroop-like
prime-probe task by van Steenbergen et al. (2017). The first
study used a cumulative infusion of naloxone in 8 males and
the other administered 50 mg naltrexone PO versus placebo in
two groups of 26 female participants. Both studies revealed
that overall Stroop performance was not affected by the phar-
macological manipulation. Likewise, no significant effects
were reported by the earlier described study by Zacny and
de Wit on impulsive action, which investigated the effect of
5, 10, and 20 mg PO of oxycodone in six females and six
males participants on stop-signal performance and go/no-go
performance (Zacny & de Wit, 2009). The absence of clear
findings on overall measures of response inhibition resonates
with rodent studies that often find no or mixed effects of
opioid manipulations on premature responding (Jacobson
et al., 2018).

The study by van Steenbergen and colleagues also ana-
lyzed post-error and post-conflict adjustments in behavioral
performance (2017), which are thought to reflect short-term
adaptive increases in cognitive control triggered by aversive
arousal integral to the task at hand (Botvinick, Braver, Barch,
Carter, & Cohen, 2001; Dreisbach & Fischer, 2012; Inzlicht
et al., 2015; van Steenbergen, 2015). Naltrexonewas observed
to increase reaction time slowing after participants made an

error. This finding suggests that the aversive arousal associat-
ed with conflict and errors can be increased when endogenous
opioid activity is blocked, which improves short-term adap-
tive cognitive control. On the other hand, chronic stress and
depression is associated with hyperactive neural error moni-
toring, impairing post-error accuracy (Pizzagalli, 2011).
Recent work in rodents has shown that a kappa-specific an-
tagonist can ameliorate stress-induced post-error impairments
(Beard et al., 2015). This illustrates that modulation of aver-
sive arousal is not restricted to mu-opioid receptors (Valentino
& Van Bockstaele, 2015).

Two studies have investigated the effect of the opioid sys-
tem on perceived task difficulty and required effort. Grossman
et al. (1984) reported a study that tested the effect of an opioid
blockade (12.2 mg IV of naloxone) in six male participants
performing a physical exercise task. This opioid antagonist
increased the perceived difficulty of the task. Two further
studies reported that opioid blockade abolished exercise-
induced mood improvements (Allen & Coen, 1987; Daniel,
Martin, & Carter, 1992), conceivably through increased per-
ceived difficulty. Interestingly, a more recent study has ob-
served that the opioid agonist oxycodone (10 mg PO) admin-
istered to 18 participants did not affect driving performance,
whereas they did report increases in required effort while
performing the task (Verster, Veldhuijzen, & Volkerts, 2006).
This finding points to the possibility that compensatory effort
(Hockey, 1997) might mask opioid-related impairment in per-
formance on cognitive control tasks.

Integrative discussion of the reviewed literature

What can be learned from the budding literature on human
opioid regulation of cognition and decision making? In light
of the moderate to high density of mu-opioid receptors in the
brain circuits involved in decision making and cognitive con-
trol (Figure 1), endogenous or drug modulation of mu-opioid
receptors could exert direct modulatory effects on these

Fig. 3 The number of times opioid agonist drug has shown a significant
impairment on coding task (DSST) performance and logical reasoning for
all type of drugs used in the studies (antagonist drug effects not included,

see details in Tables 1 and 2). Dose refers to the minimal dose needed to
produce a significant effect; if no effect was observed, we used the max-
imum dose used in the study.
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processes. Nevertheless, considering all reviewed evidence
together, one striking observation is the abundance of phar-
macological studies observing null effects. This is true in par-
ticular for the delay-discounting tasks, working memory task
and overall measures of planning, switching, and inhibition.
However, the majority of these studies have used only small to
moderate sample sizes, which usually are only adequately
powered to observe medium to high effect sizes.
Considering that typical effects sizes in the field of psycholo-
gy and affective neuroscience are small to moderate (Lakens
& Evers, 2014; Poldrack et al., 2017), the majority of the
published studies were underpowered to detect such effects.
One conclusion that can be drawn is thus that new research in
this area must take measures to improve statistical power. In
the meantime, we advise caution in the interpretation of these
null effects, in particular if the study used low or moderate
doses of opioid agonists only.

Null effects reported after full (>90%) blockade of mu-
opioid receptors are an intermediate case, since valuable in-
formation can indeed be gleaned by observing behaviors un-
altered or only partly diminished when opioid signaling is
blocked. For instance, it is striking that healthy people display
comparable working memory capacity and cognitive flexibil-
ity after treatment with opioid agonists, antagonists, and pla-
cebo. Similarly, although several studies report reduced re-
ward pleasantness after naloxone or naltrexone, healthy
humans consistently report substantial enjoyment of rewards
when mu-opioid receptors are fully blocked. The clearest pat-
terns indicating opioid modulation of performance emerged
for value-based learning and decision-making tasks, the
DSST, and the logical reasoning task. We will elaborate on
these results below and highlight potential neural
mechanisms.

Reward-based decision-making

The reviewed evidence from studies of reward-based deci-
sion-making in humans is largely consistent with opioid reg-
ulation of reward motivation, as measured by effort invested
to obtain relatively high-value rewards (Chelnokova et al.,
2014; Eikemo et al., 2017; Weber et al., 2016). Extensive
evidence from non-human animals indicates a parallel mech-
anism (Mahler & Berridge, 2012; S. Peciña & Berridge,
2013). We speculate that the rewarding effects of exerting
physical effort during exercise (Allen & Coen, 1987; Daniel
et al., 1992; Grossman et al., 1984; Hiura et al., 2017;
Saanijoki et al., 2018) or cognitive effort (Inzlicht, Shenhav,
& Olivola, 2018) may be mediated by the opioid system. Note
that the existing literature in healthy humans does not allow us
to disentangle the decision processes involved in weighing
costs, such as effort expenditure, against gains, such as social,
monetary, or taste rewards.Ta
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The current literature also points to a modest opioid mod-
ulation of the rewarding experience (liking) of high-value
stimuli, but so far there is little evidence of a change in the
neural response of winning money in healthy humans. One of
the studies reviewed also points to opioid modulation of
(monetary) reward learning (Efremidze et al., 2017). Overall,
however, findings are in line with the notion that mu-opioid
receptor stimulation by endogenous and exogenous opioid
peptides causes a shift in valuation along a Bhedonic gradient^
ranging from unpleasant to pleasurable. As illustrated in
Figure 4, we suggest that increased enjoyment of and motiva-
tion towards rewarding stimuli could underlie the observed
changes in decision making. Studies in both rodents and
humans indicate that these effects may be most pronounced
for highly salient stimuli, such as high-value rewards.

Notably, these studies consistently show that blocking
more than 90% of mu-opioid receptors does not obliviate the
appreciation of a rewarded choice and only moderately re-
duces the pleasantness of rewards in general. Interestingly,
while there is strong evidence that opioid drugs enhance
food-liking responses in rodents, mu-opioid antagonism di-
rectly into Bhedonic hotspots^ did not suppress such
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Fig. 4 Subjective value as a function of reward and punishment. The gray
line plots a typical value function for reward and punishment according to
prospect theory (Kahneman & Tversky, 1979). Opioid drugs might mod-
ulate decision making by shifting this value function, such that opioid
agonists increase (white line) and opioid antagonists decrease (black line)
subjective value for rewards. Similar modulation specifically of high-
salience stimuli may occur for punishments (dotted lines), although the
available evidence is equivocal and future research is warranted (see
Discussion in main text).
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appetite-independent Bliking^ (Smith & Berridge, 2007;
Wassum et al., 2009b). However, systemic antagonism in ro-
dents has been shown to suppress liking of sweet taste (Parker,
Maier, Rennie, & Crebolder, 1992).

Opioid agonists might similarly attenuate the negative val-
ue of punishments, although the exact nature of this modula-
tion requires extensive future research. For example, there is
some evidence that opioid drugs may modulate large and
small punishments to the same extent (Atlas et al., 2014;
Gospic et al., 2007; Murray et al., 2014; Petrovic et al.,
2008; Price, Harkins, Rafii, & Price, 1986; Schoell et al.,
2010). Moreover, despite the relief opioid drugs can provide
for acute clinical and experimental pain (Wanigasekera et al.,
2012), psychosocial stress (Bershad et al., 2015, 2018), certain
depressive symptoms (Peciña et al., 2018), and feelings of
breathlessness (Hayen et al., 2017), opioid blockade does
not consistently increase the aversiveness of experimental
pain (Anderson et al., 2002; Berna et al., 2018; Eippert
et al., 2008; Grevert & Goldstein, 1977). Clearly, more well-
powered psychopharmacological evidence is needed to under-
stand opioid modulation of reward and punishment processes,
as well as their integration in the human brain.

Cognitive control

With respect to the cognitive control domain, studies showed
the most consistent effects (the highest proportion of signifi-
cant effects) for the coding task (DSST). This is also the task
that has been most frequently included in opioid drug studies.
At moderate and high opioid drug doses, clear impairments on
performance have been observed in many studies using this
task (Figure 3). Although the DSST often is used as a primary
measure of psychomotor skills, recent work using a factor-
analytic approach suggest that performance on the DSST does
not rely on basic psychomotor speed but instead relies on
several executive function processes including working mem-
ory updating, switching, and inhibition (Knowles et al., 2015).
This task might require a delicate coordination and integration
of these different control processes. It could be speculated that
this has rendered the DSST, and to a lesser extent logical
reasoning, the most sensitive measures of cognitive control
impairment. On the other hand, no evidence exists that
blocking opioids enhances coding or logical reasoning perfor-
mance in healthy people, which speaks against involvement of
the endogenous opioid system as a key mechanism in execu-
tive functions. Indeed, other tasks in the cognitive domain,
which are typically constructed to tap into a single subtype
of control processes, were not associated with strong effects of
opioid drugs or blockade. Combined, these results indicate
that the effects of opioid drugs at moderate to high doses will
be particularly strong for tasks which require the orchestration
of multiple cognitive control functions relying on different
regions in frontoparietal brain circuits. However, given the

sparse data on cognitive measures other than DSST and logi-
cal reasoning, future research is warranted before firm conclu-
sions can be drawn regarding the effects of opioids on these
measures.

Working hypothesis: Enhanced cognitive
performance after opioid-reduced aversive arousal?

Some evidence suggests that opioid agonist administration
relative to placebo can also improve rather than impair perfor-
mance. This was for example observed for logical reasoning
and DSST performance in early studies by Evans and col-
leagues (Evans & Smith, 1964; Evans & Witt, 1966) as well
as in more recent work on intradimensional set shifting and
attention (Quednow et al., 2008). These studies have in com-
mon that they used low doses of morphine (or codeine). One
possible explanation for these findings might be that low
doses of opioid agonists could reduce the aversive arousal
(Thayer, 1989) or distress associated with a task. If the rela-
tionship between aversive arousal and cognitive control fol-
lows an inverted U-shape, as previous work has proposed (van
Steenbergen, Band, & Hommel, 2015), low doses of opioid
agonist drugs might compensate for arousal-induced impair-
ment that occurs in the placebo condition (Figure 5). Opioids
indeed tend to reduce arousal and can cause sedation at high
doses. Even at lower doses, opioid agonists in humans and
some other species reduce pupil size (miosis) (Lee & Wang,
1975; Murray, Adler, & Korczyn, 1983). In addition, opioid
antagonism increases cortisol responses, and this is thought to
reflect blockade of a tonic endogenous opioid inhibition of
cortisol in humans (Lovallo et al., 2015).

Fig. 5 U-shaped relationship between aversive arousal and cognitive
control. Opioids agonist might reduce aversive arousal (white), whereas
opioid antagonist might increase it (black). According to this hypothesis,
drug effects on cognition depend on the baseline level of aversive arousal,
such that an opioid agonist might improve performance in high stress
contexts, yet impair performance under low stress.
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The view that a low opioid drug dose could enhance cog-
nitive performance by reducing aversive arousal also dovetails
with recent rodent work on stress-alleviating properties of
opioids (Valentino & Van Bockstaele, 2015). Endogenous
opioid brain activation in response to stress might similarly
help to prevent stress-induced impairments (Shields et al.,
2016), as indeed suggested in some human (Bandura, Cioffi,
Taylor, & Brouillard, 1988) and animal studies (Laredo et al.,
2015). This view agrees with prior work that shows that cog-
nitive control tasks elicit affective responses (i.e., integral
emotions; Inzlicht et al., 2015), which might drive (mal) adap-
tive behavior (Botvinick, 2007; van Steenbergen et al., 2009)
and which are likely under opioid regulation (van Steenbergen
et al., 2017). Another possibility to consider is that cognitive
improvements after low doses of opioids are caused by in-
creases in appetitive motivation or learning. Such effects are
particularly likely when the task itself involves external re-
wards (Eikemo et al., 2017) or when performance on tasks is
perceived to reflect intelligence or capability. In addition,
tasks perceived to be of high relevance might also generate
internal Bpseudo-rewards^ (Holroyd & Yeung, 2012; Ribas-
Fernandes et al., 2011), in particular when effort is intrinsical-
ly valuable (Inzlicht et al., 2018).

Given these considerations, it is plausible that cognitive
control, just like decision-making, is modulated by opioids
via brain networks involved in valuation, saliency, and moti-
vation, shifting the cost-benefit trade-off, which in turn deter-
mines allocation of cognitive control (Shenhav, Botvinick, &
Cohen, 2013). In addition, prefrontal networks involved in
maintaining task-goal representations might be modulated di-
rectly via binding to its opioid receptors. In line with this
suggestion, a recent PET study observed that high mu-opioid
signaling (lower binding potential) in a ventral region of the
lateral prefrontal cortex was positively related to performance
on theWisconsin Card Sorting Test in a group of patients with
major depressive disorder (Light, Bieliauskas, & Zubieta,
2017). A possible mechanism at a neuronal level could be that
stimulation of mu-opioid receptors suppresses interneuron
spiking and increases glutamate-coded output of prefrontal
neurons at multiple projection targets, which in turn might
engender disorganized control and decision processes
(Baldo, 2016).

Directions for future research

The previous section provided some initial insights into the
role of the mu-opioid system in higher-level cognitive func-
tion. Yet, numerous issues require future investigation. One
unresolved challenge is that opioids might reduce cortical sig-
naling without directly affecting performance in cognitive
tasks, because participants use strategies to compensate for
these deficits (Hockey, 1997). Future studies should include

physiological measures, such as cardiovascular measures
(Gendolla, Wright, & Richter, 2011; Kuipers et al., 2017;
Spruit, Wilderjans, & van Steenbergen, 2018) and task-
evoked pupil dilation (Kahneman, 1973; van der Wel & van
Steenbergen, 2018) to investigate potential compensatory
mechanisms. In addition, behavioral impairments in control
tasks might reflect shifts in motivation instead of reflecting a
cognitive incapability (Kurzban, Duckworth, Kable, &Myers,
2013; Shenhav et al., 2017). As we alluded to earlier, cogni-
tive control shares many processes and brain circuits that also
are important for value-based decision making, and future
studies are warranted to understand the role of opioids in these
processes (Berkman, Hutcherson, Livingston, Kahn, &
Inzlicht, 2017).

Although opioid agonist drugs do not typically produce
strong subjective effects at low doses (Hanks, O’Neill,
Simpson, Wesnes, 1995), changes in self-reported mood and
arousal are typically reported in many of the studies reviewed,
most consistently at higher doses. The evidence for mood
effects from opioid blockade on the other hand, is much less
compelling (Berna et al., 2018; Eippert et al., 2008; Grevert &
Goldstein, 1977). Interestingly, mood induction tasks appear
to modulate endogenous opioid neurotransmission (Koepp
et al., 2009; Prossin et al., 2015; Zubieta et al., 2003). One
important avenue for future research is to understand the role
of affective and motivational states in altered cognitive func-
tion. For example, studies might investigate whether variation
in receptor binding potential or drug-induced changes in sub-
jective state correlate with behavioral outcomes (Light et al.,
2017; Weber et al., 2016). Researchers investigating the effect
of hedonic states on cognitive control and decision making
(Dreisbach & Goschke, 2004; Isen & Means, 1983; van
Steenbergen, Band, & Hommel, 2010; Van Steenbergen,
Band, Hommel, Rombouts, & Nieuwenhuis, 2015) and the
influence of motivation on these processes (Botvinick &
Braver, 2015; Braver et al., 2014; Pessoa, 2009) could use
antagonist drugs to determine the role of endogenous mu-
opioid neurotransmission in these effects. On a related note,
more broadly defined control processes, such as mental flex-
ibility and creativity, often have been related to positive affec-
tive states (Ashby, Isen, & Turken, 1999). It would be inter-
esting to assess the role of the opioid system in these processes
as well (Streufert & Gengo, 1993; Zacny, 1995).

Opioid administration at higher doses can produce other
subjective effects that may influence task performance, such
as nausea, difficulty concentrating, or sedation (Zacny & de
Wit, 2009). Aversive side-effects could counteract a positive
hedonic shift induced by opioid agonists or inflate the nega-
tive shift induced by opioid antagonism. Drowsiness and feel-
ing spaced out from large opioid drug doses could also direct-
ly impact performance on cognitive and value-based tasks.
Such confounds can be avoided by employing smaller drug
doses (counteracting any loss in statistical power, e.g., by
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increasing sample sizes) or by employing active placebo treat-
ments to ensure that drug conditions are matched on relevant
side effects. In addition, future research could draw inspiration
from anecdotal evidence that opioids can induce pain
asymbolia, i.e., intact detection of pain but without the
affective-motivational component (Berthier, Starkstein, &
Leiguarda, 1988). Studies might therefore implement mea-
sures of motivation/detachment to measure the effects of opi-
oid drugs on engagement with cognitive and decision-making
tasks.

Another unresolved question relates to context and coun-
terfactual outcomes. Do opioid drugs modulate high-value
reward processes equally in the presence of punishments, such
as pain or possible economic loss? As recently observed by
Buchel et al. (2018), opioid blockade reduced pleasantness
ratings of erotic stimuli significantly more than ratings of
monetary wins. It is unclear whether the inclusion of highly
salient erotic stimuli reduced the relative value of money dur-
ing the experiment. As for tasks including punishments as
well as rewards, it is possible that mu-opioid stimulation
would cause a shift primarily of aversive stimuli but not re-
wards, because aversive stimuli are typically more salient
(Kahneman & Tversky, 1979). Naloxone increased aversive-
ness of economic loss but not economic gain in Petrovic et al.
(2008). Kut et al. (2011) found effects of naloxone on pain but
not on pleasantness ratings of erotic stimuli. Also, two studies
have reported decreased pleasantness of opioid drug effects
during physical pain (Conley, Toledano, Apfelbaum, &
Zacny, 1997; Zacny, McKay, et al., 1996b; but see Comer,
Sullivan, Vosburg, Kowalczyk, & Houser, 2010). Studies in-
cluding both positive and negative facial expressions provide
mixed evidence, however, with opioid drug effects preferen-
tially observed for negative or positive affective stimuli in
different studies. (Bershad et al., 2016; Loseth et al., 2018;
Syal et al., 2015; Wardle et al., 2016). Moreover, Berna
et al. (2018) reported the largest naloxone reduction in pleas-
antness of the best possible (yet still painful) outcome, indi-
cating that relative relief is opioid-dependent. Well-powered
studies, including both rewarding and aversive outcomes, are
needed to resolve these inconsistencies. In addition, opioid
effects on value-based decision making should also be ad-
dressed during ongoing pain (Gandhi, Becker, &
Schweinhardt, 2013) or other opioid-sensitive aversive states.

Although opioid drugs can exert direct effects on mu-
opioid receptors expressed in the important hubs of the neural
decision-making and cognitive-control networks (Figure 1),
they can also act indirectly via other neurotransmitters. For
example, the canonical disinhibition model of Johnson and
North (1992) proposed that opioid drugs induce reward via
increased dopamine signaling due to opioid inhibition of
GABA interneurons in the ventral tegmental area.More recent
work has shown that we are only at an early stage of under-
standing the exact role of dopamine signaling for opioid drug

effects (Badiani, Belin, Epstein, Calu, & Shaham, 2011; Corre
et al., 2018; Nutt, Lingford-Hughes, Erritzoe, & Stokes,
2015). For instance, mu-opioid receptor activation can have
a net excitatory or net inhibitory effect on VTA neurons de-
pending on a variety of pre- and postsynaptic mechanisms
(Fields &Margolis, 2015). Furthermore, dopamine modulates
cognition via different receptor types and pathways
(Bromberg-Martin, Matsumoto, & Hikosaka, 2010; Cools,
2015), making direct comparisons difficult. The available ev-
idence renders it unlikely that effects of opioid drugs can
simply be explained in terms of dopaminergic modulation
alone. Rodent findings that mu-opioids and dopamine play
functionally different roles in the hedonic and motivational
properties of reward (Berridge, 2007) need further examina-
tion in humans. For instance, some studies are beginning to
manipulate opioids and dopamine pharmacologically using
the same tasks (Porchet et al., 2013; Weber et al., 2016) or
even combining an agonist for one system with an antagonist
for the other (Jayaram-Lindström et al., 2017; Jayaram-
Lindström, Wennberg, Hurd, & Franck, 2004; Roche et al.,
2017).

The mu-opioid system also interacts with other neurotrans-
mitters systems. For example, interactions between opioids
and the locus-coeruleus-norepinephrine system are well-
documented (Arnsten et al., 1981; Chaijale et al., 2013), and
futures studies might investigate whether opioid drugs modu-
late cognitive processing via norepinephrine. There is also
evidence that the endocannabinoid system interacts with opi-
oid mechanisms that support reward (Rowland, Mukherjee, &
Robertson, 2001; Solinas & Goldberg, 2005).

In addition to the literature reviewed, there is increasing
evidence of opioid involvement in psychopathology. For ex-
ample, chronic opioid antagonist administration may increase
cognitive control and decrease the value of reinforcers in dif-
ferent patient groups (Lobmaier, Kunøe, Gossop, & Waal,
2011), and there is some evidence for dysregulation of mu-
opioid receptor function across addictions (Ghitza et al., 2010;
Mick et al., 2016). While chronic opioid misuse has been
associated with maladaptive decisions (Giordano et al.,
2002; Landes, Christensen, & Bickel, 2012), prolonged opi-
oid blockade can reduce craving and drug taking in individ-
uals with substance use disorder (Johnson, 2006; Mouaffak
et al., 2017; Tanum et al., 2017). Interestingly, in addition to
reducing craving and relapse in addiction, opioid blockade
may reduce impulsive behaviors in kleptomania, pathological
gambling, and Bsex addiction^ (Bostwick & Bucci, 2008;
Grant, Kim, & Odlaug, 2009; Johnson, 2006; Lahti, Halme,
Pankakoski, Sinclair, & Alho, 2010; Minozzi et al., 2011;
Porchet et al., 2013; Rukstalis et al., 2005; Stotts, Dodrill, &
Kosten, 2009). In a different line of research, recent work has
suggested that opioid agonists might reduce depressive symp-
toms (Ehrich et al., 2015; Fava et al., 2016; Stanciu, Glass, &
Penders, 2017; Yovell et al., 2016) and influence anhedonia

Cogn Affect Behav Neurosci (2019) 19:435–458 451



(Barch, Pagliaccio, & Luking, 2015; Treadway, Bossaller,
Shelton, & Zald, 2012), providing possible new avenues to
treat patients with mood disorders.

Conclusions

The present review supports a role for the opioid system in
modulating some key aspects of cognitive control and deci-
sion-making. We have shown that the effects of reward-based
decision-making by opioid drugs might be driven by a shift in
valuation processes. At higher doses, opioid agonists can im-
pair performance on neuropsychological executive function
tasks involving coding and logical reasoning. At lower doses
opioids can improve cognitive function, and the working hy-
pothesis proposed suggests that these effects are driven by
opioid-induced reduction of aversive arousal. We hope that
this review provides an initial roadmap for future research to
gain a better understanding of how opioids modulate cogni-
tion, affect, and their interactions.

Acknowledgements The authors are grateful for helpful discussions
with Gernot Ernst and Daniel Castro. They thank Lauri Nummenmaa
for providing the binding potential PET image from his lab (shown in
Figure 1). They are grateful to Guro Løseth for valuable comments on the
manuscript.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

Allen, M. E., & Coen, D. (1987). Naloxone blooking of running-induced
mood changes. Annals of Sports Medicine, 3, 190–195.

Anderson, W. S., Sheth, R. N., Bencherif, B., Frost, J. J., & Campbell, J.
N. (2002). Naloxone increases pain induced by topical capsaicin in
healthy human volunteers. Pain, 99, 207–216.

Arnsten, A. F. T., Neville, H. J., Hillyard, S. A., Janowsky, D. S., Salk, T.,
Diego, S., … May, R. (1984). Naloxone selective increases infor-
mation measures processing in humans. Journal of Neuroscience, 4,
2912–9.

Arnsten, A. F. T., Segal, D. S., Loughlin, S. E., Roberts, D. C. S., Jolla, L.,
& Diego, S. (1981). Evidence for an interaction of opioid and nor-
adrenergic locus coeruleus systems in the regulation of environmen-
tal stimulus-directed behavior. Brain Research, 222, 351–363.

Arnsten, A. F. T., Segal, D. S., Neville, H. J., Hillyard, S. A., Janowsky,
D. S., Judd, L. L., & Bloom, F. E. (1983). Naloxone augments
electrophysiological signs of selective attention in man. Nature,
304, 725–727.

Ashby, F. G., Isen, A. M., & Turken, A. U. (1999). A neuropsychological
theory of positive affect and its influence on cognition a neuropsy-
chological theory of positive affect and its influence on cognition.
Psychological Review, 106, 529–550.

Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus
coeruleus-norepinephrine function: Adaptive gain and optimal per-
formance. Annual Review of Neuroscience, 28, 403–450.

Atlas, L. Y., Wielgosz, J., Whittington, R. A., & Wager, T. D. (2014).
Specifying the non-specific factors underlying opioid analgesia:
Expectancy, attention, and affect. Psychopharmacology, 231, 813–
823.

Badiani, A., Belin, D., Epstein, D., Calu, D., & Shaham,Y. (2011). Opiate
versus psychostimulant addiction: the differences do matter. Nature
Reviews Neuroscience, 12, 685–700.

Baldo, B. A. (2016). Prefrontal cortical opioids and dysregulated motiva-
tion: A network hypothesis. Trends in Neurosciences, 39, 366–377.

Bandura, A., Cioffi, D., Taylor, C. B., & Brouillard, M. E. (1988).
Perceived self-efficacy in coping with cognitive stressors and opioid
activation. Journal of Personality and Social Psychology, 55, 479–
488.

Barbano, M. F., & Cador, M. (2007). Opioids for hedonic experience and
dopamine to get ready for it. Psychopharmacology, 191, 497–506.

Barch, D. M., Pagliaccio, D., & Luking, K. (2015). Mechanisms under-
lying motivational deficits in psychopathology: similarities and dif-
ferences in depression and schizophrenia. In Behavioral neurosci-
ence of motivation (pp. 411–449). Springer.

Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system:
A coordinate-based meta-analysis of BOLD fMRI experiments ex-
amining neural correlates of subjective value.NeuroImage, 76, 412–
427.

Beard, C., Donahue, R. J., Dillon, D. G., Van’t Veer, A., Webber, C., Lee,
J.,… Carroll, F. I. (2015). Abnormal error processing in depressive
states: a translational examination in humans and rats. Translational
Psychiatry, 5, e564.

Berkman, E. T., Hutcherson, C. A., Livingston, J. L., Kahn, L. E., &
Inzlicht, M. (2017). Self-control as value-based choice. Current
Directions in Psychological Science, 26, 422–428 .

Berna, C., Leknes, S., Ahmad, A. H., Mhuircheartaigh, R. N., Goodwin,
G. M., & Tracey, I. (2018). Opioid-independent and opioid-
mediated modes of pain modulation. Journal of Neuroscience, 38,
9047–9058.

Berridge, K. C. (2007). The debate over dopamine’s role in reward: the
case for incentive salience. Psychopharmacology, 191, 391–431.

Berridge, K. C., & Kringelbach, M. L. (2015). Pleasure systems in the
brain. Neuron, 86, 646–664.

Berridge, K. C., Robinson, T. E., & Aldridge, J. W. (2009). Dissecting
components of reward: Bliking^, Bwanting^, and learning. Current
Opinion in Pharmacology, 9, 65–73.

Bershad, A. K., Jaffe, J. H., Childs, E., & deWit, H. (2015). Opioid partial
agonist buprenorphine dampens responses to psychosocial stress in
humans. Psychoneuroendocrinology, 52, 281–288.

Bershad, A. K.,Miller, M.A., Norman, G. J., & deWit, H. (2018). Effects
of opioid-and non-opioid analgesics on responses to psychosocial
stress in humans. Hormones and Behavior, 102, 41–47.

Bershad, A. K., Seiden, J. A., & de Wit, H. (2016). Effects of
buprenorphine on responses to social stimuli in healthy adults.
Psychoneuroendocrinology, 63, 43–49.

Berthier, M., Starkstein, S., & Leiguarda, R. (1988). Asymbolia for pain:
A sensory-limbic disconnection syndrome. Annals of Neurology, 24,
41–49.

Bickel, W. K., Yi, R., Landes, R. D., Hill, P. F., & Baxter, C. (2011).
Remember the future: Working memory training decreases delay
discounting among stimulant addicts. Biological Psychiatry, 69,
260–265.

Black, M. L., Hill, J. L., & Zacny, J. P. (1999). Behavioral and physio-
logical effects of remifentanil and alfentanil in healthy volunteers.
Anesthesiology, 90, 718–726.

Boettiger, C. A., Kelley, E. A., Mitchell, J. M., D’Esposito, M., & Fields,
H. L. (2009). Now or later? An fMRI study of the effects of

452 Cogn Affect Behav Neurosci (2019) 19:435–458



endogenous opioid blockade on a decision-making network.
Pharmacology Biochemistry and Behavior, 93, 291–299.

Bostwick, J. M., & Bucci, J. A. (2008). Internet sex addiction treated with
naltrexone. Mayo Clinic Proceedings, 83, 226–230.

Botvinick, M. M. (2007). Conflict monitoring and decision making:
Reconciling two perspectives on anterior cingulate function.
Cognitive Affective & Behavioral Neuroscience 7, 356–366.

Botvinick, M. M., & Braver, T. S. (2015). Motivation and cognitive
control: From behavior to neural mechanism. Annual Review of
Psychology, 66, 83–113.

Botvinick, M. M., Braver, T. S., Barch, D. M. M., Carter, C. S. S., &
Cohen, J. D. D. (2001). Conflict monitoring and cognitive control.
Psychological Review, 108, 624–652.

Bradley, C. M., & Nicholson, A N. (1986). Effects of a mu-opioid recep-
tor agonist (codeine phosphate) on visuo-motor coordination and
dynamic visual acuity in man. British Journal of Clinical
Pharmacology, 22, 507–12.

Bradley, C. M., & Nicholson, A. N. (1987). Studies on performance with
aspirin and paracetamol and with the centrally acting analgesics
meptazinol and pentazocine. European Journal of Clinical
Pharmacology, 32, 135–139.

Braver, T. S., Krug, M. K., Chiew, K. S., Kool, W., Westbrook, J. A.,
Clement, N. J., … Somerville, L. H. (2014). Mechanisms of
motivation-cognition interaction: challenges and opportunities.
Cognitive, Affective & Behavioral Neuroscience, 443–472.

Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010).
Dopamine in motivational control: Rewarding, aversive, and
alerting. Neuron, 68, 815–834.

Buchel, C., Miedl, S., & Sprenger, C. (2018). Hedonic processing in
humans is mediated by an opioidergic mechanism in a
mesocorticolimbic system. ELife, 7:e39648.

Calo, G., Guerrini, R., Rizzi, A., Salvadori, S., & Regoli, D. (2000).
Pharmacology of nociceptin and its receptor: a novel therapeutic
target. British Journal of Pharmacology, 129, 1261–1283.

Castro, D. C., & Berridge, K. C. (2017). Opioid and orexin hedonic
hotspots in rat orbitofrontal cortex and insula. Proceedings of the
National Academy of Sciences, 114, E9125–E9134.

Chaijale, N. N., Curtis, A. L., Wood, S. K., Zhang, X. Y., Bhatnagar, S.,
Reyes, B. A., … Valentino, R. J. (2013). Social stress engages opi-
oid regulation of locus coeruleus norepinephrine neurons and in-
duces a state of cellular and physical opiate dependence.
Neuropsychopharmacology, 38, 1833–1843.

Chelnokova, O., Laeng, B., Eikemo, M., Riegels, J., Løseth, G., Maurud,
H., … Leknes, S. (2014). Rewards of beauty: the opioid system
mediates social motivation in humans. Molecular Psychiatry, 19,
746–747.

Chelnokova, O., Laeng, B., Løseth, G., Eikemo, M., Willoch, F., &
Leknes, S. (2016). The μ-opioid system promotes visual attention
to faces and eyes. Social Cognitive and Affective Neuroscience, 11,
1902–1909.

Cherrier, M. M., Amory, J. K., Ersek, M., Risler, L., & Shen, D. D.
(2009). Comparative cognitive and subjective side effects of
immediate-release oxycodone in healthy middle-aged and older
adults. Journal of Pain, 10, 1038–1050.

Chiew, K. S., & Braver, T. S. (2011). Positive affect versus reward: emo-
tional and motivational influences on cognitive control. Frontiers in
Psychology, 2, 279.

Cleeland, C. S., Nakamura, Y., Howland, E.W.,Morgan, N. R., Edwards,
K. R., & Backonja, M. (1996). Effects of oral morphine on cold
pressor tolerance time and neuropsychological performance.
Neuropsychopharmacology, 15, 252–62.

Cohen, R. M., Murphy, D. L., Cohen, R., Weingartner, H., & Pickar, D.
(1983). High-dose naloxone affects task performance in normal sub-
ject, 36, 127–136.

Comer, S. D., Sullivan, M. A., Vosburg, S. K., Kowalczyk, W. J., &
Houser, J. (2010). Abuse liability of oxycodone as a function of pain
and drug use history.Drug and Alcohol Dependence, 109, 130–138.

Conley, K. M., Toledano, A. Y., Apfelbaum, J. L., & Zacny, J. P. (1997).
Modulating effects of a cold water stimulus on opioid effects in
volunteers. Psychopharmacology (Berl), 131, 313–320.

Cools, R. (2015). The cost of dopamine for dynamic cognitive control.
Current Opinion in Behavioral Sciences, 4, 1–8.

Corbett, A. D. (2009). 75 Years of opioid research: The exciting but vain
quest for the Holy Grail. British Journal of Pharmacology, 147,
S153–S162.

Corre, J., van Zessen, R., Loureiro,M., Patriarchi, T., Tian, L., Pascoli, V.,
& Lüscher, C. (2018). Dopamine neurons projecting to medial shell
of the nucleus accumbens drive heroin reinforcement. Elife, 7,
e39945.

Costa, P. T., & McCrae, R. R. (1992). Normal personality assessment in
clinical practice: The NEO Personality Inventory. Psychological
Assessment, 4, 5.

Daniel, M., Martin, A. D., & Carter, J. (1992). Opiate receptor blockade
by naltrexone and mood state after acute physical activity. British
Journal of Sports Medicine, 26, 111–115.

De Quincey, T. (2000). Confessions of an English Opium-eater. The
Works of Thomas De Quincey, Vol. 2: Confessions of an English
Opium-Eater, 1821–1856 (Vol. 89). Oxford University Press.

Dreisbach, G., & Fischer, R. (2012). Conflicts as aversive signals. Brain
and Cognition, 78, 94–98.

Dreisbach, G., & Fischer, R. (2015). Conflicts as aversive signals for
control adaptation. Current Directions in Psychological Science,
24, 255–260.

Dreisbach, G., & Goschke, T. (2004). How positive affect modulates
cognitive control: Reduced perseveration at the cost of increased
distractibility. Journal of Experimental Psychology-Learning
Memory and Cognition, 30, 343–353.

Drewnowski, A., Krahn, D. D., Demitrack, M. A., Nairn, K., & Gosnell,
B. A. (1992). Taste responses and preferences for sweet high-fat
foods: Evidence for opioid involvement. Physiology and Behavior,
51, 371–379.

Efremidze, L., Sarraf, G., Miotto, K., & Zak, P. J. (2017). The neural
inhibition of learning increases asset market bubbles: Experimental
evidence. Journal of Behavioral Finance, 18, 114–124.

Ehrich, E., Turncliff, R., Du, Y., Leigh-Pemberton, R., Fernandez, E.,
Jones, R., & Fava, M. (2015). Evaluation of opioid modulation in
major depressive disorder. Neuropsychopharmacology, 40, 1448–
1455.

Eikemo, M., Biele, G., Willoch, F., Thomsen, L., & Leknes, S. (2017).
Opioid modulation of value-based decision-making in healthy
humans. Neuropsychopharmacology, 42, 1833–1840.

Eikemo, M., Løseth, G. E., Johnstone, T., Gjerstad, J., Willoch, F., &
Leknes, S. (2016). Sweet taste pleasantness is modulated by mor-
phine and naltrexone. Psychopharmacology, 1–13.

Eippert, F., Bingel, U., Schoell, E., Yacubian, J., & Büchel, C. (2008).
Blockade of endogenous opioid neurotransmission enhances acqui-
sition of conditioned fear in humans. Journal of Neuroscience, 28,
5465–5472.

Ersek, M., Cherrier, M. M., Overman, S. S., & Irving, G. A. (2004). The
cognitive effects of opioids. Pain Management Nursing, 5, 75–93.

Escher, M., Daali, Y., Chabert, J., Hopfgartner, G., Dayer, P., Desmeules,
J., & J, E. M. Y. J. G. P. (2007). Pharmacokinetic and pharmacody-
namic properties of buprenorphine after a single intravenous admin-
istration in healthy volunteers: a randomized, double-blind, placebo-
controlled, crossover study. Clinical Therapeutics, 29, 1620–1631.

Evans, W. O., & Smith, R. P. (1964). Some effects of morphine
and amphetamine on intellectual functions and mood.
Psychopharmacologia, 6, 49–56.

Evans, W. O., & Witt, N. F. (1966). The interaction of high altitude and
psychotropic drug action. Psychopharmacologia, 10, 184–188.

Cogn Affect Behav Neurosci (2019) 19:435–458 453



Fava, M., Memisoglu, A., Thase, M. E., Bodkin, J. A., Trivedi, M.
H., De Somer, M., … Ehrich, E. (2016). Opioid modulation
with buprenorphine/samidorphan as adjunctive treatment for
inadequate response to antidepressants: A randomized double-
blind placebo-controlled trial. American Journal of Psychiatry,
173, 499–508.

Fichna, J., Janecka, A., Costentin, J., & Do Rego, J.-C. (2007). The
endomorphin system and its evolving neurophysiological role.
Pharmacological Reviews, 59, 88.

Fields, H. L., & Margolis, E. B. (2015). Understanding opioid reward.
Trends in Neurosciences, 38, 217–225.

File, S. E., & Silverstone, T. (1981). Naloxone changes self-ratings but
not performance in normal subjects. Psychopharmacology, 74, 353–
354.

Friswell, J., Phillips, C., Holding, J., Morgan, C. J. A., Brandner, B., &
Curran, H. V. (2008). Acute effects of opioids on memory functions
of healthy men and women. Psychopharmacology, 198, 243–250.

Gandhi, W., Becker, S., & Schweinhardt, P. (2013). Pain increases moti-
vational drive to obtain reward, but does not affect associated he-
donic responses: A behavioural study in healthy volunteers.
European Journal of Pain, 17, 1093–1103.

Gendolla, G. H. E., Wright, R. A., & Richter, M. (2011). Effort intensity:
Studies of cardiovascular response. In R. Ryan (Ed.), The Oxford
handbook on motivation. New York: Oxford University Press.

Ghitza, U. E., Preston, K. L., Epstein, D. H., Kuwabara, H., Endres, C. J.,
Bencherif, B.,… Gorelick, D. A. (2010). Brain mu-opioid receptor
binding predicts treatment outcome in cocaine-abusing outpatients.
Biological Psychiatry, 68, 697–703.

Ghoneim, M. M., Mewaldt, S. P., & Thatcher, J. W. (1975). The effect of
diazepam and fentanyl on mental, psychomotor and electroenceph-
a l o g r a p h i c f u n c t i o n s a n d t h e i r r a t e o f r e c o v e r y.
Psychopharmacologia, 44, 61–66.

Giordano, L., Bickel, W., Loewenstein, G., Jacobs, E., Marsch, L., &
Badger, G. (2002). Mild opioid deprivation increases the degree that
opioid-dependent outpatients discount delayed heroin and money.
Psychopharmacology, 163, 174–182.

Gorgolewski, K. J., Varoquaux, G., Rivera, G., Schwarz, Y., Ghosh, S. S.,
Maumet, C., … Poline, J.-B. (2015). NeuroVault.org: Aweb-based
repository for collecting and sharing unthresholded statistical maps
of the human brain. Frontiers in Neuroinformatics, 9, 8.

Gospic, K., Gunnarsson, T., Fransson, P., Ingvar, M., Lindefors, N., &
Petrovic, P. (2007). Emotional perception modulated by an opioid
and a cholecystokinin agonist. Psychopharmacology, 197, 295–307.

Grant, J. E., Kim, S. W., & Odlaug, B. L. (2009). A double-blind,
placebo-controlled study of the opiate antagonist, naltrexone, in
the treatment of kleptomania. Biological Psychiatry, 65, 600–606.

Grevert, P., & Goldstein, A. (1977). Effects of naloxone on experimen-
tally induced ischemic pain and on mood in human subjects.
Proceedings of the National Academy of Sciences, 74, 1291–1294.

Grossman, A., Bouloux, P., Price, P., Drury, P. L., Lam, K. S. L., Turner,
T.,… Sutton, J. (1984). The role of opioid peptides in the hormonal
responses to acute exercise in man. Clinical Science, 67, 483–491.

Haaker, J., Yi, J., Petrovic, P., & Olsson, A. (2017). Endogenous opioids
regulate social threat learning in humans. Nature Communications,
8, 15495.

Hanks, G., O’Neill, W., Simpson, P., Wesnes, K., & A, I. (1995). The
cognitive and psychomotor effects of opioid analgesics. II. A ran-
domized controlled trial of single doses of morphine, lorazepam and
placebo in healthy subjects. European Journal of Clinical
Pharmacology, 48, 455–460.

Hayen, A., Wanigasekera, V., Faull, O. K., Campbell, S. F., Garry, P. S.,
Raby, S. J. M., … Herigstad, M. (2017). Opioid suppression of
conditioned anticipatory brain responses to breathlessness.
Neuroimage, 150, 383–394.

Henriksen, G., & Willoch, F. (2008). Imaging of opioid receptors in the
central nervous system. Brain, 131, 1171–1196.

Hill, J. L., & Zacny, J. P. (2000). Comparing the subjective, psychomotor,
physiological effects of intravenous hydromorphone and morphine
healthy volunteers. Psychopharmacology, 152, 31–39.

Hiura, M., Sakata, M., Ishii, K., Toyohara, J., Oda, K., Nariai, T., &
Ishiwata, K. (2017). Central μ-opioidergic system activation evoked
by heavy and severe-intensity cycling exercise in humans: a pilot
study using positron emission tomography with 11C-Carfentanil.
International Journal of Sports Medicine, 38, 19–26.

Hockey, G. R. J. R. J. (1997). Compensatory control in the regulation of
human performance under stress and high workload: A cognitive-
energetical framework. Biological Psychology, 45, 73–93.

Holroyd, C. B., & Yeung, N. (2012). Motivation of extended behaviors
by anterior cingulate cortex. Trends in Cognitive Sciences, 16, 122–
128.

Hsu, D. T., Sanford, B. J., Meyers, K. K., Love, T. M., Hazlett, K. E.,
Wang, H.,… Zubieta, J. K. (2013). Response of theμ-opioid system
to social rejection and acceptance.Molecular Psychiatry, 18, 1211–
1217.

Inzlicht, M., Bartholow, B. D., & Hirsh, J. B. (2015). Emotional founda-
tions of cognitive control. Trends in Cognitive Sciences, 19, 1–7.

Inzlicht, M., Shenhav, A., & Olivola, C. Y. (2018). The effort paradox:
Effort is both costly and valued. Trends in Cognitive Sciences, 22,
337–349.

Isen, A. M., & Means, B. (1983). The influence of positive affect on
decision-making strategy. Social Cognition, 2, 18–31.

Jääskeläinen, I. P., Hirvonen, J., Kujala, T., Alho, K., Eriksson, C. J. P.,
Lehtokoski, A.,… Sillanaukee, P. (1998). Effects of naltrexone and
ethanol on auditory event-related brain potentials. Alcohol, 15, 105–
111.

Jacob, J. J. C., Michaud, G.M., & Tremblay, E. C. (1979). Mixed agonist-
antagonist opiates and physical dependence. British Journal of
Clinical Pharmacology, 7, 291S–296S.

Jacobson, M. L., Wulf, H. A., Browne, C. A., & Lucki, I. (2018). Opioid
modulation of cognitive impairment in depression. In S. O’Mara
(Ed.), Progress in brain research (1st ed., Vol. 239, pp. 1–48).
Amsterdam: Elsevier B.V.

Jarvik, L. F., Simpson, J. H., Guthrie, D., & Liston, E. H. (1981).
Morphine, experimental pain, and psychological reactions.
Psychopharmacology, 75, 124–131.

Jayaram-Lindström, N., Guterstam, J., Häggkvist, J., Ericson, M.,
Malmlöf, T., Schilström, B. Franck, J. (2017). Naltrexonemodulates
dopamine release following chronic, but not acute amphetamine
administration: a translational study. Translational Psychiatry, 7,
e1104.

Jayaram-Lindström, N., Wennberg, P., Hurd, Y. L., & Franck, J. (2004).
Effects of naltrexone on the subjective response to amphetamine in
healthy volunteers. Journal of Clinical Psychopharmacology, 24,
665–669.

Johnson, B. A. (2006). A synopsis of the pharmacological rationale,
properties and therapeutic effects of depot preparations of naltrexone
for t reat ing alcohol dependence. Expert Opinion on
Pharmacotherapy, 7, 1065–1073.

Johnson, S. W., & North, R. A. (1992). Opioids excite dopamine neurons
by hyperpolarization of local interneurons. Journal of Neuroscience,
12, 483–488.

Kahneman, D. (1973). Attention and effort. Englewood Cliffs, New
Jersey: Prentice-Hall.

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of
decisions under risk. Econometrica, 2, 263–291.

Kieres, A. K., Hausknecht, K. A., Farrar, A. M., Acheson, A., deWit, H.,
& Richards, J. B. (2004). Effects of morphine and naltrexone on
impulsive decision making in rats. Psychopharmacology, 173,
167–174.

Knotkova, H., Fine, P. G., & Portenoy, R. K. (2009). The puzzle of
processing speed, memory, and executive function impairments in

454 Cogn Affect Behav Neurosci (2019) 19:435–458



schizophrenia: Fitting the pieces together. Journal of Pain and
Symptom Management, 38, 426–439.

Knowles, E. E. M.,Weiser, M., David, A. S., Glahn, D. C., Davidson, M.,
& Reichenberg, A. (2015). The Puzzle of Processing Speed,
Memory, and Executive Function Impairments in Schizophrenia:
Fitting the Pieces Together. Biological Psychiatry, 78, 786–793.

Koepp, M. J., Hammers, A., Lawrence, A. D., Asselin, M. C., Grasby, P.
M., & Bench, C. J. (2009). Evidence for endogenous opioid release
in the amygdala during positive emotion.NeuroImage, 44, 252–256.

Koob, G. F., & Le Moal, M. (2001). Drug addiction, dysregulation of
reward, and allostasis. Neuropsychopharmacology, 24, 97.

Kornetsky, C., Humphries, O., & Evarts, E. V. (1957). Comparison of
Psychological Effects of Certain Centrally Acting Drugs in Man.
Archives of Neurology And Psychiatry, 77, 318–324.

Kringelbach, M. L., & Berridge, K. C. (2009). Towards a functional
neuroanatomy of pleasure and happiness. Trends in Cognitive
Sciences, 13, 479–487.

Kuipers, M., Richter, M., Scheepers, D., Immink, M. A., Sjak-Shie, E., &
van Steenbergen, H. (2017). How effortful is cognitive control?
Insights from a novel method measuring single-trial evoked beta-
adrenergic cardiac reactivity. International Journal of
Psychophysiology, 119, 87–92.

Kurzban, R., Duckworth, A., Kable, J. W., & Myers, J. (2013). An op-
portunity cost model of subjective effort and task performance.
Behavioral and Brain Sciences, 36, 661–726.

Kut, E., Candia, V., von Overbeck, J., Pok, J., Fink, D., & Folkers, G.
(2011). Pleasure-Related Analgesia Activates Opioid-Insensitive
Circuits. Journal of Neuroscience, 31, 4148–4153.

Lahti, T., Halme, J. T., Pankakoski, M., Sinclair, D., & Alho, H. (2010).
Treatment of pathological gambling with naltrexone pharmacother-
apy and brief intervention: A pilot study. Psychopharmacology
Bulletin, 43, 37–44.

Lakens, D., & Evers, E. R. K. (2014). Sailing from the seas of chaos into
the corridor of stability: Practical recommendations to increase the
informational value of studies. Perspectives on Psychological
Science, 9, 278–292.

Landes, R. D., Christensen, D. R., & Bickel, W. K. (2012). Delay
discounting decreases in those completing treatment for opioid de-
pendence. Experimental and Clinical Psychopharmacology, 20,
302–309.

Laredo, S. A., Steinman, M. Q., Robles, C. F., Ferrer, E., Ragen, B. J., &
Trainor, B. C. (2015). Effects of defeat stress on behavioral flexibil-
ity in males and females: Modulation by the mu-opioid receptor.
European Journal of Neuroscience, 41, 434–441.

Laurent, V., Morse, A. K., & Balleine, B. W. (2015). The role of opioid
processes in reward and decision-making. British Journal of
Pharmacology, 172, 449–459.

Lee, H. K., & Wang, S. C. (1975). Mechanism of morphine-induced
miosis in the dog. The Journal of Pharmacology and
Experimental Therapeutics, 192, 415–31.

Leknes, S., & Tracey, I. (2008). A common neurobiology for pain and
pleasure. Nature Reviews Neuroscience, 9, 314–320.

Light, S. N., Bieliauskas, L. A., & Zubieta, J.-K. (2017). BTop-down^
mu-opioid system function in humans: Mu-opioid receptors in ven-
trolateral prefrontal cortex mediate the relationship between hedonic
tone and executive function in major depressive disorder. The
Journal of Neuropsychiatry and Clinical Neurosciences, 29, 357–
364.

Lobmaier, P. P., Kunøe, N., Gossop, M., & Waal, H. (2011). Naltrexone
depot formulations for opioid and alcohol dependence: A systematic
review. CNS Neuroscience and Therapeutics, 17, 629–636.

Loseth, G. E., Eikemo, M., Isager, P., Holmgren, J., Laeng, B.,
Vindenes, V., … Hjørnevik, T. (2018). Morphine reduced
perceived anger from neutral and implicit emotional expres-
sions. Psychoneuroendocrinology, 91, 123–131.

Loseth, G. E., Ellingsen, D.-M., & Leknes, S. (2014). State-dependent
mu-opioid modulation of social motivation. Frontiers in Behavioral
Neuroscience, 8, 1–15.

Lovallo, W. R., Enoch, M. A., Acheson, A., Cohoon, A. J., Sorocco,
K. H., Hodgkinson, C. A., … Goldman, D. (2015). Cortisol
stress response in men and women modulated differentially
by the mu-opioid receptor gene polymorphism OPRM1
A118G. Neuropsychopharmacology, 40, 2546–2554.

Love, T. M., Stohler, C. S., & Zubieta, J.-K. (2009). Positron emission
tomography measures of endogenous opioid neurotransmission and
impulsiveness traits in humans. Archives of General Psychiatry, 66,
1124–1134.

Lutz, P. E., & Kieffer, B. L. (2013). The multiple facets of opioid receptor
function: implications for addiction. Current Opinion in
Neurobiology, 23, 473–479.

MacDonald, F., Gough, K., Nicoll, R., & Dow, R. (1989). Psychomotor
effects of ketorolac in comparison with buprenorphine and
diclofenac. British Journal of Clinical Pharmacology, 27, 453–459.

Mahler, S. V, & Berridge, K. C. (2012). What and when to Bwant^?
Amygdala-based focusing of incentive salience upon sugar and
sex. Psychopharmacology, 221, 407–426.

Marsch, L. A., Bickel,W. K., Badger, G. J., Rathmell, J. P., Swedberg,M.
D. B., Jonzon, B., & Norsten-Hoog, C. (2001). Effects of infusion
rate of intravenously administered morphine on physiological, psy-
chomotor, and self-reported measures in humans. Journal of
Pharmacology and Experimental Therapeutics, 299, 1056–1065.

Martín del Campo, A. F., McMurray, R. G., Besser, G. M., & Grossman,
A. (1992). Effect of 12-hour infusion of naloxone on mood and
cognition in normal male volunteers. Biological Psychiatry, 32,
344–353.

Mayberg, H. S., & Frost, J. J. (1990). Opiate receptors. In Quantitative
imaging: neuroreceptors, neurotransmitters, and enzymes (pp. 81–
95). New York: Raven Press.

Mick, I., Myers, J., Ramos, A. C., Stokes, P. R. A., Erritzoe, D., Colasanti,
A., … Waldman, A. D. (2016). Blunted endogenous opioid release
following an oral amphetamine challenge in pathological gamblers.
Neuropsychopharmacology, 41, 1742.

Minozzi, S., Amato, L., Vecchi, S., Davoli, M., Kirchmayer, U., &
Verster, A. (2011). Oral naltrexone maintenance treatment for opioid
dependence. Cochrane Database Syst Rev, CD001333.

Mitchell, J. M., Tavares, V. C., Fields, H. L., D’Esposito, M., & Boettiger,
C. A. (2007). Endogenous opioid blockade and impulsive
r e s p o n d i n g i n a l c o h o l i c s a n d h e a l t h y c o n t r o l s .
Neuropsychopharmacology, 32, 439–449.

Mouaffak, F., Leite, C., Hamzaoui, S., Benyamina, A., Laqueille, X., &
Kebir, O. (2017). Naltrexone in the treatment of broadly defined
behavioral addictions: A review and meta-analysis of randomized
controlled trials. European Addiction Research, 23, 204–210.

Mucha, R. F., & Iversen, S. D. (1984). Reinforcing properties of mor-
phine and naloxone revealed by conditioned place preferences: a
procedural examination. Psychopharmacology, 82, 241–247.

Murray, E., Brouwer, S., McCutcheon, R., Harmer, C. J., Cowen, P. J., &
McCabe, C. (2014). Opposing neural effects of naltrexone on food
reward and aversion: implications for the treatment of obesity.
Psychopharmacology, 231, 4323–4335.

Murray, R. B., Adler, M. W., & Korczyn, A. D. (1983). The pupillary
effects of oploids. Life Sciences.

Nestor, L. J., Murphy, A., McGonigle, J., Orban, C., Reed, L., Taylor, E.,
… Robbins, T. W. (2017). Acute naltrexone does not remediate
fronto-striatal disturbances in alcoholic and alcoholic
polysubstance-dependent populations during a monetary incentive
delay task. Addiction Biology, 22, 1576–1589.

Notebaert, W., & Braem, S. (2016). Parsing the effect of reward on cog-
nitive control. In T. S. Braver (Ed.), Motivation and cognitive con-
trol (pp. 105–122). New York, NY: Psychology Press.

Cogn Affect Behav Neurosci (2019) 19:435–458 455



Nummenmaa, L., Saanijoki, T., Tuominen, L., Hirvonen, J., Tuulari, J. J.,
Nuutila, P., & Kalliokoski, K. (2018). Mu-opioid receptor system
mediates reward processing in humans. Nature Communications, 9,
1500.

Nummenmaa, L., & Tuominen, L. (2018). Opioid system and human
emotions. British Journal of Pharmacology, 175, 2737–2749.

Nutt, D. J., Lingford-Hughes, A., Erritzoe, D., & Stokes, P. R. (2015).
The dopamine theory of addiction: 40 years of highs and lows. Nat
Rev Neurosci, 16, 305–312.

Oliveto, A. H., Bickel, W. K., Kamien, J. B., Hughes, J. R., & Higgins, S.
T. (1994). Effects of diazepam and hydromorphone in triazolam-
trained humans under a novel-response drug discrimination proce-
dure. Psychopharmacology, 114, 417–423.

Parker, L. A., Maier, S., Rennie, M., & Crebolder, J. (1992). Morphine-
and naltrexone-induced modification of palatability: Analysis by the
taste reactivity test. Behavioral Neuroscience, 106, 999–1010.

Pasternak, G. W. (2001). Insights into mu opioid pharmacology: The role
of mu opioid receptor subtypes. Life Sciences, 68, 2213–2219.

Pattij, T., Schetters, D., Janssen, M. C. W., Wiskerke, J., & Schoffelmeer,
A. N. M. (2009). Acute effects of morphine on distinct forms of
impulsive behavior in rats. Psychopharmacology, 205, 489–502.

Peciña, M., Karp, J. F., Mathew, S., Todtenkopf, M. S., Ehrich, E. W., &
Zubieta, J. K. (2019). Endogenous opioid system dysregulation in
depression: implications for new therapeutic approaches.Molecular
Psychiatry, 24, 576–587.

Peciña, S., & Berridge, K. C. (2013). Dopamine or opioid stimulation of
nucleus accumbens similarly amplify cue-triggered Bwanting^ for
reward: Entire core and medial shell mapped as substrates for PIT
enhancement. European Journal of Neuroscience, 37, 1529–1540.

Peciña, S., & Smith, K. S. (2010). Hedonic and motivational roles of
opioids in food reward: Implications for overeating disorders.
Pharmacology Biochemistry and Behavior, 97, 34–46.

Pessoa, L. (2009). How do emotion and motivation direct executive con-
trol? Trends in Cognitive Sciences, 13, 160–166.

Petrovic, P., Pleger, B., Seymour, B., Kloppel, S., De Martino, B.,
Critchley, H., & Dolan, R. J. (2008). Blocking central opiate func-
tion modulates hedonic impact and anterior cingulate response to
rewards and losses. Journal of Neuroscience, 28, 10509–10516.

Pizzagalli, D. A. (2011). Frontocingulate dysfunction in depression:
T o w a r d b i o m a r k e r s o f t r e a t m e n t r e s p o n s e .
Neuropsychopharmacology, 36, 183–206.

Poldrack, R. A., Baker, C. I., Durnez, J., Gorgolewski, K. J., Matthews, P.
M., Munafò, M. R., … Yarkoni, T. (2017). Scanning the horizon:
Towards transparent and reproducible neuroimaging research.
Nature Reviews Neuroscience, 18, 115–126.

Porchet, R., Boekhoudt, L., Studer, B., Gandamaneni, K., Rani, N.,
Binnamangala, S.,… Clark, L. (2013). Opioidergic and dopaminer-
gic manipulation of gambling tendencies: a preliminary study in
male recreational gamblers. Frontiers in Behavioral Neuroscience,
7:138.

Price, D. D., Harkins, S.W., Rafii, A., & Price, C. (1986). A simultaneous
comparison of Fentanyl s analgesic effects on experimental and clin-
ical pain. Pain, 24, 197–203.

Price, R. C., Christou, N. V, Backman, S. B., Stone, L., & Schweinhardt,
P. (2016). Opioid-receptor antagonism increases pain and decreases
pleasure in obese and non-obese individuals. Psychopharmacology,
233, 3869–3879.

Primac, D. W., Mirsky, A. F., & Rosvold, H. E. (1957). Effects of cen-
trally acting drugs on two tests of brain damage. Archives of
Neurology And Psychiatry, 77, 328–332.

Prossin, A. R., Koch, A. E., Campbell, P. L., Barichello, T., Zalcman, S.
S., & Zubieta, J. K. (2015). Acute experimental changes in mood
state regulate immune function in relation to central opioid neuro-
transmission: a model of human CNS-peripheral inflammatory in-
teraction. Molecular Psychiatry, 21, 243.

Quednow, B. B., Csomor, P. A., Chmiel, J., Beck, T., & Vollenweider, F.
X. (2008). Sensorimotor gating and attentional set-shifting are im-
proved by the μ-opioid receptor agonist morphine in healthy human
volunteers. International Journal of Neuropsychopharmacology, 11,
655–669.

Rabiner, E. A., Beaver, J., Makwana, A., Searle, G., Long, C., Nathan, P.
J., … Bullmore, E. T. (2011). Pharmacological differentiation of
opioid receptor antagonists by molecular and functional imaging
of target occupancy and food reward-related brain activation in
humans. Molecular Psychiatry, 16, 826–835.

Redpath, J., & Pleuvry, B. (1982). Double-blind comparison of the respi-
ratory and sedative effects of codeine phosphate and (+/-)-glaucine
phosphate in human volunteers. British Journal of Clinical
Pharmacology, 14, 555–558.

Ribas-Fernandes, J. J. F., Solway, A., Diuk, C., McGuire, J. T., Barto, A.
G., Niv, Y., & Botvinick, M. M. (2011). A neural signature of hier-
archical reinforcement learning. Neuron, 71, 370–379.

R o b b i n s , T. W. , & A r n s t e n , A . F. T. ( 2 0 0 9 ) . T h e
neuropsychopharmacology of fronto-executive function:
Monoaminergic modulation. Annual Review of Neuroscience, 32,
267–287.

Roche, D. J. O., Worley, M. J., Courtney, K. E., Bujarski, S., London, E.
D., Shoptaw, S., & Ray, L. A. (2017). Naltrexone moderates the
relationship between cue-induced craving and subjective response
to methamphetamine in individuals with methamphetamine use dis-
order. Psychopharmacology, 234, 1997–2007.

Rowland, N. E., Mukherjee, M., & Robertson, K. (2001). Effects of the
cannabinoid receptor antagonist SR 141716, alone and in combina-
tion with dexfenfluramine or naloxone, on food intake in rats.
Psychopharmacology, 159, 111–116.

Rukstalis, M., Jepson, C., Strasser, A., Lynch, K. G., Perkins, K.,
Patterson, F., & Lerman, C. (2005). Naltrexone reduces the relative
reinforcing value of nicotine in a cigarette smoking choice para-
digm. Psychopharmacology, 180, 41–48.

Russell, J. A. (2003). Core affect and the psychological construction of
emotion. Psychological Review, 110, 145–72.

Saanijoki, T., Tuominen, L., Tuulari, J. J., Nummenmaa, L., Arponen, E.,
Kalliokoski, K., & Hirvonen, J. (2018). Opioid release after high-
intensity interval training in healthy human subjects.
Neuropsychopharmacology, 43, 246–254.

Saarialho-Kere, U. (1988). Psychomotor, respiratory and neuroendocri-
nological effects of nalbuphine and haloperidol, alone and in com-
bination, in healthy subjects. British Journal of Clinical
Pharmacology, 26, 79–87.

Saarialho-Kere, U., Mattila, M. J., Paloheimo, M., & Seppälä, T. (1987).
Psychomotor, respiratory and neuroendocrinological effects of
buprenorphine and amitriptyline in healthy volunteers. European
Journal of Clinical Pharmacology, 33, 139–146.

Saarialho-Kere, U., Mattila, M. J., & Seppälä, T. (1986). Pentazocine and
codeine: effects on human performance and mood and interactions
with diazepam. Medical Biology, 64, 293–299.

Saarialho-Kere, U., Mattila, M. J., & Seppälä, T. (1988). Parenteral pen-
tazocine: Effects on psychomotor skills and respiration, and interac-
tions with amitriptyline. European Journal of Clinical
Pharmacology, 35, 483–489.

Saarialho-Kere, U., Mattila, M. J., & Seppälä, T. (1989). Psychomotor,
respiratory and neuroendocrinological effects of a μ-opioid receptor
agonist (oxycodone) in healthy volunteers. Pharmacology &
Toxicology, 65, 252–257.

Saunders, B., & Inzlicht, M. (2015). Vigour and fatigue: How variation in
affect underlies effective self-control. In T. S. Braver (Ed.),
Motivation and cognitive control (pp. 1–46). New York: Taylor &
Francis/Routledge.

Schoell, E. D., Bingel, U., Eippert, F., Yacubian, J., Christiansen, K.,
Andresen, H., … Buechel, C. (2010). The Effect of Opioid

456 Cogn Affect Behav Neurosci (2019) 19:435–458



Receptor Blockade on the Neural Processing of Thermal Stimuli.
PLoS ONE, 5, e12344.

Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected
value of control: an integrative theory of anterior cingulate cortex
function. Neuron, 79, 217–240.

Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths, T. L. L., Cohen,
J. D. D., & Botvinick, M. M. (2017). Toward a rational and mech-
anistic account of mental effort. Annual Review of Neuroscience, 40,
99–124.

Shields, G. S., Sazma, M. A., & Yonelinas, A. P. (2016). The effects of
acute stress on core executive functions: A meta-analysis and com-
parison with cortisol. Neuroscience and Biobehavioral Reviews, 68,
651–668.

Smith, G. M., Semke, C. W., & Beecher, H. K. (1962). Objective evi-
dence of mental effects of heroin, morphine and placebo in normal
subjects. J Pharmacol Exp Ther, 136, 53–58.

Smith, K. S., & Berridge, K. C. (2007). Opioid limbic circuit for reward:
interaction between hedonic hotspots of nucleus accumbens and
ventral pallidum. Journal of Neuroscience, 27, 1594–1605.

Solinas,M.,&Goldberg, S. R. (2005).Motivational effects of cannabinoids
and opioids on food reinforcement depend on simultaneous activation
of cannabinoid and opioid systems. Neuropsychopharmacology, 30,
2035–2045.

Spruit, I. M.,Wilderjans, T. F. T.M., & van Steenbergen, H. (2018). Heart
work after errors: Behavioral adjustment following error commis-
sion involves cardiac effort. Cognitive Affective & Behavioral
Neuroscience, 18, 375–388.

Stanciu, C. N., Glass, O. M., & Penders, T. M. (2017). Use of
buprenorphine in treatment of refractory depression—a review of
current literature. Asian Journal of Psychiatry, 26, 94–98.

Stotts, A. L., Dodrill, C. L., & Kosten, T. R. (2009). Opioid dependence
treatment: options in pharmacotherapy. Expert Opin Pharmacother,
10, 1727–1740.

Strand, M. C., Arnestad, M., Fjeld, B., & Mørland, J. (2017). Acute
impairing effects of morphine related to driving: A systematic re-
view of experimental studies to define blood morphine concentra-
tions related to impairment in opioid-naïve subjects. Traffic Injury
Prevention, 18, 788–794.

Streufert, S., & Gengo, F. M. (1993). Drugs and behavior: An introduc-
tion. In Effects of drugs on human functioning (Vol. 9, pp. 1–12).
Karger Publishers.

Syal, S., Ipser, J., Terburg, D., Solms, M., Panksepp, J., Malcolm-Smith,
S., … van Honk, J. (2015). Improved memory for reward cues
following acute buprenorphine administration in humans.
Psychoneuroendocrinology, 53, 10–15.

Székely, J. I., Török, K., Karczag, I., Tolna, J., & Till, M. (1986). Effects
of D-Met2, Pro5-enkephalinamide on pain tolerance and some cog-
nitive functions in man. Psychopharmacology, 89, 409–413.

Tanum, L., Solli, K. K., Benth, J. Š., Opheim, A., Sharma-Haase, K.,
Krajci, P., & Kunøe, N. (2017). Effectiveness of injectable
extended-release naltrexone vs daily buprenorphine-naloxone for
opioid dependence: a randomized clinical noninferiority trial.
JAMA Psychiatry, 74, 1197–1205.

Thayer, R. E. (1989). The biopsychology of mood and activation. New
York: Oxford University Press.

Treadway, M. T., Bossaller, N. A., Shelton, R. C., & Zald, D. H. (2012).
Effort-based decision-making in major depressive disorder: a trans-
lational model of motivational anhedonia. Journal of Abnormal
Psychology, 121, 553.

Valentino, R. J., & Van Bockstaele, E. (2015). Endogenous opioids: The
downside of opposing stress. Neurobiology of Stress, 1, 23–32.

van der Wel, P., & van Steenbergen, H. (2018). Pupil dilation as an index
of effort in cognitive control tasks: A review. Psychonomic Bulletin
and Review, 25, 2005–2015.

van Steenbergen, H. (2015). Affective modulation of cognitive control: A
biobehavioral perspective. In G. H. E. Gendolla, M. Tops, & S. L.

Koole (Eds.), Handbook of Biobehavioral Approaches to Self- …
(Vol. 31, pp. 1–39). New York: Springer.

van Steenbergen, H., Band, G. P. H., & Hommel, B. (2009). Reward
counteracts conflict adaptation: evidence for a role of affect in ex-
ecutive control. Psychological Science, 20, 1473–1477.

van Steenbergen, H., Band, G. P. H., & Hommel, B. (2010). In the mood
for adaptation. Psychological Science, 21, 1629 –1634.

van Steenbergen, H., Band, G. P. H., & Hommel, B. (2015). Does conflict
help or hurt cognitive control? Initial evidence for an inverted U-
shape relationship between perceived task difficulty and conflict
adaptation. Frontiers in Psychology, 6.

Van Steenbergen, H., Band, G. P. H., Hommel, B., Rombouts, S. A. R. B.,
& Nieuwenhuis, S. (2015). Hedonic hotspots regulate cingulate-
driven adaptation to cognitive demands. Cerebral Cortex, 25,
1746–1756.

van Steenbergen, H., Weissman, D. H., Stein, D. J., Malcolm-Smith, S., &
van Honk, J. (2017). More pain, more gain: Blocking the opioid sys-
tem boosts adaptive cognitive control. Psychoneuroendocrinology, 80,
99–103.

Verster, J. C., Veldhuijzen, D. S., & Volkerts, E. R. (2006). Effects of an
opioid (oxycodone/paracetamol) and an NSAID (bromfenac) on
driving ability, memory functioning, psychomotor performance, pu-
pil size, and mood. Clinical Journal of Pain, 22, 499–504.

Veselis, R. A., Reinsel, R. A., Feshchenko, V. A., Wronski, M., Dnistrian,
A., Dutchers, S., & Wilson, R. (1994). Impaired memory and be-
havioral performance with fentanyl at low plasma concentrations.
Anesthesia and Analgesia, 79, 952–960.

Vinckier, F., Rigoux, L., Oudiette, D., & Pessiglione, M. (2018). Neuro-
computational account of how mood fluctuations arise and affect
decision making. Nature Communications, 9, 1708.

Volavka, J., Dornbush, R., Mallya, A., & Cho, D. (1979). Naloxone fails
to affect short-term memory in man. Psychiatry Research, 1, 89–92.

Walker, D. J., & Zacny, J. P. (1998). Subjective, psychomotor, and anal-
gesic effects of oral codeine and morphine in healthy volunteers.
Psychopharmacology, 140, 191–201.

Walker, D. J., & Zacny, J. P. (1999). Subjective, psychomotor, and phys-
iological effects of cumulative doses of opioid mu agonists in
healthy volunteers. The Journal of Pharmacology and
Experimental Therapeutics, 289, 1454–1464.

Walker, D. J., Zacny, J. P., Galva, K. E., & Lichtor, J. L. (2001).
Subjective, psychomotor, and physiological effects of cumulative
doses of mixed-action opioids in healthy volunteers.
Psychopharmacology, 155, 362–371.

Wanigasekera, V., Lee, M. C., Rogers, R., Kong, Y., Leknes, S.,
Andersson, J., & Tracey, I. (2012). Baseline reward circuitry activity
and trait reward responsiveness predict expression of opioid analge-
sia in healthy subjects. Proceedings of the National Academy of
Sciences of the United States of America, 109, 17705–10.

Wardle, M. C., Bershad, A. K., & deWit, H. (2016). Naltrexone alters the
processing of social and emotional stimuli in healthy adults. Social
Neuroscience, 11, 579–591.

Wassum, K. M., Cely, I. C., Balleine, B. W., & Maidment, N. T. (2011).
μ-opioid receptor activation in the basolateral amygdala mediates
the learning of increases but not decreases in the incentive value of a
food reward. Journal of Neuroscience, 31, 1591–1599.

Wassum, K. M., Cely, I. C., Maidment, N. T., & Balleine, B. W. (2009a).
Disruption of endogenous opioid activity during instrumental learn-
ing enhances habit acquisition. Neuroscience, 163, 770–780.

Wassum, K. M., Ostlund, S. B., Maidment, N. T., & Balleine, B. W.
(2009b). Distinct opioid circuits determine the palatability and the
desirability of rewarding events. Proceedings of the National
Academy of Sciences of the United States of America, 106, 12512–
12517.

Weber, S. C., Beck-Schimmer, B., Kajdi, M.-E., Müller, D., Tobler, P. N.,
& Quednow, B. B. (2016). Dopamine D2/3- and μ-opioid receptor

Cogn Affect Behav Neurosci (2019) 19:435–458 457



antagonists reduce cue-induced responding and reward impulsivity
in humans. Translational Psychiatry, 6, e850.

Wechsler, D. (2014). Wechsler adult intelligence scale–Fourth Edition
(WAIS–IV). San Antonio, Texas: Psychological Corporation.

Weerts, E. M., McCaul, M. E., Kuwabara, H., Yang, X., Xu, X., Dannals,
R. F., … Wand, G. S. (2013). Influence of OPRM1 Asn40Asp
variant (A118G) on [ 11C] carfentanil binding potential:
Preliminary findings in human subjects. International Journal of
Neuropsychopharmacology, 16, 47–53.

Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., &Wager, T.
D. (2011). Large-scale automated synthesis of human functional
neuroimaging data. Nature Methods, 8, 665–670.

Yeomans, M. R. (1995). Opioids and human food choice. Appetite, 24,
302.

Yeomans, M. R., & Gray, R. W. (2002). Opioid peptides and the control
of human ingestive behaviour. Neuroscience and Biobehavioral
Reviews, 26, 713–728.

Yik, M. S. M., Russell, J. A., & Barrett, L. F. (1999). Structure of self-
reported current affect: Integration and beyond. Journal of
Personality and Social Psychology, 77, 600–619.

Yovell, Y., Bar, G., Mashiah,M., Baruch, Y., Briskman, I., Asherov, J.,…
Panksepp, J. (2016). Ultra-low-dose buprenorphine as a time-
limited treatment for severe suicidal ideation: A randomized con-
trolled trial. American Journal of Psychiatry, 173, 491–498.

Zacny, J. P. (1995). A review of the effects of opioids on psychomotor and
cognitive functioning in humans. Experimental and Clinical
Psychopharmacology, 3, 432–466.

Zacny, J. P. (2003). Characterizing the subjective, psychomotor, and
physiological effects of a hydrocodone combination product
(Hycodan) in non-drug-abusing volunteers. Psychopharmacology,
165, 146–156.

Zacny, J. P., Coalson, D. W., Lichtor, J. L., Yajnik, S., & Thapar, P.
(1994a). Effects of naloxene on the subjective and psychomotor
effects of nitrous oxide in humans. Pharmacology, Biochemistry
and Behavior, 49, 573–578.

Zacny, J. P., Conley, K., & Galinkin, J. (1997a). Comparing the subjec-
tive, psychomotor and physiological effects of intravenous
buprenorphine and morphine in healthy volunteers. Journal of
Pharmacology and Experimental Therapeutics, 282, 1187–1197.

Zacny, J. P., Conley, K., &Marks, S. (1997b). Comparing the Subjective,
Psychomotor and Physiological Effects of Intravenous Nalbuphine
andMorphine in Healthy Volunteers. The Journal of Pharmacology
and Experimental Therapeutics, 280, 1159–1169.

Zacny, J. P., & de Wit, H. (2009). The prescription opioid, oxycodone,
does not alter behavioral measures of impulsivity in healthy volun-
teers. Pharmacology Biochemistry and Behavior, 94, 108–113.

Zacny, J. P., & Goldman, R. E. (2004). Characterizing the subjective,
psychomotor, and physiological effects of oral propoxyphene in
non-drug-abusing volunteers. Drug and Alcohol Dependence, 73,
133–140.

Zacny, J. P., & Gutierrez, S. (2003). Characterizing the subjective, psy-
chomotor, and physiological effects of oral oxycodone in non-drug-
abusing volunteers. Psychopharmacology, 170, 242–254.

Zacny, J. P., & Gutierrez, S. (2008). Subjective, psychomotor, and physio-
logical effects profile of hydrocodone/acetaminophen and oxycodone/
acetaminophen combination products. Pain Medicine, 9, 433–443.

Zacny, J. P., & Gutierrez, S. (2009). Within-subject comparison of the
psychopharmacological profiles of oral hydrocodone and oxyco-
done combination products in non-drug-abusing volunteers. Drug
and Alcohol Dependence, 101, 107–114.

Zacny, J. P., & Gutierrez, S. (2011). Subjective, psychomotor, and phys-
iological effects of oxycodone alone and in combination with etha-
nol in healthy volunteers. Psychopharmacology, 218, 471–481.

Zacny, J. P., Hill, J. L., Black,M. L., & Sadeghi, P. (1998). Comparing the
subjective, psychomotor and physiological effects of intravenous
pentazocine and morphine in normal volunteers. The Journal of
Pharmacology and Experimental Therapeutics, 286, 1197–207.

Zacny, J. P., Lance Lichtor, J., Binstock, W., Coalson, D. W., Cutter, T.,
Flemming, D. C., & Glosten, B. (1993). Subjective, behavioral and
physiological responses to intravenous meperidine in healthy volun-
teers. Psychopharmacology, 111, 306–314.

Zacny, J. P., Lichtor, J. L., Flemming, D., Coalson, D. W., & Thompson,
W. K. (1994b). A dose-response analysis of the subjective, psycho-
motor and physiological effects of intravenous morphine in healthy
volunteers. Journal of Pharmacology and Experimental
Therapeutics, 268, 1–9.

Zacny, J. P., Lichtor, J. L., JG, Z., & de Wit, H. (1992). Effects of fasting
on responses to intravenous fentanyl in healthy volunteers. Journal
of Substance Abuse, 4, 197–207.

Zacny, J. P., Lichtor, J. L., Klafta, J. M., Alessi, R., & Apfelbaum, J. L.
(1996a). The effects of transnasal butorphanol onmood and psycho-
motor functioning in healthy volunteers. Anesthesia and Analgesia,
82, 931–935.

Zacny, J. P., Lichtor, J. L., Thapar, P., Coalson, D. W., Flemming, D., &
Thompson, W. K. (1994c). Comparing the subjective, psychomotor
and physiological effects of intravenous butorphanol and morphine
in healthy volunteers. Journal of Pharmacology and Experimental
Therapeutics, 270, 579–588.

Zacny, J. P., & Lichtor, S. A. (2008). Within-subject comparison of the
psychopharmacological profiles of oral oxycodone and oral mor-
phine in non-drug-abusing volunteers. Psychopharmacology, 196,
105–116.

Zacny, J. P., McKay, M. A., Toledano, A. Y., Marks, S., Young, C. J.,
Klock, P. A., & Apfelbaum, J. L. (1996b). The effects of a cold-
water immersion stressor on the reinforcing and subjective effects of
fentanyl in healthy volunteers. Drug and Alcohol Dependence, 42,
133–142.

Zubieta, J.-K. K., Ketter, T. A., Bueller, J. A., Xu, Y. J., Kilbourn, M. R.,
Young, E. A., & Koeppe, R. A. (2003). Regulation of human affec-
tive responses by anterior cingulate and limbic mu-opioid neuro-
transmission. Archives of General Psychiatry, 60, 1145–1153.

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

458 Cogn Affect Behav Neurosci (2019) 19:435–458


	The role of the opioid system in decision making and cognitive control: A review
	Abstract
	Introduction
	Opioid regulation of cognitive control and decision making?
	Literature inclusion
	Review of studies on decision-making
	Reward-based decision-making
	Reward learning and motivation in decision making
	Impulsive choices

	Review of studies on cognitive control
	Neuropsychological tests of executive functions
	Attention
	Inhibition and effort
	Integrative discussion of the reviewed literature
	Reward-based decision-making
	Cognitive control
	Working hypothesis: Enhanced cognitive performance after opioid-reduced aversive arousal?

	Directions for future research
	Conclusions
	References


