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Abstract: Lysosomal proteases play a crucial role in maintaining cell homeostasis. Human cathepsin
D manages protein turnover degrading misfolded and aggregated proteins and favors apoptosis
in the case of proteostasis disruption. However, when cathepsin D regulation is affected, it can
contribute to numerous disorders. The down-regulation of human cathepsin D is associated with
neurodegenerative disorders, such as neuronal ceroid lipofuscinosis. On the other hand, its excessive
levels outside lysosomes and the cell membrane lead to tumor growth, migration, invasion and
angiogenesis. Therefore, targeting cathepsin D could provide significant diagnostic benefits and
new avenues of therapy. Herein, we provide a brief overview of cathepsin D structure, regulation,
function, and its role in the progression of many diseases and the therapeutic potentialities of natural
and synthetic inhibitors and activators of this protease.

Keywords: cathepsin D; lysosome; regulated cell death; neurodegenerative disease; malignant tumor;
diabetes; inhibitors

1. Introduction

Lysosomes are spherical acidic vesicles found in all mammalian cells but erythrocytes.
Their primary role is the disposal and the recycling of exhausted and deteriorated macro-
molecules and organelles, along with the digestion of alien structures supplied by endo-
and phagocytosis [1]. Lysosomes contain more than 60 hydrolytic enzymes, including pro-
teases, lipases, nucleases, glycosidases, phospholipases, phosphatases, and sulfatases [2].
Their acidic environment (pH 4–5), optimal for the activity of these enzymes, is main-
tained by a vacuolar-type H+-adenosine triphosphatase (ATPase) pumping protons from
the cytosol into the lysosome lumen [3]. Cathepsins are the main mammalian lysosomal
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proteases, and they are classified into three groups according to their catalytic mechanism:
Cysteine cathepsins (B, C, F, H, K, L, O, S, V, W, and X), serine cathepsins (A and G), and
aspartic cathepsins (D and E) [4]. Most of them possess endopeptidase activity (cleaving
internal peptide bonds), whereas some possess exopeptidase activity (cleaving off amino
acid residues at the N- or C-terminal domains). Some cathepsins are both endopeptidases
and exopeptidases, and their activity depends on their localization and environmental pH.
There are many levels of cathepsin activity regulation, including biosynthetic processes,
trafficking to lysosomes and other compartments, (auto-)proteolytic activation cleavage,
and endogenous inhibitors [5–8]. They take part in tissue and bone remodeling, major
histocompatibility complex class II-mediated antigen processing and presentation, protein,
hormone, and neuropeptide processing, wound healing, apoptosis, as well as in disease
development and progression, including cancer, inflammation, atherosclerosis, rheumatoid
arthritis and neurodegeneration [9–13].

The aspartic protease cathepsin D is the most abundant lysosomal protease [14]. The
human gene (CTSD) is located at the 11p15.5 region and contains 9 exons [15]. A mixed
promoter controls cathepsin D gene expression, enabling both TATA-independent (binding
site for specificity protein (Sp) 1) and TATA-dependent transcription initiations. Also, it
was reported that its transcription might be activated by estrogen [16]. The encoded human
cathepsin D protein comprises 412 amino acid residues. Following the removal of the signal
peptide and two Asn glycosylations (134 and 263pre-pro-cathepsin D numbering) in the
endoplasmic reticulum, the propeptide is transported to the endolysosomal compartment
via mannose-6-phosphate (M6P)-dependent or independent (via low-density lipoprotein
receptor (LDL-R) or LDL-R-related protein 1 (LRP1) receptor) pathways [17]. Once it
reaches the lysosomes, the 52 kDa human pro-cathepsin D is proteolytically processed to
the 48 kDa intermediate form that is further processed into the mature two-chain enzymatic
form (a heavy 34 kDa chain and a light 14 kDa chain) [18]. This final maturation step occurs
via cathepsins B and L activity [19] (Figure 1a). There is evidence that progranulin promotes
in vitro maturation of pro-cathepsin D in a concentration-dependent fashion [20]. It was
proposed that progranulin binds to the propeptide, destabilizing its interaction with the
catalytic center of cathepsin D and promoting its autocatalytic activation cleavage [20].
Multi-granulin domain peptides (progranulin cleaved into smaller domains) showed an
even more significant effect on the cathepsin D maturation, in a concentration- and pH-
dependent manner [21]. The mature cathepsin D consists of two domains flanking the deep
active site cleft [22]. Each domain provides a catalityc Asp to the catalytic site (Figure 1b).
The two Asp active site residues are prone to deprotonation, suggesting that cathepsin D
is predominantly active at pH below 5, as found in lysosomes. Nevertheless, recent data
indicate that cathepsin D can also be active at higher pH in extracellular space and the
cytoplasm [23–25].

Cathepsin D has endopeptidase activity and is responsible for the degradation of mis-
folded, long-lived and denatured proteins, such as the acid-denatured cathepsin L [26,27].
Moreover, it modulates the activity of diverse polypeptides, enzymes, and growth factors,
and is thereby an essential regulator of cell signaling [28], while cathepsin D imbalance
might play an important role in acute kidney injury [29], Huntington’s disease [30], Parkin-
son’s disease [31], Alzheimer’s disease [32], pancreatitis [33] and coronary events [34,35],
making cathepsin D a vital protease for maintaining cellular homeostasis.
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Figure 1. Cathepsin D maturation and structure: (a) Major steps of cathepsin D maturation. The description is in the text. 
SP ‒ signal peptide; Pro ‒ prodomain; kDa ‒ kilodaltons; ER ‒ endoplasmic reticulum. (b). Mature cathepsin D structure. 
The two domains are indicated in different shades of green. Catalytic Asp are represented as sticks. The structure was 
obtained from Protein Data Bank (PDB ID: 6QCB) [36]. The figure was made in the PyMOL Molecular Graphics System, 
Version 1.2r3pre, Schrödinger, LLC. 
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Cathepsin D is ubiquitously expressed in various tissues where it is involved in pro-

tein turnover. Higher levels of cathepsin D expression in the brain, including the cortex, 
hippocampus, striatum, and dopaminergic neurons of the substantia nigra also suggest 
its essential role in the proteolysis of many altered neuronal proteins [37,38]. Long-lived 
post-mitotic cells, like neurons, depend on cellular homeostasis, which they preserve by 
an efficient proteostasis system regulating protein synthesis, folding and degradation bal-
ance [31]. Cellular health depends on the removal of damaged biological molecules, as 
well as on the turnover of organelles with a short lifespan. These phenomena can occur 
via autophagosome generation where endoplasmic reticulum membranes cloak and se-
quester the organelles and other intracellular materials to remove [39]. A process known 
as macroautophagy begins when the primary lysosome is merged with the autophago-
some. In this scenario, cathepsin D deficiency has been identified as one of the causes of 
severe autophagy blockage in mice [40]. 

Cathepsin D is also necessary for proteostasis recovery after oxygen deprivation [41]. 
An increased protein aggregation characterizes the trophoblasts derived from patients 
with preeclampsia. Hypoxia-induced endoplasmic reticulum stress, one of the reasons for 
preeclampsia, can negatively affect transcription factor EB (TFEB) expression and its nu-
clear translocation leading to the decreased expression of TFEB-regulated lysosomal pro-
teins, like lysosomal-associated membrane protein 1 (LAMP1), LAMP2, and cathepsin D. 
Impaired lysosomal biogenesis and autophagy resulted in increased protein aggregate ac-
cumulation in the placenta, due to the lack of lysosomal components [41]. In neurons, a 
low lysosomal enzymatic turnover, including cathepsin D, affects cell recovery following 
ischemic stroke even after mTOR activation induced by oxygen-glucose deprivation/re-
oxygenation [42]. In contrast, in a murine model, neuronal cathepsin D expression was 
shown to protect the brain against stroke injury by improving the lysosomal function [43]. 
Cathepsin D and cathepsin B double-knockout in mice was shown to cause impaired au-
tophagy in the pancreas, which induced chronic pancreatitis [44]. Cathepsin D also takes 
part in autophagy during atherosclerosis [45]. 

In vitro experiments demonstrated a cathepsin D increase during apoptosis and other 
mechanisms of regulated cell death [46]. In this scenario, the bis-aryl urea derivative N69B 
demonstrated its anticancer activity by increasing cathepsin D-mediated tumor cell apop-
tosis through the B-cell lymphoma 2 (Bcl-2) homology domain 3 interacting domain-death 

Figure 1. Cathepsin D maturation and structure: (a) Major steps of cathepsin D maturation. The description is in the text.
SP—signal peptide; Pro—prodomain; kDa—kilodaltons; ER—endoplasmic reticulum. (b). Mature cathepsin D structure.
The two domains are indicated in different shades of green. Catalytic Asp are represented as sticks. The structure was
obtained from Protein Data Bank (PDB ID: 6QCB) [36]. The figure was made in the PyMOL Molecular Graphics System,
Version 1.2r3pre, Schrödinger, LLC.

2. Vital Functions of Cathepsin D

Cathepsin D is ubiquitously expressed in various tissues where it is involved in
protein turnover. Higher levels of cathepsin D expression in the brain, including the cortex,
hippocampus, striatum, and dopaminergic neurons of the substantia nigra also suggest
its essential role in the proteolysis of many altered neuronal proteins [37,38]. Long-lived
post-mitotic cells, like neurons, depend on cellular homeostasis, which they preserve by
an efficient proteostasis system regulating protein synthesis, folding and degradation
balance [31]. Cellular health depends on the removal of damaged biological molecules,
as well as on the turnover of organelles with a short lifespan. These phenomena can
occur via autophagosome generation where endoplasmic reticulum membranes cloak and
sequester the organelles and other intracellular materials to remove [39]. A process known
as macroautophagy begins when the primary lysosome is merged with the autophagosome.
In this scenario, cathepsin D deficiency has been identified as one of the causes of severe
autophagy blockage in mice [40].

Cathepsin D is also necessary for proteostasis recovery after oxygen deprivation [41].
An increased protein aggregation characterizes the trophoblasts derived from patients
with preeclampsia. Hypoxia-induced endoplasmic reticulum stress, one of the reasons
for preeclampsia, can negatively affect transcription factor EB (TFEB) expression and its
nuclear translocation leading to the decreased expression of TFEB-regulated lysosomal
proteins, like lysosomal-associated membrane protein 1 (LAMP1), LAMP2, and cathepsin
D. Impaired lysosomal biogenesis and autophagy resulted in increased protein aggre-
gate accumulation in the placenta, due to the lack of lysosomal components [41]. In
neurons, a low lysosomal enzymatic turnover, including cathepsin D, affects cell recov-
ery following ischemic stroke even after mTOR activation induced by oxygen-glucose
deprivation/reoxygenation [42]. In contrast, in a murine model, neuronal cathepsin D
expression was shown to protect the brain against stroke injury by improving the lysosomal
function [43]. Cathepsin D and cathepsin B double-knockout in mice was shown to cause
impaired autophagy in the pancreas, which induced chronic pancreatitis [44]. Cathepsin D
also takes part in autophagy during atherosclerosis [45].

In vitro experiments demonstrated a cathepsin D increase during apoptosis and other
mechanisms of regulated cell death [46]. In this scenario, the bis-aryl urea derivative
N69B demonstrated its anticancer activity by increasing cathepsin D-mediated tumor cell
apoptosis through the B-cell lymphoma 2 (Bcl-2) homology domain 3 interacting domain-
death agonist (Bid)/Bcl-2-like protein 4 (Bax)/cytochrome C/caspase 9/caspase 3 pathway
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activation [47]. Another study performed on the human neuroblastoma SH-SY5Y cell line
demonstrated the cathepsin D involvement in the mitophagy process [48]. Namely, it was
reported that mitophagy induction leads to enhanced expression of TFEB, which in turn,
increases the synthesis of lysosomal proteins, including cathepsin D.

Cathepsin D is also involved in placenta antibacterial and antiviral defense when
expressed with Napsin A [49]. They process the hemoglobin subunit β (HBB) to generate
the bioactive peptide HBB112–147. Moreover, cathepsin D takes part in epidermal differ-
entiation and barrier repair [50], damaged mitochondria degradation [51], promotes the
fibrogenic potential in hepatic stellate cells [52] and favors cathepsin B activation [33]. It
was suggested that cathepsin D might play an essential role in central nervous system
(CNS) myelination since it is involved in cholesterol and lipid metabolism [53,54]. Recently,
it was shown that zymogen form of cathepsin D possesses phosphatase activity in the cy-
tosolic compartment [55]. The protease dephosphorylates cofilin, which in turn modulates
actin remodelling and cell mitosis.

Despite the multiple roles of cathepsin D, the involvement of this protease in CNS
proteostasis is the most investigated area. The importance of cathepsin D for the nor-
mal functioning of CNS is emphasized by many neurodegenerative diseases caused by
cathepsin D deprivation. Cathepsin D deficiency resulted in fatal neurological disorders
characterized by a significant loss of neurons and myelin in human infants and sheep [56],
as well as in cell death in several tissues, including the brain [57], intestine, lymphoid
organs [58] and the retina [59].

3. Cathepsin D Down-Regulation in Neurodegenerative Diseases

Reduced proteolytic activity of lysosomal cathepsins (including cathepsin D) was
shown to induce a progressive accumulation of undigested autophagic substrates and
unfolded or oxidized protein aggregates within the lysosomes during aging. This phe-
nomenon can cause lysosomal membrane damage, culminating in cathepsin leakage and
consequent apoptosis, favoring neurodegeneration [60].

Most neurodegenerative conditions can be distinguished in idiopathic (derived from
unknown causes) and familial forms (linked to the gene mutation) [61]. Familial forms are
characterized by continuous aggregation of short or immature proteins. Many mutated
neuronal proteins such as amyloid precursor, α-synuclein, and huntingtin are cathepsin
D substrates [32,60]. Some experiments demonstrated the cathepsin D involvement in
the metabolism of cholesterol and glycosaminoglycans determining neuronal plasticity.
Mutations in the CTSD gene are associated with different neurological defects [62]. CTSD
gene homozygous inactivation was reported to cause human congenital neuronal ceroid
lipofuscinosis (NCL) with postnatal respiratory insufficiency, epilepsy, and death within
hours to weeks after birth, due to neurological defects and absence of neuronal α-synuclein
accumulation [56]. Significant loss of cathepsin D enzymatic function due to the CTSD
gene heterozygous missense mutations is associated with childhood motor and visual
disturbances, cerebral and cerebellar atrophy, as well as progressive psychomotor disability.
NCL3, a group of rare recessive lysosomal storage diseases, is associated with mutations in
14 different genes, including CTSD [63]. The main NCL3 symptoms are early blindness
and severe progressive neurodegeneration. The missense variant in ceroid lipofuscinosis
5 (CLN5) c.A959G (p.Asn320Ser) correlates with Alzheimer’s disease occurrence [64]. More
precisely, the CLN5 c.A959G variant causes a defect in the transport of cathepsin D to
the endolysosomal compartment, resulting in an increased pro-cathepsin D level and a
reduced mature cathepsin D expression [64]. Mutations and polymorphisms of cathepsin
D linked with the NCL are summarized in Table 1.
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Table 1. Cathepsin D mutations related to neuronal ceroid lipofuscinosis (NCL).

DNA 1 /Protein
Change

Type of Mutation Effect on Protease NCL Type Ref.

c.392A>G/p.Tyr131Cys Missense Reduced enzymatic activity Late infantile NCL (LINCL) [65]

c.446G>T/p.Gly149Val
Missense Reduced enzymatic activity Juvenile NCL (JNCL) [66]

c.1196G>A/p.Arg399His

c.299C>T/p.Ser100Phe Missense Reduced enzymatic activity Congenital CLN 2 (CLN10) [67]

c.764dupA/p.Tyr255 Nonsense Absence of protein CLN10 [56]

c.6517T>A/p.Phe229Ile
Missense

Reduced protein amount and
enzymatic activity NCL-like disorder [63]

c.10267G>C/p.Trp383Cys
1 deoxyribonucleic acid; 2 ceroid-lipofuscinosis, neuronal.

In line with these data, any misbalance in protein degradation processes, such as
autophagy and lysosomal hydrolytic enzyme activity is linked to some age-associated
neurodegenerative disorders (e.g., Parkinson’s, Alzheimer’s, Huntington’s, and Niemann-
Pick disease type C (NPC)) [31]. NPC is portrayed with intracellular accumulation of lipids,
among which there are mainly cholesterol and glycosphingolipids. One of the tissues
affected by this disease is the brain tissue [68]. Vomeronasal neuroepithelium in an NPC1
mouse model showed virtually absence of cathepsin D reactivity [69].

Some forms of cathepsin D deficiency could also predispose to late-onset Alzheimer’s
disease and Parkinson’s disease [32]. The polymorphism c.C224T (p.Ala58Val) located
in exon 2 of the CTSD gene was associated with sporadic late-onset Alzheimer’s disease
in the adult German, Iranian, and Ecuadorian populations [70]. However, in other adult
populations, e.g., Spanish, Italian, Korean, and North American, this association could not
be established [70]. Alzheimer’s disease histopathology is characterized by accumulations
of hyperphosphorylated τ protein and amyloid β (Aβ). Mouse models of Alzheimer’s dis-
ease showed that Aβ aggregates increase astrocyte lysosome pH, resulting in a decreased
cathepsin D activity and lysosome damage [71]. In support of this evidence, extralysosomal
cathepsin D was detected via confocal microscopy after long-term exposure of microglia to
Aβ aggregates following lysosomal membrane permeabilization [72]. Another mechanism
was proposed by Suire et al. where Aβ42 inhibits cathepsin D in a low-nanomolar range,
and thus, prevents cathepsin D degradation of τ protein [73]. Statistical analysis showed
that cathepsin D level in plasma of patients with Alzheimer’s disease is decreased compar-
ing to the subjects without cognitive impairment [74]. Therefore, cathepsin D can be used
as a diagnostic biomarker for Alzheimer’s disease.

The unique role of cathepsin D in α-synuclein proteolysis, which accumulates in
Parkinson’s disease, has been proven. Sulfated glycosaminoglycans, which hoard in
substantia nigra of Parkinson’s disease patients along with α-synuclein, decrease the
activity of cathepsin D [75]. The deficiency of glycosaminoglycans results in higher levels
of proteolysis mediated by cathepsin D and consequent drop of α-synuclein aggregates [75].
Earlier studies demonstrated that in vitro cathepsin D yields incomplete proteolysis of α-
synuclein and generates truncated C-terminal peptides, and in the acidic lysosomal lumen,
enhance amyloid formation [76]. Later on, liquid chromatography-mass spectrometry
analysis showed that anionic phospholipids are crucial for cathepsin D cleavage throughout
α-synuclein sequence [77]. Aufschnaiter et al. showed that cathepsin D proteolysis of
α-synuclein also needs calcineurin basal level expression [78].

Mutations in the β-Glucocerebrosidase gene (GBA1) are associated with Parkinson’s
and Gaucher’s disease. Experiments on dopaminergic neurons and astrocytes carrying
this mutation indicated excessive levels of α-synuclein released from neurons that are
eventually endocytosed by astrocytes [79]. α-Synuclein accumulated in the lysosomes
where it aggregated due to reduced cathepsin D activity. Other experiments also estab-
lished decreased cathepsin D activity in substantia nigra and frontal cortex of patients with
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Parkinson’s disease and Lewy body dementia [80]. Conversely, some studies showed in-
creased levels of cathepsin D in Parkinson’s fibroblasts [81] and dopaminergic neurons [82].
In this context, Puska et al. showed that cathepsin D levels are increased while α-synuclein
forms pre-aggregates [83]. However, the formation of Lewy bodies decreases the cathepsin
D level. A possible explanation for cathepsin D low levels in patients with Parkinson’s
disease might be the down-regulation of the M6P receptor due to its compromised retro-
grade transport from endosomes to the trans-Golgi network [84]. The study conducted
in an ATP13A2 deficient zebrafish (Parkinson’s disease model) confirmed the reduced
cathepsin D expression and showed lysosomal abnormalities, leading to the degeneration
of dopaminergic neurons arguably caused by intracellular trafficking impairment [85].
Decreased levels of cathepsin D were also detected in plasma of patients with Parkinson’s
disease comparing to the patients with essential tremor [86]. Therefore, all of the above
data qualify cathepsin D as one of the biomarkers of Parkinson’s disease [87,88].

The possible role of cathepsin D in the development of prion diseases was demon-
strated in interferon-α/β receptor knock-out mice showing decreased levels of disease-
associated microglial cathepsin D and CD68 receptor, especially in white matter, which
resulted in the slow disease progression [89].

Therefore, the deficiency of cathepsin D triggered by misregulation of its transport,
maturation, and enzymatic activity results in the anomalous deposit of undigested cellular
material in lysosomes [60]. Accumulations in lysosomes during aging weaken the lysoso-
mal membrane causing enzymatic leakage, cell death and neurodegenerative disorders [90].
Everything aforesaid leads to the conviction that neuronal cellular health largely relies on
cathepsin D-mediated proteolysis [60]. Therefore, the perspective approach in preventing
the onset of a neurodegenerative disorder is to maintain a sufficient level of cathepsin D
within the lysosomes.

4. Treatment to Restore Cathepsin D

Cathepsin D deficiency caused by mutations in the CTSD gene can be restored via
recombinant protease as proposed by Marques et al. for NCL replacement therapy [40].
Specifically, the protocol was based on recombinant human pro-cathepsin D synthesized
and purified from the human HEK 293 EBNA kidney cell line and delivered to the lyso-
somes, where it could be processed to its active form digesting protein aggregates. Possible
difficulties to this approach were represented by non-functional M6P and LRP1 receptors
and the cysteine protease activity [40].

In the case of a high level of pro-cathepsin D and a low level of the active form of the
enzyme, cathepsin D maturation can be induced. As aforementioned, there is evidence that
progranulin promotes in vitro maturation of pro-cathepsin D in a concentration-related
process [20]. The maturation of pro-cathepsin D to its active form is stimulated even more
significantly in the presence of multi-granulin domain peptides BAC and CDE resulting
in an 80% active cathepsin D [21]. This might explain the reason why the progranulin
gene therapy improves lysosomal dysfunction and microglial pathology associated with
frontotemporal dementia and NCL [91].

Some neurodegenerative diseases are associated with a low cathepsin D level ex-
pression or activity inhibition. Eight lysosomotropic drugs (chloroquine, fluoxetine,
imipramine, latrepirdine, tamoxifen, chlorpromazine, amitriptyline, and verapamil) were
shown to increase cathepsin D activity at multiple concentrations after 24-h exposure [92].
A higher cathepsin D level was recorded within 4 h of latrepirdine and chlorpromazine
treatment. A proteomic study in an in vivo model of depression showed that fluoxetine ad-
ministration strongly up-regulated the expression of cathepsin D, proteins engaged in the
improvement of learning and memory processes (stathmin 1 and dynamin-1), and proteins
involved in mitochondrial biogenesis and defense against oxidative stress (protein degly-
case DJ-1) [93]. Mycobacterium tuberculosis can inhibit phagosome maturation in infected
macrophages by reducing galectin-3 expression [94]. This phenomenon can affect the de-
velopment of the active cathepsin D. However, galectin-3 and cathepsin D expression could
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be restored by treatment with gallium encapsulated in polymeric nanoparticles favoring
infection inhibition [94]. Experiments on a mouse model of Alzheimer’s disease produced
evidence that cilostazol can reinstate low pH in astrocyte lysosomes, consequently sus-
pending the inhibitory effect of Aβ on the activity of cathepsin D [71]. Chlorogenic acid
is another compound proven to have a neuroprotective role in an Alzheimer’s disease
mouse model [95]. Specifically, chlorogenic acid was shown to up-regulate cathepsin D
and other cathepsins expression via the mTOR/TFEB signaling pathway in APP/PS1
mice (Alzheimer’s disease model) and Aβ25-35-exposed SH-SY5Y cells [95]. It was shown
that glucocerebrosidase replacement or chaperone therapy of GBA1-mutant resulted in
restored cathepsin D protein levels and activity, leading to decreased levels of monomeric
α-synuclein in GBA1-mutant neurons [96].

There are multiple approaches to increase active cathepsin D in the cells. However, it
is necessary to understand the kind of mechanism that caused the protease deprivation at
first. There are also some risks associated with the modulation of this fragile balance that
could favor the onset of other disorders.

5. Excessive Levels of Cathepsin D in Neurodegenerative Disorders

As mentioned earlier, Aβ aggregates can decrease the cathepsin D activity within
the lysosomes. However, high exosomal levels of cathepsin D and LAMP1 together
with low levels of the 70 kDa heat shock proteins were detected in the blood of patients
with Alzheimer’s disease, suggesting a diagnostic role for this protease [97]. In addition,
it was shown that the levels of cathepsin D are similar among patients with mild and
severe Alzheimer’s disease and mild cognitive impairment [98]. On the other hand, the
distinction between these groups of patients can be determined by comparing cathepsin
B and cathepsin S levels [98]. Although, these results are inconsistent with the above-
mentioned ones, so further research is required [74].

Glutaric acidemia type I (GA1) is a chronic progressive neurodegeneration caused
by severe deficiency of glutaryl-CoA dehydrogenase activity, leading to glutaric acid and
glutarylcarnitine accumulation [99]. It was demonstrated that brain-derived neurotrophic
factor and cathepsin D significantly increased in the plasma of GA1 patients compared to
the control group. Also, a positive correlation was found between the levels of cathepsin
D and glutarylcarnitine levels that reflected the accumulation of glutaric acid. These data
support the theory that glutaric acid is a critical player in the occurrence of neurological
damage in GA1 patients [99].

The plasma of maple syrup urine disease patients showed increased levels of cathepsin
D compared to the control group [100]. The authors proposed that high levels of cathepsin
D may result from its role in cytokines- and oxidative stress-induced apoptosis. Increased
cathepsin D levels were also observed in neurofibrillary tangles of parietal cortex neurons,
where it correlated with hyperphosphorylated τ protein, but did not co-localize with
α-synuclein inclusions [101].

Most neurodegenerative disorders caused by cathepsin D imbalance are characterized
by down-regulation of the protease. However, there is evidence that in pathological
conditions it can increase extracellularly, while the lysosomal concentration of cathepsin D
can decrease.

6. Excessive Levels of Cathepsin D in Disorders Associated with Diabetes

Hyperglycemia can trigger cathepsin D release from the lysosomes by inducing lyso-
somal membrane permeabilization and ion release. Cathepsin D can remain active in non-
acidic pH environments such as the cytosol. Altogether, this contributes to hyperglycemia-
induced cardiomyocyte injury in patients with diabetic cardiomyopathy [102]. These
results correlate with Hoef et al.’s study, which concluded that higher circulating cathepsin
D levels correlate with greater heart failure severity [103]. Also, Liu et al. demonstrated a
correlation between increased cathepsin D levels and type 2 diabetes [104].
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The data concerning the influence of excessive cathepsin D activity outside the lyso-
somes on the severity of diabetes are relatively scarce. Further investigation of the mech-
anisms of cathepsin D regulation in this disorder may reveal new approaches for anti-
diabetic therapy. Nevertheless, accumulated data detail the connection between lysosomal
protease release and a pathological condition.

7. Excessive Levels of Cathepsin D in Malignant Tumors

Increased extracellular levels of cathepsins are well-characterized for tumors, and
cathepsin D is no exception. High levels of cathepsin D were observed in breast [105], ovar-
ian [106], colorectal [51], prostate, bladder cancer [107] and melanoma [108]. Numerous
studies found that cathepsin D level may represent an independent prognostic factor in
many cancers and is considered a potential target of anticancer therapy [109]. Cathepsin D
was shown to have pro-angiogenesis, pro-apoptotic, pro-invasive and pro-metastatic prop-
erties [28]. Some research suggests the roles of cathepsin D in cancer cells in maintaining
lysosomal integrity, redox balance and nuclear factor erythroid 2-related factor 2 activity,
thus, promoting tumorigenesis [110]. There is evidence that even mutated cathepsin D
deprived of catalytic activity can still have mitogenic properties by activating an unknown
cell surface receptor [111].

Progesterone receptor isoforms A and B (PR-A and PR-B) ratio is used as a prog-
nostic factor in breast cancer [112]. Breast cancer cells expressing PR-A show increased
levels of proteins involved in the citric acid cycle, glycolysis, the Rho family of guano-
sine triphosphatase signaling, and ribonucleic acid (RNA) metabolism. Pateetin et al.
showed an increased cathepsin D level in cells expressing progesterone-liganded PR-
A [113]. Cathepsin D is secreted in estrogen-dependent and estrogen-independent types
of breast cancer [114,115], and for this reason, represents a significant prognostic marker.
Estradiol-mediated enhanced secretion of pro-cathepsin D in breast cancer cells was also
established [116]. The suggested mechanism supports the involvement of the cation-
dependent M6P receptor, which ensures the proper localization of the enzyme to lysosomes
in MCF-7 cells (breast cancer) [116].

Liu et al. showed that tetrabromobisphenol A (TBBPA) could increase the extracellular
and decrease the intracellular levels of cathepsins D and B in hepatocellular carcinoma
(HCC) cell line, HepG2 [117]. These results imply that TBBPA might promote lysosomal
exocytosis and consequent in vitro HepG2 cell invasion and metastasis. It is believed
that TBBPA could bind mucolipin-1, forming a complex which significantly increases
Ca2+-mediated lysosomal exocytosis in HCC [117]. Increased lysosomal membrane per-
meabilization in HCC could result from suppressed sulfatase 2, which leads to lysosome-
associated protein transmembrane 4β inhibition whose expression depends on sulfatase
2 [118]. Detection of extralysosomal cathepsin D represents a sign of disrupted autophagy.

The outcome of several studies claims that cathepsin D, together with cathepsin
B, plays essential roles in the production of angiotensin peptides in glioblastoma cells
bypassing the renin-angiotensin system [119]. Basu et al. demonstrated that colorectal
cancer cells with overexpression of immunoglobulin-like cell adhesion receptor L1 also
showed increased extra- and intra-cellular levels of cathepsin D [120]. They suggested the
essential role of cathepsin D in colorectal cancer progression. Cathepsin D might represent
a therapeutic target for curing invasive colorectal cancer, given that it is only detected in
invasive areas of the tumor [120].

The abundance of cathepsin D outside the lysosomes in malignant tumors makes it a
convenient marker and a target for cancer treatment. Still, there must be targeted delivery
of the inhibitors to prevent the onset of off-site disorders.

8. Cathepsin D Inhibitors

Most cathepsin are cysteine proteases so their inhibitors belong to the cystatin super-
family, including stefins, kininogens, thyropins, and serpins [5]. However, there are no
known endogenous inhibitors for the ascpartic protease cathepsin D in mammals [121].
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Nonetheless, there are several natural inhibitors isolated from other species. The most
known inhibitor of cathepsin D is pepstatin A from Actinomyces, an inhibitor of aspartic
proteases [76]. Baldwin et al. consucted the thorough comparative analysis of the native
protease and the protease in complex with pepstatin A (PDB ID: 1LYA, 1LYB) [122]. How-
ever, non-specific inhibition of aspartic proteases, including cathepsin D, may induce side
effects (e.g., CNS), and may not be safe as therapeutics [123]. Therefore, novel studies
examine new possible inhibitors using a 2/3-dimensional quantitative structure-activity re-
lationship, representing a powerful tool for explaining the relationships between chemical
structure and experimental observations [124]. These studies showed that oxymatrine from
Sophora flavescens down-regulated the expression of cathepsin D, inhibiting high mobility
group protein 1/toll-like receptor 4/nuclear factor κ-light-chain-enhancer of activated
B cells (NF-κB) signaling pathway, resulting in the suppression of microglia-mediated
neuroinflammation in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-stimulated
mouse model of Parkinson’s disease [125]. Fucoidan from brown algae inhibited the ex-
pression of cathepsin D and Bax in the murine dopaminergic nerve precursor cell line,
MN9D (neuroblastoma), and indicated its prospective role as a neuroprotective agent
in Parkinson’s disease treatment [126]. Flavonoid morin hydrate from Maclura pomifera,
Maclura tinctoria, and Psidium guajava is claimed to be anti-oxidative and anti-inflammatory.
Recently, it was shown to inhibit cathepsin D in kidneys of mice with chronic kidney
damage [127]. Molecular docking revealed that morin hydrate interacts with cathepsin D
active site via H-bonds and hydrophobic interactions.

Some experiments demonstrated that a small-molecule inhibitor of β-secretase 1,
aminothiazole-based compound LY2811376, inhibits cathepsin D activity as well [128].
This pH-dependent suppression results from a salt bridge formation between the inhibitor
aspartyl binding motif and Asp33 in cathepsin D. Furthermore, a group of scientists using
a graph convolutional neural network (CNN) indicated that cathepsin D is an off-target
ligand of some β-secretase 1 inhibitors [129]. Another work unraveled the neuroprotective
role of necrostatin-1 against oxidative stress-induced cell damage [130]. It demonstrated
that necrostatin-1 induced cathepsin D inhibition in a cell line of differentiated human
neuroblastoma RA-SH-SY5Y. Recently, pseudo-dipeptide binding motif of pepstatin A was
used to design macrocyclic peptidomimetic inhibitors [36]. They were shown to inhibit
cathepsin D in nanomolar and sub-nanomolar range without citotoxicity in contrast to
pepstatin A (PDB ID: 6QBG, 6QBH, 6QCB). The high throughput screening (HTS) identified
a series of acylguanidine inhibitors which interact with catalytic Asp via H-bonds and
inhibit cathepsin D with nanomolar potency [131]. However, they were characterized
as inhibitors with low microsomal stability and permeability so further optimization is
required (PDB ID: 4OBZ, 4OC6, 4OD9). Further optimization of the compounds resulted
in the inhibitor 24e with improved microsomal stability, as shown on human and mouse
liver microsomes [132].

Several studies indicated the effectiveness of combination therapy with natural and
synthetic inhibitors. For instance, co-treatment with praeruptorin C from Peucedanum
praeruptorum and U0126 synergistically inhibited cathepsin D expression through the
extracellular signal-regulated kinase 1/2 signaling pathway in human non-small cell lung
cancer cells [133]. There is evidence that autophagy modulators chloroquine, KU-55933,
and rapamycin from Streptomyces hygroscopicus combined with a recombinant analog of
human milk protein lactaptin decreased cathepsin D activity with cytotoxic effects in
MDA-MB-231 cell line (breast carcinoma) [134].

RNA-based compounds might represent another approach to inhibit cathepsin D.
It was shown that cathepsin D knockdown via CTSD shRNA lentiviral vector trans-
duction suppressed lipopolysaccharide-induced neuroinflammation by inhibiting NF-κB
signaling pathway [135]. This phenomenon was obtained by regulating the nuclear fac-
tor NF-κB p65 subunit (p65) nuclear translocation both in MPTP-challenged mice and
lipopolysaccharide-induced murine microglia, BV-2 cell line [135]. Phosphatidylinositol
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3-phosphate (PtdIns(3)P) RNA aptamer binding to PtdIns(3)P inhibited autophagy by
hampering lysosomal acidification, which resulted in reduced cathepsin D activity [136].

Although some studies have shown that cathepsin inhibitors may be used as metas-
tasis suppressors [137], others suggested that suppression of cystatins may contribute to
the suppression of breast cancer [138], colorectal cancer [139] pancreatic ductal adenocarci-
noma [140]. Therefore, one has to be careful in developing a treatment, in order to avoid
side effects. Nevertheless, this should not be an issue since cathepsin D inhibitors are
represented by synthetic and natural compounds including peptides and RNAs, providing
an extensive portfolio of therapies depending on the mechanisms of up-regulation, drug
delivery, as well as severity of the disease. Cathepsin D inhibitors are summarized in
Table 2.

Table 2. Cathepsin D inhibitors in chronological order.

Inhibitor Mechanism Ref.

Natural Compounds

Pepstatin A from Actinomycetes Non-competitive inhibitor [141]

Cycloheximide from Streptomyces griseus Protein synthesis inhibitor [142]

The 22-kDa cathepsin D inhibitor protein of potatoes (PDI) from Solanum tuberosum Reversible inhibitor [143]

Equistatin from Actinia equina Reversible inhibitor [144]

Fucoidan from brown seaweeds and algae Down-regulator of the expression [126]

Oxymatrine from Sophora flavescens Down-regulator of the expression [125]

Morin hydrate from Maclura pomifera, Maclura tinctoria, Psidium guajava Reversible inhibitor [127]

Synthetic compounds

Dithiophosgene
Irreversible covalent inhibitor [145]

2,2-Dichloro-1,3-dithiacyclobutanone

Diazo compounds Irreversible covalent inhibitor [146]

Pro-Pro-Phe-Phe-Val-D-Leu Reversible inhibitor [147]

Cbz-Val-Val-(3S4S)-statine Reversible inhibitor [148]

Ibu-His-Pro-Phe-HCys-Sta-Leu-NH-[CH2]2-S-Acm Reversible inhibitor [149]

Derivatives of 4-(morpholinylsulphonyl)-L-Phe-P2-(cyclohexyl)Ala
psi[isostere]-P1’-P2’ Irreversible covalent inhibitor [150]

Lentiviral shRNA constructs RNA interference inhibitor [76]

Acylguanidines Reversible inhibitor [131,132]

LY2811376 Reversible inhibitor [128]

PtdIns(3)P 1 RNA aptamer Inhibitor of PtdIns(3)P [136]

Macrocyclic inhibitors Competitive inhibitor [36]

Necrostatin-1 Suppressor of activity [130]

Polytherapy

RL2 2, with chloroquine, Ku55933, and rapamycin from Streptomyces hygroscopicus Suppressor of activity [134]

Praeruptorin C from Peucedanum praeruptorum and U0126 Inhibitor through ERK1/2 3 signaling pathway [133]
1 phospatidylinositol 3-phosphate; 2 recombinant analog of human milk protein lactaptin; 3 extracellular signal-regulated kinase 1/2.

9. Conclusions

Cathepsin D is involved in autophagy, endocytosis, degradation of misfolded or
mutated proteins, regulation of the activity of various polypeptides, enzymes and growth
factors. Due to its numerous roles in metabolic processes, necessary for cell survival and
death, it is crucial to maintain the level of cathepsin D activity within optimal limits.

Decreased cathepsin D activity and/or levels have been observed in several neurode-
generative disorders (Figure 2). Replacement therapy with recombinant pro-cathepsin
D seems a perspective approach to mitigate its reduced expression [40]. When it comes
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to compensating cathepsin D reduced activity due to lysosome membrane permeability
increase, the therapy should aim to maintain membrane homeostasis, preserving the pH
and cholesterol levels in these organelles [151]. It is also necessary to explore the signaling
pathways that lead to a change in lysosome membrane proteins conformation to develop
appropriate inhibitors.
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Figure 2. Role of Cathepsin D in cancer and neurological disorders. Cathepsin D mutations may
cause a decrease in its lysosomal traffic and activity, leading to protein aggregation in the organelles
and neurodegenerative diseases development. Protein aggregation may cause lysosomal membrane
permeabilization with the subsequent increase of cathepsin D outside the lysosomes. On the other
hand, the excessive extracellular activity of cathepsin D can contribute to tumorigenesis.

Lysosome membrane permeabilization also leads to excessive cathepsin D activity
in the cytoplasm and extracellular space. This contributes to malignant tumor growth,
metastasis and angiogenesis (Figure 2). The inhibitors may decrease cathepsin D activity,
but the research for new, specific inhibitors should continue. It is necessary to emphasize
that one should be extremely careful in using inhibitors for therapeutic purposes. As
previously mentioned, cathepsin D participates in many processes in the whole organism.
Therefore, the systematic use of inhibitors should be avoided, and targeted therapy should
be investigated hand in hand with the development of novel therapeutics [152].

There are still several functions of cathepsin D to investigate. For example, cathepsin
D is involved in the development of disorders associated with diabetes or its involvement
in redox response suggesting the potential use of this protease in anti-photoaging thera-
pies [50]. Therefore, there is an abundance of pathways for exploring future research in
consideration of the many and various roles of cathepsin D.
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deficiency suppresses tumor growth in a breast cancer model through decreased proliferation of tumor cells. Oncotarget 2017, 8,
73793–73809. [CrossRef]

139. Oh, B.M.; Lee, S.-J.; Cho, H.J.; Park, Y.S.; Kim, J.-T.; Yoon, S.R.; Lee, S.C.; Lim, J.-S.; Kim, B.-Y.; Choe, Y.-K.; et al. Cystatin SN
inhibits auranofin-induced cell death by autophagic induction and ROS regulation via glutathione reductase activity in colorectal
cancer. Cell Death Dis. 2017, 8, e2682. [CrossRef] [PubMed]

140. Komura, T.; Takabatake, H.; Harada, K.; Yamato, M.; Miyazawa, M.; Yoshida, K.; Honda, M.; Wada, T.; Kitagawa, H.; Ohta,
T.; et al. Clinical features of cystatin A expression in patients with pancreatic ductal adenocarcinoma. Cancer Sci. 2017, 108,
2122–2129. [CrossRef]

141. McAdoo, M.H.; Dannenberg, A.M.; Hayes, C.J.; James, S.P.; Sanner, J.H. Inhibition of cathepsin D-type proteinase of macrophages
by pepstatin, a specific pepsin inhibitor, and other substances. Infect. Immun. 1973, 7, 655–665. [CrossRef] [PubMed]

http://doi.org/10.1002/hep4.1429
http://www.ncbi.nlm.nih.gov/pubmed/31701075
http://doi.org/10.3389/fsurg.2017.00028
http://www.ncbi.nlm.nih.gov/pubmed/28611989
http://doi.org/10.18632/oncotarget.27155
http://www.ncbi.nlm.nih.gov/pubmed/31497251
http://doi.org/10.1016/j.canlet.2005.06.007
http://doi.org/10.1073/pnas.90.14.6796
http://www.ncbi.nlm.nih.gov/pubmed/8393577
http://doi.org/10.1016/j.brainresbull.2018.02.014
http://doi.org/10.4155/fmc-2017-0077
http://www.ncbi.nlm.nih.gov/pubmed/29235371
http://doi.org/10.3389/fphar.2020.00776
http://doi.org/10.3389/fnagi.2018.00429
http://www.ncbi.nlm.nih.gov/pubmed/30700973
http://doi.org/10.1016/j.intimp.2020.107234
http://www.ncbi.nlm.nih.gov/pubmed/33310295
http://doi.org/10.1002/jcc.24719
http://doi.org/10.1002/minf.201900095
http://www.ncbi.nlm.nih.gov/pubmed/31815371
http://doi.org/10.1007/s12640-020-00164-6
http://doi.org/10.1016/j.bmcl.2014.07.054
http://www.ncbi.nlm.nih.gov/pubmed/25086681
http://doi.org/10.1016/j.bmc.2020.115879
http://doi.org/10.3390/molecules25071625
http://www.ncbi.nlm.nih.gov/pubmed/32244796
http://doi.org/10.1155/2019/4087160
http://www.ncbi.nlm.nih.gov/pubmed/31317028
http://doi.org/10.1111/1440-1681.13052
http://doi.org/10.1016/j.bbrc.2019.07.034
http://www.ncbi.nlm.nih.gov/pubmed/31351587
http://doi.org/10.18103/mra.v5i7.1252
http://doi.org/10.18632/oncotarget.17379
http://doi.org/10.1038/cddis.2017.100
http://www.ncbi.nlm.nih.gov/pubmed/28300829
http://doi.org/10.1111/cas.13396
http://doi.org/10.1128/IAI.7.4.655-665.1973
http://www.ncbi.nlm.nih.gov/pubmed/4586863


Pharmaceutics 2021, 13, 837 18 of 18

142. Musi, M.; Tessitore, L.; Bonelli, G.; Kazakova, O.V.; Baccino, F.M. Changes in rat liver immunoreactive cathepsin D after
cycloheximide. Biochem. Int. 1985, 10, 283–290.

143. Hannapel, D.J. Nucleotide and deduced amino acid sequence of the 22-kilodalton cathepsin D inhibitor protein of potato
(Solanum tuberosum L.). Plant Physiol. 1993, 101, 703–704. [CrossRef]

144. Galesa, K.; Pain, R.; Jongsma, M.A.; Turk, V.; Lenarcic, B. Structural characterization of thyroglobulin type-1 domains of equistatin.
FEBS Lett. 2003, 539, 120–124. [CrossRef]

145. Rakitzis, E.T.; Malliopoulou, T.B. Inactivation of cathepsin D by dithiophosgene and by 2,2-dichloro-1,3-dithiacyclobutanone.
Biochem. J. 1976, 153, 737–739. [CrossRef] [PubMed]

146. Kregar, I.; Stanovnik, B.; Tisler, M.; Nisi, C.; Gubensek, F.; Turk, V. Inactivation studies of cathepsin D with diazo compounds.
Acta Biol. Med. Ger. 1977, 36, 1927–1930.

147. Lin, T.Y.; Williams, H.R. Inhibition of cathepsin D by synthetic oligopeptides. J. Biol. Chem. 1979, 254, 11875–11883. [CrossRef]
148. Gunn, J.M.; Owens, R.A.; Liu, W.S.; Glover, G.I. Biological activity of aspartic proteinase inhibitors related to pepstatin. Acta Biol.

Med. Ger. 1981, 40, 1547–1553. [PubMed]
149. Jupp, R.A.; Dunn, B.M.; Jacobs, J.W.; Vlasuk, G.; Arcuri, K.E.; Veber, D.F.; Perlow, D.S.; Payne, L.S.; Boger, J.; de Laszlo, S. The

selectivity of statine-based inhibitors against various human aspartic proteinases. Biochem. J. 1990, 265, 871–878. [CrossRef]
150. Rao, C.M.; Scarborough, P.E.; Kay, J.; Batley, B.; Rapundalo, S.; Klutchko, S.; Taylor, M.D.; Lunney, E.A.; Humblet, C.C.; Dunn,

B.M. Specificity in the binding of inhibitors to the active site of human/primate aspartic proteinases: Analysis of P2-P1-P1’-P2’
variation. J. Med. Chem. 1993, 36, 2614–2620. [CrossRef]

151. Schulze, H.; Kolter, T.; Sandhoff, K. Principles of lysosomal membrane degradation. Cellular topology and biochemistry of
lysosomal lipid degradation. Biochim. Biophys. Acta Mol. Cell Res. 2009, 1793, 674–683. [CrossRef]
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