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Abstract: Background and objectives: Ischemia–reperfusion (IR) caused by infrarenal abdominal aorta
cross-clamping is an important factor in the development of ischemia–reperfusion injury in various
distant organs. Materials and Methods: We investigated potential antioxidant/anti-inflammatory effects
of thymosin beta 4 (Tβ4) in a rat model of abdominal aortic surgery-induced IR. Tβ4 (10 mg/kg,
intravenous (i.v.)) was administered to rats with IR (90-min ischemia, 180-min reperfusion) at two
different periods. One group received Tβ4 1 h before ischemia, and the other received 15 min before
the reperfusion period. Results: Results were compared to control and non-Tβ4-treated rats with IR.
Serum, bronchoalveolar lavage fluid and lung tissue levels of oxidant parameters were higher, while
antioxidant levels were lower in the IR group compared to control. IR also increased inflammatory
cytokine levels. Tβ4 reverted these parameters in both Tβ4-treated groups compared to the untreated
IR group. Conclusions: Since there is no statistical difference between the prescribed results of both
Tβ4-treated groups, our study demonstrates that Tβ4 reduced lung oxidative stress and inflammation
following IR and prevented lung tissue injury regardless of timing of administration.
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1. Introduction

Occlusion and reperfusion of the infrarenal abdominal aorta (IAA) occurs in humans during
perivascular surgery [1] and when applied in experimental animal models [2,3]. This method is
known to cause ischemia–reperfusion injury (IRI) in various distant organs, such as the kidney, heart,
and lungs, which may lead to multiple organ dysfunction syndrome (MODS). A myriad of factors,
such as increased oxidative stress, neutrophil infiltration, various pro-inflammatory cytokine activities,
endothelial injury, and disruption of cell membrane ion transport mechanisms, all contribute to IRI [4].
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Reactive oxygen species (ROS) have a key role in the development of ischemia-reperfusion-induced
lung injury [5], with a crucial role in the sequence of events leading to lung failure [2]. ROS, derived
from H2O2, NADPH (Nicotinamide adenine dinucleotide phosphate) oxidase, and other enzymatic
reactions are toxic molecules that lead to tissue damage. In particular, the hydroxyl radical primarily
reacts with the lipid membrane components of the cell, causing lipid peroxidation that may lead
to increased permeability and cell lysis [5]. ROS mediates tissue injury by means of endothelial
activation, cytokine secretion, and leukocyte activation. Activated leukocytes provoke local and
systemic reperfusion inflammatory responses. Systemic inflammatory response syndrome (SIRS) is
often seen in patients undergoing abdominal aortic aneurysm repair, is the first step in the progression
of MODS, and is largely due to the activation of the inflammatory pathway mediated by cytokines [6].

During ischemia-reperfusion (IR) of the lungs, numerous pro- inflammatory cytokines, such as
tumor necrosis factor (TNF-α), interleukin 1β (IL-1β), and interleukin 6 (IL-6), and transcription factors,
including nuclear factor kappa B (NF-κB), are rapidly released. NF-κB upregulates pro-inflammatory
cytokines, chemokines, apoptotic signals, and cell adhesion molecules [7].

Antioxidants significantly delay or inhibit the oxidation of a substrate, even at low concentrations.
Endogen antioxidant enzymes, such as superoxide dismutase, glutathione reductase, catalase, and
glutathione peroxidase, protect the cell against the harmful effects of ROS. Therefore, measurement of
those enzymes indicates the magnitude of oxidative stress during IRI [2].

In this respect, compounds with antioxidant and anti-inflammatory properties, such as thymosin
beta 4 (Tβ4), can be good candidates for the prevention and treatment of IR-mediated lung injury.
Tβ4 was reported to have antioxidative [8,9], anti-inflammatory [9], anti-apoptotic, and regenerative
properties [10]. Tβ4 was shown to be expressed in various normal tissues of rat, mice, and human [10,11].
Tβ4 is found in all cells except erythrocytes; however, since it has no secretion signal, damaged cells
are held responsible for its presence in all body fluids, including saliva, tears, blood plasma, and
wound exudates [12]. In addition, Tβ4 is considered to be well tolerated and safe in pharmacological
and toxicological experimental studies performed on rats, dogs, monkeys [13], and humans [14].
Considering these characteristics, we planned our study with the thought in mind that Tβ4 may have
a protective effect against acute lung injury induced by aortic IR.

In the present study, we tested the hypothesis that the administration of Tβ4 (either before
ischemia or before reperfusion periods) may have a potential effect in a rat model of abdominal aortic
surgery-induced IR by suppressing both oxidant and inflammatory responses. We also aimed to
determine which period would be the most beneficial for systemic administration of Tβ4. Therefore,
we determined various oxidants levels, including lipid hydroperoxide (LOOH), malondialdehyde
(MDA), and pro-oxidant/antioxidant balance (PAB). We also evaluated antioxidant systems, including
superoxide dismutase (Cu-/Zn-SOD), glutathione (GSH), and ferric reducing antioxidant power (FRAP),
pro-inflammatory cytokines (TNF-α, IL-1β, IL-6), and transcription factor NF-κB in serum, to evaluate
the systemic inflammatory response, in both lung tissue and bronchoalveolar lavage fluid (BALF)
samples, to determine the lung injury in rats that underwent 90 min of IAA occlusion and 180 min of
reperfusion. We also examined histopathological changes in the lung tissue.

2. Materials and Methods

2.1. Animals

All experiments in this study were approved and reviewed by the Animal Research Committee of
the University of Istanbul on 31 May 2012 (2012/65). Care and handling of the animals was in accordance
with the Helsinki Declaration of 1975, as revised in 2000. Animals were housed in individual cages
in a temperature-controlled room (23 ± 1 ◦C) and a light–dark cycle-controlled environment (12 h)
with free access to food and water. Experiments were performed on 32 Sprague-Dawley rats with an
average body weight of 350 ± 5 g.
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2.2. Experimental Design

Rats were randomly divided into four groups as control (sham-operated), IR (with saline), Tβ4+IR,
and I+Tβ4+R groups (n = 8 per group). The control group underwent midline laparotomy and
dissection of IAA without occlusion. The IR group underwent laparotomy, followed by clamping
(occlusion) of the IAA for 90 min of ischemia and then 180 min of reperfusion. Rats received saline
solution in both control and IR groups. The rats in the Tβ4+IR group received Tβ4 (10 mg/kg,
intravenous (i.v.)) 1 h before ischemia. The rats in the I+Tβ4+R group received Tβ4 (10 mg/kg, i.v.)
15 min before reperfusion. We have modified the Tβ4 dose and dose range according to a previous
study by Philip and Kleinman. We used a single dose of 10 mg/kg (i.v.), which produces nontoxic
effects [13].

2.3. Surgical Procedure

The rats were anesthetized with pentobarbital sodium (60 mg/kg, intraperitoneal (i.p.)).
After tracheotomy, the animals were allowed to breathe spontaneously. Body temperature was
maintained at 37 ± 0.5 ◦C during the entire experiment. The skin was aseptically prepared, and a
midline laparotomy was performed. Then, 10 mL of saline was instilled into the peritoneal cavity to
prevent fluid loss. The abdominal aorta was exposed by gently deflecting the intestine loops to the
left. After fine isolation of the infrarenal segment, an atraumatic microvascular clamp (vascu-statts II,
midistraight 1001-532; Scanlan Int. St Paul, MN, USA) was placed on the aorta. The abdomen was
closed right after clamping, and the surgical area was covered with a humidified gauze compress
throughout the entire experiment to prevent drying. The microvascular clamp on the infrarenal
abdominal aorta (IAA) was removed after 90 min, and the reperfusion period was for 180 min. Before
induction of ischemia, each animal received 50 U/kg (total volume 500 µL) heparin (Nevparin; Mustafa
Nevzat Drug Company, Istanbul, Turkey) in saline intravenously via a lateral tail vein injection. Aortic
occlusion and reperfusion were confirmed by the loss and reappearance of satisfactory pulsation in
the distal aorta. The changes in the recording of systemic arterial blood pressures also confirmed this
procedure. Bronchoalveolar lavage fluid (BALF) and blood samples for serum/plasma were obtained
right after termination of the reperfusion period. At the end of the experiment, the animals were
euthanized by deep anesthesia (pentobarbital sodium, 150 mg/kg, i.v. tail vein). Then, lungs were
removed immediately and washed in 0.9% NaCl. The vertical outer half of the right lung was stored in
formalin for histologic evaluation. The lower lobe of the right lung was used to determine the ratio of
the lung wet to dry (W/D) weight. The remaining portions of the lungs and serum/plasma samples
were stored at −80 ◦C until assayed for levels of oxidative stress and inflammation. LOOH, MDA,
GSH, SOD, PAB, FRAP, TNF-α, IL-6, IL-1β, and NF-κB levels were measured spectrophotometrically
or with ELISA in all samples.

2.4. Chemicals

Synthetic Tβ4 was provided as a gift from RegeneRx Biopharmaceuticals, Rockville, MD, USA.
Synthetic Tβ4 was stored at−20 ◦C; all other reagents were stored at 4 ◦C. The reagents were equilibrated
at room temperature before use.

2.5. Bronchoalveolar Lavage Fluid (BALF)

The left main bronchus was cannulated and secured. Saline (5 mL) was then injected as three
aliquots of 5 mL each. Each aliquot was injected quickly and then withdrawn slowly three times to obtain
the BALF specimen. Fluid recovery was routinely 90% or greater. This fluid was centrifuged (1500 rpm
for 8 min at 4 ◦C). The supernatant was stored at −80 ◦C until assayed for biochemical evaluations.
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2.6. Biochemical Analyses

2.6.1. Determination of Protein Concentration

The bicinchoninic acid assay (BCA) was performed using Thermo Scientific Pierce BCA Protein
Assay Kit (Life Technologies Cat No: 23227) to measure (absorbance at 562 (A562) nm) total protein
concentration compared to a protein standard. Bovine serum albumin (BSA) was used as a protein
standard. Each sample in the plate was measured in BIO-TEK ELx800 Universal Microplate Reader,
and concentrations were calculated using a standard curve. The samples were stored at −80 ◦C for
later use.

2.6.2. Oxidative Stress Parameters Measurements in Serum, BALF, and Lung Tissue Samples

Lipoperoxidation of all samples was ascertained by the formation of malondialdehyde (MDA),
which was estimated using the modified thiobarbituric acid method [15]. Lipid hydroperoxide (LOOH)
levels were determined spectrophotometrically according to the method of ferrous oxidation with
xylenol orange version 2 (FOX2) [16].

The non-enzymatic antioxidant level of samples was evaluated with the ferric reducing
antioxidant power (FRAP) assay and was performed according to the protocol of Benzie and
Strain [17]. The pro-oxidant/antioxidant balance (PAB) assay was performed according to the method
of Alamdari et al. [18]. The values of the PAB are expressed in arbitrary Hamidi–Koliakos (HK) units,
which represent the percentage of hydrogen peroxide in the standard solution.

The enzymatic antioxidant defense system of samples was evaluated with both Cu-/Zn-SOD
activities and glutathione levels. The Cu-/Zn-SOD was determined using the method of Sun et al. [19]
via inhibition of nitroblue tetrazolium (NBT) reduction with xanthine/xanthine oxidase used as a
superoxide generator. One unit of Cu-/Zn-SOD was defined as the amount of protein that inhibits the
rate of NBT reduction by 50%. The method of Beutler et al. [20]. was used for the determination of
glutathione (GSH) levels. The GSH concentration was calculated with a molar absorption coefficient
(ε) = 1.36 × 10−4 M−1

·cm−1 at a wavelength (λ) = 412 nm, and a standard curve was plotted at 540 nm
using a spectrophotometer. All measurements related to oxidative stress were done as clearly stated in
our previous studies [2,3,21]. The other biochemical parameters were measured by routine methods
with commercial kits.

2.6.3. Measurement of Inflammatory Cytokines and Nuclear Factor Kappa B

The levels of TNF-α, IL-1β, and IL-6 were determined by ELISA using commercially available kits
from eBioscience (San Diego, CA, USA). The level of nuclear factor kappa B (NF-κB) was determined
by ELISA using a commercially available kit from Abcam (Cambridge, MA, USA). All samples were
measured in duplicate using the protocol provided by the manufacturer.

2.7. Histological Evaluation

For histological evaluation, lung tissues were dissected, fixed in 10% neutral formalin, embedded
in paraffin wax, and then cut into 5-µm-thick sections. The sections were placed on slides, then
deparaffinized in xylene, and rehydrated in graded alcohol. Slides were stained with hematoxylin and
eosin (H&E) for basic histological evaluation and for detecting the general tissue morphology using
standard protocols. The slides were examined and photographed under a light microscope (Olympus
BX61, Tokyo, Japan). Two independent histologists assessed and scored the tissue injuries in a blinded
fashion according to a scoring system modified from Kandilci et al. [22] and Pirat et al. [23]. The scoring
was graded as follows: score “0 (null)” indicates 0% involvement, score “1” indicates 1–25% involvement,
score “2” indicates 26–50% involvement, score “3” indicates 51–75% involvement, and score “4” indicates
75–100% involvement. Five parameters (interstitial edema/infiltration, intra-alveolar edema/infiltration,
intra-alveolar hemorrhage, capillary congestion, and airway epithelial cell damage) were evaluated for
lung injury, and the total lung injury score was calculated.
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2.8. Statistical Analysis

Values are reported as means ± standard error of the mean (SEM). Statistical analysis was
performed with GraphPad Prism version 5.0 for Windows (GraphPad Software v5.0, San Diego, CA,
USA). One-way ANOVA analysis was used for comparisons; post hoc analyses were used with Tukey’s
post hoc test when p < 0.05. For all analyses, p < 0.05 was considered significant.

3. Results

Experiments were performed on 32 Sprague-Dawley rats randomly divided into four groups as
control (sham-operated), IR (with saline), Tβ4+IR, and I+Tβ4+R groups (n = 8 per group).

3.1. Alterations of W/D (Wet to Dry) Weight Analysis

W/D ratio levels of the lung were as follows: control group, 3.23 ± 0.14; IR group, 5.44 ± 0.27;
Tβ4 + IR group, 3.94 ± 0.32; and I+Tβ4+R group, 3.42 ± 0.29. The lung W/D ratio was significantly
increased in the IR group compared with control (p < 0.001). Administration of Tβ4 markedly reduced
the lung W/D ratio in both Tβ4+IR and I+Tβ4+R groups (p < 0.01 and p < 0.001, respectively vs. IR).

3.2. Changes of Oxidative Stress Parameters in Rats

Occlusion and reperfusion of infrarenal abdominal aorta significantly increased LOOH, MDA,
and PAB levels and significantly decreased SOD and FRAP levels in serum, BALF, and lung tissue
samples compared to control group animals. Administration of Tβ4 before ischemia and before
reperfusion periods significantly decreased LOOH, MDA, and PAB levels while significantly increasing
SOD and FRAP levels in all available samples (Table 1).

Table 1. The results of serum, bronchoalveolar lavage fluid (BALF), and lung tissue oxidative stress
parameters in indicated groups.

Groups

Control
n = 8

IR
n = 8

Tβ4 + IR
n = 8

I+Tβ4+R
n = 8

Serum Oxidant
/Anti-oxidant

levels

LOOH (nmol/L) 0.42 ± 0.02 0.30 ± 0.02 *** 0.35 ± 0.01 , 0.32 ± 0.02 ,,,

MDA (µmol/mL) 18.11 ± 0.72 8.49 ± 0.36 *** 10.33 ± 1.01 ,,, 8.84 ± 0.48 ,,,

GSH † (µmol/g Hb) 0.84 ± 0.01 1.19 ± 0.06 *** 1.02 ± 0.06 , 1.07 ± 0.03 ,,,

SOD (U/L) 17.95 ± 1.50 10.81 ± 0.74 *** 16.30 ± 0.70 ,, 17.42 ± 1.24 ,,

PAB (H2O2 %) 24.37 ± 1.07 41.87 ± 2.37 *** 26.58 ± 1.72 ,,, 25.23 ± 2.24 ,,,

FRAP (mmol uric acid) 0.04 ± 0.00 0.08 ± 0.01 *** 0.06 ± 0.01 , 0.07 ± 0.01 ,,

BALF Oxidant
/Anti-oxidant

levels

LOOH (nmol/L) 4.08 ± 0.22 5.26 ± 0.13 *** 4.30 ± 0.17 ,, 4.28 ± 0.14 ,,

MDA (µmol/mL) 13.76 ± 0.24 19.98 ± 1.53 *** 14.59 ± 0.32 ,,, 14.42 ± 0.36 ,,,

GSH (µmol/L) 0.69 ± 0.02 0.25 ± 0.02 *** 0.60 ± 0.05 ,,, 0.63 ± 0.02 ,,,

SOD (U/L) 19.50 ± 1.95 10.71 ± 0.86 *** 16.84 ± 1.00 , 17.91 ± 1.03 ,,

PAB (H2O2 %) 36.69 ± 0.82 43.34 ± 0.58 *** 37.75 ± 1.30 ,, 37.49 ± 1.00 ,,

FRAP (mmol uric acid) 0.06 ± 0.00 0.02 ± 0.01 *** 0.04 ± 0.01 , 0.05 ± 0.01 ,,

Tissue Oxidant
/Anti-oxidant

levels

LOOH (nmol/wet tissue) 3.59 ± 0.03 4.36 ± 0.05 *** 3.76 ± 0.07 ,,, 3.76 ± 0.02 ,,,

MDA (µmol/wet tissue) 65.79 ± 0.68 84.09 ± 1.72 *** 69.42 ± 1.09 ,,, 69.54 ± 0.37 ,,,

GSH (µmol/wet tissue) 0.34 ± 0.03 0.17 ± 0.02 *** 0.28 ± 0.02 ,, 0.30 ± 0.01 ,,,

SOD (U/wet tissue) 20.77 ± 1.62 13.39 ± 0.93 ** 18.79 ± 1.28 , 20.64 ± 0.92 ,,

PAB (H2O2 % /wet tissue) 113.40 ± 0.47 135.20± 2.33 *** 120.60± 1.63 ,,, 118.00± 2.39 ,,,

FRAP (mmol uric acid /wet tissue) 1.53 ± 0.03 1.01 ± 0.03 *** 1.38 ± 0.01 ,,, 1.45 ± 0.01 ,,,

LOOH: lipid hydroperoxide, MDA: malondialdehyde, PAB: pro-oxidant/anti-oxidant balance, Cu,Zn-SOD:
superoxide dismutase, GSH: glutathione, FRAP: ferric reducing antioxidant power (** p < 0.01, *** p < 0.001
vs. control; , p < 0.05, ,, p < 0.01, ,,, p < 0.001 vs. IR). † Erythrocyte GSH levels.

3.3. Changes of Inflammatory Cytokines and NF-κB in Rats

Serum, BALF and lung tissue TNF-α, IL-1β and IL-6 levels were increased in aortic IR induced
lung injury and the increase of NF-κB in all samples with IR are parallel to the increases of those
pro-inflammatory cytokines. Tβ4 administration in both treated groups led to a normalization in both
inflammatory cytokines and NF-κB levels (Table 2).
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Table 2. The results of serum, BALF, and lung tissue pro-inflammatory cytokines and nuclear factor
kappa B (NF-κB) in indicated groups.

Groups

Control
n = 8

IR
n = 8

Tβ4 + IR
n = 8

I+Tβ4+R
n = 8

Serum
pro-inflammatory

cytokines and
NF-κB levels

TNF-α (pg/mL) 45.36 ± 1.43 79.56 ± 3.18 *** 50.46 ± 1.17 ,,, 45.49 ± 1.14 ,,,

IL-6 (pg/mL) 1517.00 ± 49.73 2448.00 ± 60.83 *** 1561.00 ± 54.31 ,,, 1555.00 ± 44.22 ,,,

IL-1β (pg/mL) 42.79 ± 3.19 81.82 ± 2.58 *** 50.11 ± 3.32 ,,, 46.32 ± 2.22 ,,,

NF-κB (ng/mL) 6.00 ± 0.52 12.05 ± 1.30 *** 7.10 ± 0.25 ,,, 6.74 ± 0.25 ,,,

BALF
pro-inflammatory

cytokines and
NF-κB levels

TNF-α (pg/mL) 45.74 ± 1.63 78.58 ± 5.54 *** 53.95 ± 2.77 ,,, 51.35 ± 1.66 ,,,

IL-6 (pg/mL) 1478.00 ± 52.67 2630.00 ± 71.86 *** 1607.00 ± 70.06 ,,, 1541.00 ± 47.37 ,,,

IL-1β (pg/mL) 233.90 ± 10.33 411.60 ± 27.90 *** 247.00 ± 19.54 ,,, 227.10 ± 11.80 ,,,

NF-κB (ng/mL) 9.63 ± 0.35 17.56 ± 1.88 *** 10.25 ± 0.48 ,,, 9.78 ± 0.45 ,,,

Tissue
pro-inflammatory

cytokines and
NF-κB levels

TNF-α (pg/100 µg protein) 44.80 ± 1.01 72.32 ± 4.01 *** 46.57 ± 1.02 ,,, 42.59 ± 1.19 ,,,

IL-6 (pg/100 µg protein) 109.30 ± 1.63 164.40 ± 3.07 *** 117.60 ± 2.25 ,,, 112.60 ± 1.94 ,,,

IL-1β (pg/100 µg protein) 130.50 ± 7.63 190.00 ± 7.14 *** 152.20 ± 3.69 ,, 130.50 ± 7.81 ,,,

NF-κB (ng/100 µg protein) 1.00 ± 0.04 1.50 ± 0.06 *** 1.17 ± 0.03 ,,, 1.05 ± 0.06 ,,,

TNF-α: tumor necrosis factor alpha, IL-1β: Interleukin 1β, IL-6: Interleukin 6, NF-κB: nuclear factor-kappa B
(*** p < 0.001 vs. control; ,, p < 0.01, ,,, p < 0.001 vs. IR).

3.4. Changes in Lung Histology

The lungs of the sham-operated rats had minimal histological changes (Figure 1A). IR resulted
in moderate lung damage, including capillary congestion, interstitial edema and infiltration, and
intra-alveolar hemorrhage. The alveolar spaces were filled with mononuclear and neutrophilic
infiltrates. Interstitial edema and inflammatory cell infiltration, together with capillary congestion,
were noted to cause thickening and destruction of the alveolar walls in some areas (Figure 1B).
The alveoli seem to be reduced in volume, and compensatory dilatation of the alveoli and alveolar sacs
was seen in different neighboring regions in some specimens. The total lung injury score of the IR group
was significantly higher when compared to that in the control group (p < 0.01) (Figure 1E). The injured
areas exhibited heterogeneity throughout the specimens, with the pathological changes mentioned
above interspersed with some areas showing only minimal changes. There was also swelling and
vacuolization of the bronchiolar epithelium, and there was evidence of denuding in significant portions
of the epithelium.

In both Tβ4+IR and I+Tβ4+R groups, the total lung injury score was significantly lower when
compared to that in the IR group (p < 0.01) (Figure 1E). Animals in groups Tβ4+IR and I+Tβ4+R
had significantly less lung damage than that in the IR group (p < 0.01) (Figure 1C,D). Some areas in
some sections showed thickening of the interalveolar septum due to capillary dilatation and stasis
and interalveolar infiltration, but it was less prominent than that in the IR group. The bronchiolar
epithelium was partly desquamated. There was no statistically significant difference between the two
treatment protocols regarding the total lung injury score (Figure 1E).
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Figure 1. Photomicrographs of lung samples and histological scoring of lung tissue. * p < 0.05, *** p < 
0.001 vs. control; ≠≠≠ p < 0.001 vs. ischemia–reperfusion (IR). (A) Lung samples of the control group 
were stained with hematoxylin and eosin (H&E). The control group shows minimal negligible 
histological alterations in lung tissue. The alveolar walls are very thin, and the majority of the alveoli 
contain no cells; A: alveolus. (B) Representative photomicrographs of lung samples of the IR group 
stained with hematoxylin and eosin. The IR group shows moderate lung ischemia–reperfusion injury 
with marked blood vessel congestion (black arrow) and leukocytic infiltration of the alveolar lumen 
(red arrow); A: alveolus. (C) Representative photomicrographs of lung samples of thymosin beta 4 
(Tβ4)/IR stained with hematoxylin and eosin. The image demonstrates the improvement of the lung 
histopathology regarding the lung ischemia–reperfusion injury. (D) Representative 
photomicrographs of lung samples of I/Tβ4/R stained with hematoxylin and eosin. The I/Tβ4/R 
group, similar to the Tβ4/IR group, has less damage than the IR group; red arrow: infiltrative cells in 
the lumen of the alveoli. (E) Histological scoring of lung tissue. 

4. Discussion  

In the present study, we found that occlusion (90 min) and reperfusion (180 min) of infrarenal 
abdominal aorta (IAA)-induced IR significantly increased LOOH, MDA, and PAB levels and 
significantly decreased Cu-/Zn-SOD and FRAP levels in serum, BALF, and lung tissue samples. In 
addition to the oxidative stress-related biomarkers in all samples, pro-inflammatory cytokines 
including TNF-α, IL-6, IL-1β, and NF-κB were excessively increased. These results indicate that the 
activation of systemic ROS and inflammatory mediators triggers a sequence of events leading to acute 
lung injury (ALI). To the best of our knowledge, this is the first study to show that Tβ4 administration 
(before ischemia or before reperfusion) was able to improve IR-mediated ALI. Tβ4 achieved that goal 
by reducing oxidative stress, increasing antioxidant enzymes, reducing inflammation, and 
preventing cellular injury. These findings were supported by histological changes observed in lung 
tissue samples in all groups. 

Recent studies suggested that oxidative stress [2], inflammation [24], cell necrosis, and apoptosis 
[4] may be held responsible for the development of acute lung injury all together. The lung is one of 
the most vulnerable organs to oxidative stress due to its specific structure and function [25]. It is clear 
that the production of reactive oxygen species (ROS) during both ischemia and reperfusion is a major 
factor contributing to IR-induced lung injury [2,3,21].  

The first product of lipid peroxidation, LOOH, decomposes into aldehydes including MDA. 
MDA is a highly toxic molecule that rapidly interacts with DNA and proteins and is often referred to 
as mutagenic [7]. In the present study, the severely accumulated lipid peroxidation products, LOOH 
and MDA levels, indicated increased formation of ROS in both lung tissue and BALF, as well as in 
serum in the IR group. 

Figure 1. Photomicrographs of lung samples and histological scoring of lung tissue. * p < 0.05,
*** p < 0.001 vs. control; ,,, p < 0.001 vs. ischemia–reperfusion (IR). (A) Lung samples of the control
group were stained with hematoxylin and eosin (H&E). The control group shows minimal negligible
histological alterations in lung tissue. The alveolar walls are very thin, and the majority of the alveoli
contain no cells; A: alveolus. (B) Representative photomicrographs of lung samples of the IR group
stained with hematoxylin and eosin. The IR group shows moderate lung ischemia–reperfusion injury
with marked blood vessel congestion (black arrow) and leukocytic infiltration of the alveolar lumen
(red arrow); A: alveolus. (C) Representative photomicrographs of lung samples of thymosin beta 4
(Tβ4)/IR stained with hematoxylin and eosin. The image demonstrates the improvement of the lung
histopathology regarding the lung ischemia–reperfusion injury. (D) Representative photomicrographs
of lung samples of I/Tβ4/R stained with hematoxylin and eosin. The I/Tβ4/R group, similar to the
Tβ4/IR group, has less damage than the IR group; red arrow: infiltrative cells in the lumen of the alveoli.
(E) Histological scoring of lung tissue.

4. Discussion

In the present study, we found that occlusion (90 min) and reperfusion (180 min) of infrarenal
abdominal aorta (IAA)-induced IR significantly increased LOOH, MDA, and PAB levels and significantly
decreased Cu-/Zn-SOD and FRAP levels in serum, BALF, and lung tissue samples. In addition to the
oxidative stress-related biomarkers in all samples, pro-inflammatory cytokines including TNF-α, IL-6,
IL-1β, and NF-κB were excessively increased. These results indicate that the activation of systemic ROS
and inflammatory mediators triggers a sequence of events leading to acute lung injury (ALI). To the
best of our knowledge, this is the first study to show that Tβ4 administration (before ischemia or before
reperfusion) was able to improve IR-mediated ALI. Tβ4 achieved that goal by reducing oxidative
stress, increasing antioxidant enzymes, reducing inflammation, and preventing cellular injury. These
findings were supported by histological changes observed in lung tissue samples in all groups.

Recent studies suggested that oxidative stress [2], inflammation [24], cell necrosis, and apoptosis [4]
may be held responsible for the development of acute lung injury all together. The lung is one of the
most vulnerable organs to oxidative stress due to its specific structure and function [25]. It is clear that
the production of reactive oxygen species (ROS) during both ischemia and reperfusion is a major factor
contributing to IR-induced lung injury [2,3,21].

The first product of lipid peroxidation, LOOH, decomposes into aldehydes including MDA.
MDA is a highly toxic molecule that rapidly interacts with DNA and proteins and is often referred to
as mutagenic [7]. In the present study, the severely accumulated lipid peroxidation products, LOOH
and MDA levels, indicated increased formation of ROS in both lung tissue and BALF, as well as in
serum in the IR group.
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These reactive aldehydes accelerate cell death by disrupting the normal cellular function through
reactions with proteins, nucleic acids, and amino-phospholipids. Gulmen et al. found that levels of
MDA in lung tissue and BALF significantly increased after aortic IR [26]. Therefore, MDA is regarded
as an indirect indicator of the formation of oxygen free radicals and reactive oxygen species.

Many enzymes such as SOD and reduced GSH may exert protective effects against the toxic
oxygen metabolites in lung tissue [27]. In our study, low SOD and GSH activities in the aortic IR group
demonstrated that endogenous SOD and GSH were consumed, which causes an oxidative defensive
response. Serum [20], BALF, and lung tissue [2] SOD and GSH levels were found decreased in our
previous studies and in other similar studies with an experimental lung injury model [28].

In our results, in accordance with the increase in lipid peroxidation products and decrease in
antioxidant enzyme levels, PAB levels were increased and FRAP levels were decreased in serum, BALF,
and lung tissue samples in the IR group. These findings suggest that the pro-oxidant/antioxidant
balance changed in favor of pro-oxidants.

In the present study, the administration of Tβ4 before ischemia and before reperfusion significantly
decreased the concentration of LOOH and MDA. This finding is an important indicator for the capability
of Tβ4 in the prevention of ALI formation, since oxidative stress is a key factor in ALI development.

On the other hand, in accordance with the decrease in PAB and increase in FRAP, the increase in both
SOD and GSH levels in serum, BALF, and lung tissue samples suggests that the pro-oxidant/antioxidant
balance changed in favor of antioxidants following treatment with Tβ4.

Furthermore, Tβ4 was shown to elicit a protective effect against cell death by increasing the
expression of antioxidant enzymes, by decreasing formation of superoxide radicals, and by increasing
the membrane potential of mitochondria against oxidative stress [8]. These results also support our
findings. Many studies like ours revealed the antioxidant effect of Tβ4. However, the underlying
mechanism of this effect is not completely understood.

Aortic IR injury induces systemic effects in the lung, kidney, heart, and liver, and it is characterized
by neutrophil sequestration and the release of significant amounts of ROS into circulation [29].
The increase in ROS triggers the expression of several pro-inflammatory genes, and this phenomenon is
called post-ischemic inflammation, which is another factor responsible for the formation of ALI [7,30].
ROS can attack alveolar capillary membranes causing changes in the lung permeability and an increase
in extravascular lung water, resulting in lung edema [2]. High-permeability pulmonary edema is
a hallmark feature of ALI. In the present study, the lung W/D ratio was significantly increased in
the IR group compared with control, which indicates edema formation. In addition, the increase in
oxidants and inflammatory mediators in BALF samples of the IR group indicates alveolar capillary
membrane disruption.

In the clinical and experimental models of IR, various pro-inflammatory cytokines like TNF-α,
IL-1β, and IL-6 were suggested to be responsible for ALI development [4]. In our study, we found
that serum, BALF, and lung tissue TNF-α, IL-1β, and IL-6 levels were increased in aortic IR induced
lung injury.

TNF-α was shown to play a key role in lung reperfusion injury, neutrophil activation,
and infiltration to the lungs [31]. TNF-α was reported to cause direct mitochondrial toxicity and to
induce apoptotic and necrotic cell death.

Alveolar epithelial cells are usually identified as targets of inflammatory cells [32]. Activated
neutrophils cause the release of free radicals, proteolytic enzymes, and peroxidases. Therefore,
an increase in pulmonary vascular permeability accompanies ALI [33].

On the other hand, TNF-αwas reported to be a strong stimulant of inducible nitric oxide synthase
(iNOS) and may cause a large amount of nitric oxide (NO) production. Several studies pointed out
that the production of NO in high quantity causes inflammation, as well as nitrosative stress [34].

IL-6 is accepted as an early biomarker of tissue damage, and it is thought to be the key
pro-inflammatory cytokine for accumulation of neutrophils in the lung. IL-6 levels were found
to be significantly elevated in patients going under abdominal aortic aneurism (AAA) surgery [33].
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TNF-α and IL-6 stimulate further liberalization of cytokines, which leads to classic symptoms of
inflammation [6].

IL-1 β levels were shown to increase in lung injury caused by lower-extremity IR, and it is referred
to as an important mediator in local and interorgan IR [30].

In the present study, the increase in TNF-α, IL-1β, and IL-6 levels in BALF samples of the IR group
also indicates alveolar capillary membrane disruption.

Furthermore, these indicated results support our histological findings of interstitial edema
formation and neutrophil infiltration in the alveolar area of the experimental group of rats (Figure 1).
According to our histological findings, characteristic morphologic changes like capillary congestion in
pulmonary capillaries, interstitial edema, infiltration. and intra-alveolar hemorrhages were observed
in IR group rats. However, treatment with Tβ4, either before ischemia or prior to reperfusion, led to
a significant histological improvement of the lung tissue, recovering the morphologic changes and
damage caused by IR (Figure 1). Those findings suggest that Tβ4 may prevent free-radical formation
and cytokine-mediated acute inflammation.

On the other hand, the increase in the production of ROS was reported to activate the transcription
factor NF-κB [8]. In addition, TNF-α and IL-1β are considered to be cytokines that activate NF-κB.
NF-κB is an important transcription factor that upregulates gene expression of various pro-inflammatory
cytokines including TNF-α, IL-1β, and IL-6 [35] chemokines, growth factors, and cell-surface adhesion
molecules and apoptosis signals which play an important role in the pathogenesis of ALI. Qiu et al. [36]
explored whether Tβ4 inhibits TNF-α-induced NF-κB activation. Sosne et al. [37] also found that Tβ4
suppression of TNF-α-induced NF-κB activation is not immediate, as maximal effects of Tβ4 were
time-related. Also, NF-κB was reported to be associated with initiation of neutrophil infiltration to
lungs, increased epithelial permeability, and lipid peroxidation in animal models [35].

According to our findings, the increase of NF-κB in all samples after IR is parallel to the increases
of pro-inflammatory cytokines. Therefore, we may say that the NF-κB-mediated upregulation of
pro-inflammatory cytokines is responsible for the inflammation-mediated ALI. On the other hand, both
pre-ischemia and pre-reperfusion groups of rats treated with Tβ4 showed decreased pro-inflammatory
cytokine levels. These findings clearly indicate that Tβ4 prevents inflammation-mediated ALI via
NF-κB deactivation and, therefore, decreasing pro-inflammatory cytokine levels. Crockford et al.
suggested that Tβ4 causes its anti-inflammatory effect by suppressing the activation and translocation
of NF-κB [9]. These studies support our results.

While these results are all in favor of Tβ4, there are studies where Tβ4 was not found to be
effective, such as that by Stark et al. [38]. They studied a cardiopulmonary bypass model in a pig
and investigated whether the myocardial ischemia–reperfusion injury could be attenuated by Tβ4
application. While they did not find promising results in their study, this was very important as it was
one of the few in vivo studies carried out on larger animals.

5. Conclusions

Finally, to sum up our findings, we may conclude that both pre-ischemia and pre-reperfusion
treatment with Tβ4 improves impaired redox homeostasis and the inflammatory process caused by
aortic IR-induced lung injury in rats.

Our study clearly demonstrated that administrating Tβ4 not only reduced lung oxidative stress
and inflammation following infrarenal abdominal aortic IR model, but also prevented lung tissue
injury. We propose that the mechanism underlying this protective effect of Tβ4 for improving
lung injury involves the reduction of oxidative stress and subsequent lipid peroxidation, and the
inhibition of inflammatory response by reducing the levels of pro-inflammatory cytokines and NF-κB.
Administration of Tβ4 before surgery can be useful for preventing the development of inflammation
and/or oxidative stress caused by IR injury.
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Nevertheless, further experimental studies are required to specifically define the precise mechanism
of antioxidant and anti-inflammatory effects of Tβ4 on a molecular basis. In this way, the formation of
remote organ failure could be prevented to some extent.
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