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Melanoma is the deadliest form of skin cancer. Although targeted therapies and
immunotherapies have revolutionized the treatment of metastatic melanoma, most
patients are not cured. Therapy resistance remains a significant clinical challenge.
Melanoma comprises phenotypically distinct subpopulations of cells, exhibiting distinct
gene signatures leading to tumor heterogeneity and favoring therapeutic resistance.
Cellular plasticity in melanoma is referred to as phenotype switching. Regardless of
their genomic classification, melanomas switch from a proliferative and differentiated
phenotype to an invasive, dedifferentiated and often therapy-resistant state. In this review
we discuss potential mechanisms underpinning melanoma phenotype switching, how
this cellular plasticity contributes to resistance to both targeted therapies and
immunotherapies. Finally, we highlight novel strategies to target plasticity and their
potential clinical impact in melanoma.
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INTRODUCTION

Melanoma is the deadliest form of skin cancer due to its high metastatic potential. Although MAP-
Kinase pathway (MAPK)-targeted therapies and immunotherapies have revolutionized the
management of patients with metastatic melanoma, their clinical benefit is limited by the almost
inevitable development of resistance and tumor recurrence. Metastasis and therapy resistance of
numerous tumor types is associated with intratumoral heterogeneity and cancer cell plasticity (1–5).
Melanoma has been well described to comprise phenotypically distinct subpopulations of cells.
Gene expression analyses of cultured melanoma cells identified two predominant cell populations,
exhibiting either ‘proliferative’ or ‘invasive’ phenotypes (6–9), reminiscent of the intratumoral
heterogeneity present in patient-derived melanomas (10, 11). Throughout this review we will refer
to a two-state system, the proliferative state/phenotype which is described as “differentiated”,
“epithelial-like”, with high expression of microphthalmia-associated transcription factor (MITF) as
a hallmark (MITFhigh/AXLlow), while the invasive phenotype is described as “undifferentiated/
dedifferentiated”, “mesenchymal-like”, with a marked expression of the receptor tyrosine kinase
AXL (MITFlow/AXLhigh) (10, 12, 13). Over the years, additional cell states have been defined with
unique gene expression signatures, and differential therapeutic sensitivity and metastatic potential
associated with each of these phenotypes (Figure 1) (14–16).
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Huang et al. Melanoma Plasticity Enables Therapy Resistance
Similar mutations and gene expression patterns present in
primary and metastatic melanomas suggest a mechanism
independent of clonal evolution as a major driver of melanoma
progression (17–21). An alternative concept of cancer stem cells
provides one explanation for the phenotypic and functional
heterogeneity among cancer cells in some tumors (2, 22). This
model describes a hierarchy of intratumoral subpopulations
comprising mainly tumor cells that do not form tumors when
implanted into immunodeficient mice and a rare population of
cancer cells with stem cell-like properties, which are thought to
drive tumor progression, tumor dissemination, and therapy
resistance (2, 22). Studies have shown however that all
melanoma cells, and not just a small subset of stem-like cells,
possess tumor initiating potential and can restore phenotypic
heterogeneity when injected into immunodeficient mice,
suggesting non-hierarchical plasticity of melanoma cells (23,
24). Notably, in the above-mentioned experimental settings,
single melanoma cells were artificially implanted into
immunocompromised mice, and subsequently formed tumors
with restored heterogeneity (23, 24). However, for a tumor-
initiating cell to drive metastasis, it needs to be invasive. In most
cases, metastases are driven by several tumor cells in a
cooperative manner and heterogeneity is therefore maintained
and reprogrammed at the metastatic site (13, 22). Thus, a new
paradigm termed “phenotype switching” emerged to better
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describe the plasticity of melanoma cells and their stem-like
behavior. This model predicts that melanoma metastasis and
phenotypic heterogeneity is driven by specific gene expression
programs rather than by the accumulation of irreversible genetic
events. Microenvironmental conditions, coupled with melanoma
cell-intrinsic pathways, regulate melanoma cell switching
between a proliferative state or a mesenchymal-like invasive
state (22). In line with this paradigm, the ‘proliferative,
differentiated, and often therapy-sensitive’ and ‘invasive,
dedifferentiated/undifferentiated, and often therapy-resistant’
melanoma cells can co-exist in bulk tumor tissues (10, 11) and
are not defined by irreversible genetic lesions (6, 25). Rather,
melanoma cells are phenotypically plastic, or ‘phenotype switch’,
in vitro and in vivo (6, 15, 25, 26), via a process akin to the
reversible epithelial-to-mesenchymal transition (EMT), which is
characteristic of epithelial tumors.

Hyperactivation of tumor cell-intrinsic MAPK and PI3K
signaling, microenvironmental stress conditions (i.e., hypoxia,
nutrient limitation, and chronic inflammation) are commonly
observed in melanomas of all genomic classifications. These
varied growth conditions induce several stress adaptive
pathways in melanoma cells, such as the HIF1a pathway, p38
MAPK pathway, and integrative stress response (ISR), which are
generally believed to be essential drivers of phenotype switching.
Frontline therapies, such as MAPK-targeted therapy and
FIGURE 1 | Melanoma cell states. At least 6 different melanoma cell states have been thus far characterized, including a MAPKi-induced hyperdifferentiated/
pigmented state, a MITFhigh/AXLlow melanocytic/differentiated state, an intermediate/transitory state, a CD36+ starved-like melanoma cell (SMC) state, a MITFlow/
AXLhigh dedifferentiated/undifferentiated state, and a MITFlow/NGFRhigh neural crest stem cell (NCSC)-like state (3, 13–16). While the hyperdifferentiated state is
induced by MAPK-targeted therapy and the intermediate state exhibit both proliferative and invasive phenotypes, the melanocytic state generally corresponds to the
“proliferative” state, and the SMC state, the dedifferentiated state, and the NCSC-like state together make up the “invasive” state (14–16). Notably, in many cases, an
“invasive” phenotype is used to describe the MITFlow/AXLhigh dedifferentiated population, while in some other cases, the “invasive” state refers to both AXLhigh/
dedifferentiated and NGFRhigh/dedifferentiated populations. To avoid confusion, cell state-specific markers and MITF activity are often combined to define each state.
For example, it is generally accepted that the melanocyte state is marked as MITFhigh/AXLlow, the SMC state is marked with CD36+ and medium activity of MITF, the
dedifferentiated state is defined as MITFlow/AXLhigh and the NCSC-like state is defined as MITFlow/NGFRhigh/SOX10+/GFRA2+ (3, 13–16).
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immunotherapy, can further induce these common stress signals.
Together, these factors cooperate to promote melanoma
phenotype switching, which will ultimately determine the
invasive potential and therapeutic response regardless of their
genomic mutations (14, 16). Therefore, blocking phenotypic
switching is a promising and universal strategy in melanoma
to prevent metastasis and overcome drug-resistance.

Here, we dissect mechanisms underpinning melanoma
phenotype switching in response to a variety of stress
conditions and their link to therapy resistance. We highlight
recent studies demonstrating novel strategies to target plasticity
and their potential clinical impact in melanoma. While there are
a number of subtypes of melanoma, including acral and mucosal,
in this review we focus on cutaneous melanoma, with a short
discussion of recent reports of plasticity in uveal melanoma.
MECHANISMS UNDERPINNING
MELANOMA PHENOTYPE SWITCHING

For the past 20 years, several studies on melanoma plasticity have
focused on characterizing gene expression signatures and
transcriptional programs of the proliferative versus the invasive
states of melanoma cells (3, 13, 27). These studies have provided
key insights into the molecular mechanisms driving phenotype
switching and their relationship to metastasis and therapy resistance.

Overview of Phenotype Switching
Associated Gene Signatures
The melanocyte lineage is derived from the neural crest through
delamination and the epithelial-to-mesenchymal transition
(EMT), both critical processes for embryonic morphogenesis
and lineage differentiation. The invasive and proliferative
phenotype gene signatures describe at least two distinct
melanoma cell states resembling different phases of melanocyte
lineage development, ranging from neural-crest stem cells
(NCSCs) to highly differentiated melanocytes (Figure 1) (14, 16).

In the classic two-state system, ‘proliferative’ melanoma cells
are thought to reflect those that proliferate rapidly in optimal
low-stress conditions, such as within a suitable metastatic niche
(28, 29). They exhibit a clear differentiation phenotype, marked
with high expression of MITF, a master regulator of melanocyte
lineage differentiation and hallmark of the proliferative
melanoma cell phenotype (12). In line with the role of MITF
in regulating the proliferative state, its upstream regulators
(SOX10, PAX3, EDNRB and CREB) are often regarded as
drivers of the invasive-to-proliferative switch, and its
downstream targets (MLANA, PMEL, DCT, TYRP) are known
markers of the proliferative signature (27, 30).

While MITFlow-marked undifferentiation/dedifferentiation is
generally accepted as a key feature of the invasive phenotype, the
“invasive” gene signature appears to be more complex. Diverse
signaling pathways that allow melanoma cells to adapt to a
variety of high-stress conditions, have been associated with the
invasive state. In line with the theory that phenotype switching is
largely driven through microenvironmental-induced transcriptional
Frontiers in Oncology | www.frontiersin.org 3
changes (3, 7, 8, 13, 28, 31), the proposed “invasive” signature
includes multiple extracellular factors, membrane receptors,
transcriptional regulators, epigenetic factors, and their
downstream targets and/or effectors, which are summarized in
Table 1. Interestingly, proteins of the same family are sometimes
found inversely expressed in melanoma cells with distinct
phenotypes. For example, the switch in expression between pairs
of closely related transcriptional regulators, such as ZEB2/ZEB1
(35–38), SOX10/SOX9 (32, 33), and LEF1/TCF4 (34), drive
melanoma cells towards the proliferative and invasive
phenotype, respectively.

It is worth mentioning that, apart from the conventional two-
state system, several additional states, including the NGFRhigh-
marked neural crest stem cell (NCSC)-like state and an
intermediate (transitory) state, have been proposed (14–16).
While the NCSC-like state is also associated with low MITF
expression, similar to the invasive/mesenchymal-like state, it is
marked with high levels of NGFR, SOX10, AQP1, GFRA2, and
RXRg. This state of cells is highly enriched upon therapy and is
thought to be a more drug-resistant version of the invasive state
(14, 16). The intermediate state likely occurs when melanoma
cells are switching between the proliferative and the invasive
phenotypes. This transitory state is marked with concurrent
enrichment of neural crest and pigmentation-associated gene
sets and exhibit intermediate MITF activity (14–16). Notably,
CD36 marks a unique population of this intermediate
phenotype, termed the starved-like melanoma cells (SMCs)
(16). These cells exhibit an altered metabolic gene signature
and have increased tolerance to nutrient starvation and targeted
therapy agents (3, 16, 77).

Nevertheless, the invasiveness-associated genes/proteins
highlight the activation of multiple pathways that play central
roles in cancer cell stress adaptation (Table 1). Melanoma
switching to an “invasive” phenotype can be experimentally
driven by environmental stress signals summarized in Table 2.
For example, melanoma cells cultured in conditions such as
hypoxia (8, 55, 101), glucose and glutamine starvation (9, 57),
presence of inflammatory cytokines such as TNF-a (7, 48, 86)
and TGFb (102), ultimately switch to an invasive state. In
addition, chronic exposure of cultured melanoma cells to
BRAF and/or MEK inhibitors (54, 78) and melanocytic
antigen-specific T cells (103) promotes the invasive switch, a
phenotype that can be recapitulated in vivo (7, 104, 105). Here,
we highlight essential signaling pathways that have been
identified to drive melanoma phenotype switching and their
roles in different stress conditions.

Pan-Signal Inducible Signaling Networks
The BRN2 Signaling
BRN2 was one of the earliest transcription factors identified as a
master regulator of melanoma invasion and metastasis (41–43),
with its role in melanoma plasticity comprehensively
demonstrated [reviewed by Fane et al. (43)]. Mutually
exclusive expression of MITF and BRN2 was identified in
patient melanomas and xenografts (41, 42). Mechanistically,
BRN2 directly binds to the MITF promoter to repress its
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transcription (41), while increased MITF activity represses BRN2
through miR-211, which is derived from the MITF-target gene
TRPM1 (Figure 2) (44). It is tempting to speculate that a
reciprocal regulation of BRN2 and MITF expression enables a
swift switch between proliferative and invasive phenotypes,
which is ultimately required for seeding and outgrowth of
melanoma cells at secondary metastatic sites. BRN2 is
generally accepted as a pan-signal inducible driver of
Frontiers in Oncology | www.frontiersin.org 4
phenotype switching, activated by coordinated intrinsic
oncogene-driven and extracellular factor-induced signaling
networks, including the RAS/RAF/MAPK (106, 107), PI3K/
PAX3 (108, 109), Wnt/b-catenin (110), and TNFa/MYC (111,
112) pathways (Figure 2). For example, in oncogenic BRAF-
driven melanomas, BRN2 expression is elevated through
hyperactivated MAPK signaling, which transcriptionally
represses the cGMP-specific phosphodiesterase PDE5A (106,
TABLE 1 | Melanoma cell state-specific gene signature.

Signature Type Protein/Gene name & description

Proliferative
Signature

Transcription factors (TFs) MITF/MITF: Hallmark of the proliferative melanoma signature (12, 14, 16)
SOX10/SOX10: Upstream TF of MITF (14, 16, 27, 30, 32, 33)
PAX3/PAX3: Upstream TF of MITF (27, 30)
CREB/CREB1: Upstream TF of MITF (27, 30)
LEF1/LEF1: b-catenin co-factor, suppresses TCF4 expression (34)
ZEB2/ZEB2: The ZEB1-to-ZEB2 switch promotes the proliferative switch (35–38)

Receptors EDNRB/EDNRB: Upstream regulator of MITF, Endothelin-3 receptor (27, 30)
ROR1: The ROR2-to-ROR1 switch promotes the proliferative switch (39)

Extracellular ligands Endothelin-3/EDN3: Upstream regulator of MITF; EDNRB ligand (28, 40)

MITF targets Melan-A/MLANA: Melanocytic antigen
GP100/PMEL: Melanocytic antigen
Others: Tyrosinase/TYR, TYRP2/DCT, TYRP1/TYRP1

Invasive
Signature

Transcription factors BRN2/POU3F2: Pan-signal-induced regulator of phenotype switching (41–47)
c-Jun/JUN: Activator Protein-1 (AP-1) transcription factor subunit (48–50)
JunB/JUNB: AP-1 transcription factor subunit (51, 52)
Fra1/FOSL1: AP-1 transcription factor subunit (53)
TEADs/TEAD1, TEAD2, TEAD3, TEAD4 (25, 54)
HIF1a/HIF1A: Key regulator of hypoxia-induced phenotype switching (8, 39, 55, 56)
ATF4/ATF4: Key regulator of starvation-induced phenotype switching (9, 57)
NF-kB/NFKB1: Key regulator of inflammation-induced phenotype switching (48, 58–60)
HOXA/HOXA (61)

ZEB1/ZEB1: The ZEB2-to-ZEB1 switch promotes the invasive switch (35–38)
SOX9/SOX9 (33)
TCF4/TCF4: b-catenin co-factor, inversely correlated with LEF1 (34)
SOX10/SOX10*: Neural crest stem cell TF, also marks the NCSC-like state (14)

JunB/JUNB: AP-1 transcription factor subunit; possibly negative regulation of the invasive phenotype (62)
Fra2/FOSL2: AP-1 transcription factor subunit; negative regulation of the invasive phenotype (63)

Secretory factors/Extracellular
ligands

WNT5A/WNT5A (27, 64–66)
TNFa/TNF (7, 48, 67)
TGFb/TGFB1 (6, 42, 68, 69)
Others: IL-1/lL1, IL-6/IL6, CCL2/CCL2, MMP-2/MMP2, MMP-9/MMP9, ANGPT2/ANGPT2, IGFBP2/IGFBP2, IGFBP6/
IGFBP6 (70)

Receptors AXL/AXL: Hallmark of the invasive melanoma signature (12, 14, 16, 27, 47, 64, 71)
ROR2/ROR2: WNT5A receptor (39, 66)
NOTCHs/NOTCH1, NOTCH2, NOTCH3, NOTCH4 (45, 72–74)
EGFR/EGFR (75)
PDGFR/PDGFRA (76)
CD36/CD36: Hallmark of the starved-like melanoma cell (SMC) state (16, 77)
NGFR/NGFR: Hallmark of the NCSC-like phenotype (14, 16, 54, 78–80)
GFRA2/GFRA2: Marker of the NCSC-like state (16)

Epigenetic regulators BMI1/BMI1 (81)
EZH2/EZH2 (72)

Translational factors eIF2a (phospho Ser51)/EIF2A: Upstream regulator of ATF4/ATF4
eIF4E (phospho Ser209)/EIF4E: Upstream regulator of NGFR/NGFR

Others RXRg/RXRG: Nuclear receptor, driver of the NCSC-like state (16)
AQP1/AQP1: Marker of the NCSC-like state (16)
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107). Consequently, accumulated cGMP leads to an increase in
cytosolic calcium ions, which stimulates myosin light chain 2
(MLC2) phosphorylation, thereby inducing contractility and
promoting invasion (106, 107). In addition, BRN2 and MITF
activate and repress the NOTCH pathway, respectively (45, 129,
130). Activated NOTCH signaling subsequently drives
melanoma dedifferentiation and invasion through the
epigenetic regulator EZH2 (72, 113) (Figure 2).

The AP-1 and TEAD Transcription Factor Family
To better understand transcriptional regulators that drive
melanoma phenotype switching, Verfaillie et al. found that the
invasive gene signature (12, 26, 54, 64) was enriched for AP-1
and TEAD motifs, indicating an AP-1/TEAD-governed
transcriptional landscape underpinning the invasive state (25).

AP-1 is a dimeric transcription factor composed of proteins
belonging to the Jun (c-Jun, JunB, and JunD), Fos (c-Fos, FosB,
Fra1, and Fra2), and closely related transcription factor (ATF2,
LRF1/ATF3 and B-ATF) subfamilies (117). AP-1 is activated by
both intrinsic oncogene-driven and extrinsic stress-driven
MAPK pathway hyperactivation (49, 115, 116), and other
stimuli such as inflammatory cytokines and stress inducers
(Figure 2) (48, 117, 118). For example, the WNT5A/b-catenin-
mediated non-canonical Wnt signaling, a well-known driver of
melanoma phenotype switching, acts directly upstream of AP-1
(82, 118–120). In response to a variety of environmental stimuli,
the extracellular ligand WNT5A interacts with ROR2 and
Frizzled (Fzd)-family receptors, resulting in AP-1 activation
(82, 118–120) and subsequently promotes melanoma cell
invasion (65, 120). In addition, the AP-1 family member c-Jun
Frontiers in Oncology | www.frontiersin.org 5
is highly active in melanoma cells, and its expression is negatively
regulated by MITF, which binds to the JUN promoter and blocks
its transcription (48, 50). In response to inflammation, TNFa
induces the expression of c-Jun, when MITF is suppressed,
leading to a switch to the invasive state (48). Hyperactivation
of MAPK signaling in BRAFV600E-mutant melanoma cells leads
to increased c-Jun expression, resulting in mesenchymal-like
phenotype and resistance to BRAF/MEK inhibitors (MAPKi)
(49). MAPKi-sensitive cell lines develop adaptive resistance
through SPROUTY4 downregulation, which leads to increased
abundance of c-Jun and a subsequent switch to the
mesenchymal-like and drug-resistant state (49). Another AP-1
family member, Fra1 (FOSL1), downregulates MITF through its
transcriptional target, the chromatin modifier HMGA1, and
induces the expression of AXL, driving melanoma cells to the
MITFlow/AXLhigh state (53). Notably, while c-Jun and Fra1
promote the melanoma switch to the invasive phenotype, other
AP-1 transcription factors, such as Fra2 (63) and perhaps JunB
(62) inhibit this switch. These studies indicate that AP-1
mediates plasticity by the differing composition of its subunits,
similar to the aforementioned ZEB2/ZEB1 and LEF1/
TCF4 switch.

Although regulated downstream of various oncogenic
pathways, including Wnt, TGFb, and EGFR signaling, the
TEAD family of transcription factors (TEAD1-4) are best-
known as final effectors of the Hippo pathway (122). Upon
activation, YAP/TAZ translocate into the nucleus and bind to
TEADs to promote transcriptional programs (123). Numerous
studies demonstrate a cooperative transcriptional mechanism
between AP-1 and TEADs (123–125). For example, YAP/TAZ/
TABLE 2 | Stress-specific pathways driving melanoma phenotype switching.

Conditions Factors Master regulators Signaling pathways/mechanisms

Metabolic stress Hypoxia HIF1a HIF1a ! BHLHE40/BHLHB2 (⊣MITF) ! dedifferentiation (8, 55)
HIF1a ! WNT5A-ROR2 ! invasion (39, 66, 82)
Akt ! NF-kB (+HIF1a) ! Notch1 ! phenotype switching (83, 84)

Nutrient starvation p-eIF2a
ATF4

p-eIF2a (⊣eIF2B) ! ATF4 ! AXL ! invasion (9, 57)
p-eIF2a (⊣eIF2B) ! ATF4 (⊣MITF) ! dedifferentiation (9, 57)

Oxidative stress NRF2 NRF2 ! ATF4 (⊣MITF) ! dedifferentiation, inflammation (85)

Inflammation & cytokines TNFa BRN2
AP-1 (c-Jun)

TNFa ! BRN2 ! phenotype switching (Summarized in Figure 2) (86, 87)
TNFa ! c-Jun ! phenotype switching (Summarized in Figure 2) (48, 88, 89)

TGFb ATF4
AP-1 (c-Jun)
HIF1a

TGFb ! ATF4 (⊣MITF)⊣proliferation, differentiation (90, 91)
TGFb ! c-Jun (or JunB) ! phenotype switching (Summarized in Figure 2) (52)
TGFb (⊣PHD2) ! HIF1a ! phenotype switching (92)

IL-1 NF-kB
AP-1

IL-1 ! phospho-IkB ! NF-kB ! phenotype switching (93)
IL-1 ! JNK ! AP-1 (c-Jun) ! phenotype switching (94)
IL-1 ! MMP-9 ! invasion (95, 96)
IL-1 (⊣MITF) ! dedifferentiation (97)

IL-6 WNT5A
CA-IX

IL-6 ! MAPK ! WNT5A ! phenotype switching (98)
IL-6 ! CA-IX ! phenotype switching (99, 100)
Extracellular Ligands.
Receptors.
Transcription factors.
Transcriptional repressors.
Epigenetic regulators.
Translational factors.
Others.
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TEAD-mediated FOS transcription increases AP-1 activity,
which in turn contributes to the expression of YAP/TAZ
downstream target genes (123). In addition, a significant
overlap in the AP-1- and TEAD-mediated gene signatures is
observed in invasive melanomas (25). Mechanistically, AXL is
identified as a direct transcriptional target of YAP (126).
Overexpression of YAP drives melanoma cell invasion and
metastasis through induction of an invasive gene signature
(127). Increased nuclear accumulation of YAP/TAZ leads to
actin remodeling, which in turn confers BRAF inhibitor
resistance in BRAFV600E-mutant melanoma cells (Figure 2)
(128). Simultaneous knockdown of all four TEADs in invasive
melanoma cultures results in decreased invasiveness and
increased sensitivity to MAPKi (25).

Metabolic Stress-Induced Plasticity
Limited availability of oxygen (hypoxia) and nutrients remain a
challenge for most tumors. Numerous studies have
demonstrated that hypoxia (8, 39, 55, 66, 83) and nutrient
deprivation (9, 57) promote melanoma phenotype switching to
Frontiers in Oncology | www.frontiersin.org 6
the invasive and dedifferentiated state (Table 2). In this state,
slowly dividing melanoma cells show lower oxygen and nutrient
consumption and are hence more “fit”, that is, able to survive
under insufficient oxygenation and nutritional support. At the
same time, these invasive cells have a better chance to migrate,
and colonize new sites in the body where conditions are more
optimal for their survival and growth.

HIF1a: Hypoxia-Specific Driver of
Phenotype Switching
Mechanistically, hypoxia drives melanoma phenotype switching
in a HIF1a-dependent manner (Table 2). Hypoxia induces the
expression of HIF1a, which regulates the expression of
BHLHE40 (8, 55), WNT5A and ROR2 (39, 82), and Notch1
(83, 84). BHLHE40 is a transcriptional suppressor capable of
binding to theMITF promoter to repress its transcription (8, 55).
In response to hypoxia, ROR1-expressing melanomas adopt a
ROR2-positive invasive phenotype. The tyrosine kinase receptor
ROR2 drives invasion through its interaction with WNT5A and
downstream non-canonical Wnt signaling (39, 66). In addition,
FIGURE 2 | The BRN2 and AP1/TEADs transcriptional networks in melanoma phenotype switching. Left: BRN2 signaling is activated by various pathways, including
RAS/RAF/MAPK (106, 107), PI3K/PAX3 (108, 109), Wnt/b-catenin (110), and TNFa/MYC (111, 112) pathways. BRN2 mediates melanoma cell dedifferentiation by
inhibiting MITF transcription (41), while MITF in turn represses BRN2 through miR-211 (44). BRN2 promotes melanoma cell invasion through transcriptional
repression of the PDE5A, resulting in accumulated levels of cGMP and ultimately increased cell contractility (106, 107). BRN2 also induces NFIB (113), Notch1, and
DLL1 (45), which together promote melanoma phenotype switching through EZH2 (72, 113) and subsequent activation of the WNT/b-catenin signaling (113, 114).
Middle: The AP-1 complex composed of c-Jun and Fra1 is activated downstream of the MAPK pathway (49, 115, 116) and several extracellular ligands, such as
TGFb, TNFa and WNT5A (48, 82, 117–120). AP-1 suppresses MITF through the Fra1 transcriptional target HMGA1 (53), while MITF binds to the JUN promoter and
blocks its transcription (48, 50). AP-1 also upregulates the expression of AXL (48, 53), NGFR (48), and CD73 (104), driving phenotype switching to the invasive and
therapy resistant state (49, 121). Right: Downstream of Hippo, TGFb, EGFR, and Wnt/b-catenin pathways (122), the YAP/TAZ-TEAD complex cooperates with AP-1
to drive melanoma phenotype switching and therapy resistance through AXL and actin remodeling (123–128).
September 2021 | Volume 11 | Article 756001

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Huang et al. Melanoma Plasticity Enables Therapy Resistance
hypoxia induces Akt hyperactivation, which cooperates with
HIF1a to promote Notch1 expression, an effector that drives
melanoma phenotype switching (45, 72, 83, 84). In non-
melanoma cancers, hypoxia activates TGF-b signaling, which
then cooperates with HIF1a to promote invasion (131, 132).
Finally, CA-IX is a metalloenzyme which is produced following
hypoxic stress. In melanoma, CA-IX has been shown to be
acidify the tumor microenvironment and participate in tumor
growth, survival, invasion, and metastasis (Table 2) (99). CA-IX
is druggable, and the inhibitor SLC-0111 has shown efficacy in
inhibiting melanoma phenotype switching (Table 3) (100).

ATF4 in Nutrient Deprivation-Induced
Phenotype Switching
Glucose and glutamine starvation drives melanoma phenotype
switching through the ISR-associated transcription factor ATF4
(Figure 3 and Table 2) (9, 57). Nutrient limitation leads to the
phosphorylation of eIF2a (p-eIF2a), a hallmark of ISR. P-eIF2a
inhibits eIF2B activity, which diminishes global translation
whilst increasing the translation of select mRNAs, including
ATF4, to mitigate the effects of nutrient deprivation (9, 57, 147,
148). ATF4 activates AXL and represses MITF transcription,
which subsequently slows down cell proliferation and drives a
switch to the invasive phenotype (9). Notably, increased ATF4
activity alone is not sufficient to drive phenotype switching.
Rather, it cooperates with the p-eIF2a-mediated translational
reprogramming (9).

Inflammation/Cytokine-Induced Plasticity
Inflammation was one of the first microenvironmental triggers
identified to drive melanoma dedifferentiation (6, 7, 26). Studies
focusing on the invasive switch of melanoma cells within
primary tumors have found that stromal cells secrete pro- and
anti-inflammatory factors such as TGF-b, TNF-a, MMPs,
cytokines and WNT5A into the tumor microenvironment, all
of which act to increase invasion and tumor cell dissemination.
Curiously, melanoma cells in the invasive state produce pro-
inflammatory factors, and in a paracrine manner stimulate
proliferative melanomas to switch to the invasive state, a
process termed “phenotype cooperativity” [reviewed by
Arozarena & Wellbrock (13)].

TNFa
Tumor necrosis factor alpha (TNFa) is a soluble or membrane
pro-inflammatory cytokine produced by macrophages, T-cells,
and NK cells. In the case of melanoma, TNFa is involved in
many of the mechanisms known to alter plasticity, leading to
tumor escape by increasing adhesion molecules such as
fibronectin (153). TNFa induces BRN2 signaling (87) and, in
line with often mutually exclusive expression of BRN2 and
MITF, it has been identified as an inhibitor of MITF and
Melan A in 40 different melanoma cell lines (86). Interestingly,
MITF expression can modify the inflammatory status of the
tumor microenvironment by inhibiting c-Jun and subsequently
decreasing TNFa (48). This results in a decrease in myeloid cell
recruitment to the tumor, less inflammation and potentially less
inflammation associated phenotype switching. These results
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suggest MITFlow/c-Junhigh melanoma cells enhance phenotype
switching by increasing TNFa production. Furthermore, the
invasiveness pathway activated by AP-1 can be triggered by
inflammatory cytokines from TNF family (88) and AP-1 can
positively regulate TNFa production thereby amplifying
phenotype switching (Table 2) (89). TNFa can also promote
tumor cell dissemination by increasing angiotropism (67, 154),
the process whereby melanoma cells around blood vessels leads
to metastasis without entry into the blood circulation. Tüting’s
team highlighted the role of TNFa in the enhancement of
endothelial cell sprouting and promoted the pericyte-like
expansion of co-cultured melanoma cells along such
endothelial outgrowths. Co-culture of melanoma cells with
endothelial cells composing the abluminal surface of blood
vessels, was demonstrated to induce the expression of genes
linked to cancer cell migration (CCL2, ICAM1), cancer
progression (TRAF1, SERPINB2) or stem cell properties
(PDGFB; CFDP1) (155). These data suggest the interaction
between the abluminal surface of endothelial cells and
melanoma cells could lead to a melanoma phenotype switch
favoring metastasis.

TNFa can have additional unwanted effects on anti-tumor
immune responses. First, TNFa can decrease the recognition of
tumor cells by melanocytic antigen-specific CD8+ T-cells (7) and
trigger the death of CD8+ T cells (156). Moreover, regulatory T-
cells, which are generally considered a bad prognostic factor in
melanoma (157), can strongly express TNFR2 on their surface,
are the most potent Tregs and can survive longer than the others
in the presence of TNFa (158).

TGFb
Transforming growth factor b (TGFb) is a family of 40 proteins
including TGFb, Activins andNodal. TGFb is an anti-inflammatory
cytokine important in the control of inflammation, its lack leads to
lethal inflammation (159). TGFb is expressed by melanocytes,
negatively regulating their proliferation. However, when
melanoma initiates, tumor cells resist the anti-proliferative effects
of TGFb while continually producing it (160). As described in the
previous sections, phenotype switching can be induced in a number
of ways and it is worth mentioning that TGFb is involved in most of
these mechanisms, such as in the regulation of MITF expression or
as a hypoxia-specific driver of phenotype switching. TGFb is a
negative regulator of MITF leading to the shift from a proliferative
to an invasive state (90). Furthermore, in triple negative breast
cancer, arguably the most therapy resistant breast cancer, TGFb
promotes ATF4 expression which is correlated with a poor
prognosis (91, 161). TGFb has also been associated with the
BRN2 invasive phenotype (42, 162), a pathway known to
downregulate MITF. Moreover, TGFb activates the AP-1 pathway
leading the production of c-Jun and JunB, respectively in epidermal
keratinocytes and dermal fibroblasts (163), known to be involved in
the process of phenotype switching and BRAF inhibitor resistance
in melanoma (Table 2) (49, 51).

As we described above, hypoxia plays a central role in
phenotype switching through the expression of HIF1a. TGFb
can trigger the expression of HIF1a by selectively inhibiting
PHD2 expression (Table 2) (92). However, TGFb is also directly
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TABLE 3 | Therapeutic agents that target melanoma phenotype switching.

Target
signaling

Agent Description Efficacy

WNT5A
signaling

Anti-Fz5 antibody (120) Frizzled-5 polyclonal antibody Decrease melanoma cell invasion in vitro

Gö 6983 (133) PKC inhibitor Block WNT5A-mediated inhibition of Melan-A and PAX3 in vitro

C59 (134) Soluble PORCN inhibitor Decrease melanoma cell-derived WNT5A secretion
Synergize with anti-CTLA-4 immunotherapy in vivo

AP-1 signaling JNK-IN-8 (49) c-Jun N-Terminal Kinase (JNK)
inhibitor

Decrease melanoma cell migration in vitro
Enhance the efficacy of vemurafenib in vitro

BRN2 signaling DZNep (72) EZH2 inhibitor Increase melanosomes and pigmentation in melanoma cells
Decrease melanoma cell invasion in vitro

GSK343 (113) EZH2 inhibitor Increase MITF expression in melanoma cells
Decrease melanoma cell migration in vitro

GSK503 (135) EZH2 inhibitor Abolishes metastases formation in vivo
AM404 (111, 136) Inhibitor blocking NFATc2-DNA

binding
Increase melanocytic differentiation markers, decrease BRN2, AXL, EZH2 and
EMT markers, and decrease melanoma cell invasion in vitro
AM404+GSK126 (EZH2i) reverse phenotype switching
AM404+GSK126 induce apoptosis and sensitize melanoma cells to MAPKi

AXLhigh

dedifferentiated
state

Enapotamab vedotin (AXL-
107-MMAE) (137, 138)

Human AXL antibody linked to
monomethyl auristatin E (MMAE)

Display potent anti-tumor activity in vivo as single agent
Synergize with MAPK inhibitors to inhibit tumor growth in vivo
Synergize with anti-PD-1 immunotherapy in vivo

NGFRhigh

NCSC-like state
Ganetespib (103) HSP90 inhibitor Decrease NGFR expression in T-cell therapy-resistant cells

Restore melanoma cell sensitivity to T cell attack in vitro
Restore tumor sensitivity to T-cell therapy in vitro

17-AAG (103) HSP90 inhibitor Decrease NGFR expression in T-cell therapy-resistant cells
Restore melanoma cell sensitivity to T cell attack in vitro

AG-879 (103) NGFR kinase inhibitor Restore melanoma cell sensitivity to T cell attack in vitro

HX531 (16) RXR antagonist Decrease NCSC-like populations upon BRAF/MEK inhibition
Enhance the efficacy of dabrafenib+trametinib in vivo
Delay resistance to dabrafenib+trametinib in vivo

PF562271 (139) Focal adhesion kinase (FAK)
inhibitor

Decrease NCSC-like (GFRA2+) populations upon BRAF/MEK inhibition
PF562271+HX531 combination delays the onset of therapy resistance further
than HX531 alone in vivo

CD36+ SMC
state (proposed)

Sulfosuccinimidyl oleate
(SSO) (140–142)

CD36 inhibitor Re-sensitize drug-resistant breast cancer cells to lapatinib in vitro
Block high glucose-induced EMT in renal tubular epithelial cells
Ruduce in vitro proliferation and in vivo growth of colorectal cancer cells.

Anti-CD36 mAb Clone
JC63.1 (140, 143)

CD36-neutralizing antibody Re-sensitize drug-resistant breast cancer to lapatinib in vivo
Inhibit metastasis of oral squamous cell carcinomas in vivo
Reduce the size of metastases of squamous cell carcinomas in vivo

Anti-CD36 mAb Clone
FA6.152 (143)

CD36-neutralizing antibody Inhibit metastasis of oral squamous cell carcinomas in vivo

eIF4F complex Silvestrol (144, 145) eIF4A RNA helicase inhibitor Selectively kill melanoma persister cells in vitro
Inhibit the emergence of persister cells, combined with BRAFi and MEKi
Synergistically inhibit melanoma cell growth in vitro, combined with BRAFi

FL3 flavagline (145) eIF4A inhibitor Strong reduction of melanoma growth, combined with BRAFi in vivo
4EG inhibitor-1 (4EGI-1)
(145)

Inhibitor blocking eIF4E-eIF4G
interaction

Selectively kill vemurafenib-resistant melanoma cells in vitro
Synergize with vemurafenib in inhibit melanoma cell growth in vitro

SEL201 (146) MNK1/2 kinase inhibitor Decrease NGFR expression and increase MITF expression in vitro
Decrease melanoma cell invasion in vitro
Restore melanoma cell sensitivity to vemurafenib in vitro
Sensitize melanoma to anti-PD-1 immunotherapy in vivo

eFT508 (146) MNK1/2 inhibitor Sensitize melanoma to anti-PD-1 immunotherapy in vivo

Others SLC-0111 (100) CA-IX inhibitor Revert mesenchymal stem cell (MSC)-mediated melanoma phenotype switching
and vemurafenib resistance in vitro
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involved in the process of vascularization by inducing the
expression of macrophage inhibitory protein 1 and VEGF
(164, 165).

Similar to the negative impact of TNFa on anti-tumor
immunity, TGFb supports tumor immune-evasion responses
by decreasing the activity of cytotoxic immune cells such as
natural killer cells (166) or CD8+ T-cells (167), while favoring the
generation of regulatory T-cells (153).

Interleukin-1 and Interleukin-6
Interleukin (IL)-1 is a major pro-inflammatory cytokine, mainly
produced by macrophages (168), monocytes or neutrophils and
can be triggered by the activation of the inflammasome (169).
Two isoforms of IL-1 exist, IL-1a and IL-1b, which bind the
same receptor IL-1R but are encoded by two different genes.
Several reports highlight the important role of IL-1 in melanoma.
A high concentration of IL-1b has been detected in the plasma of
Frontiers in Oncology | www.frontiersin.org 9
patients with melanoma compared to healthy donors (170). The
consequences of this IL-1 over-production include (1) an
increase in the phosphorylation of NF-кB inhibitor (IкB), thus
freeing NF-кB known to be involved in melanoma development
(93) and (2) activation of stress-activated protein kinase/c-Jun
N-terminal kinase (JNK) identified as a key factor in melanoma
progression (94). IL-1 is also involved in the production of
metalloproteinase 9 (MMP-9) (95), which plays an important
role in the remodeling of extracellular matrix and enhancing
tumor cell invasiveness (96). Furthermore, the level of circulating
MMP-9 has been cited as a good candidate to evaluate the
response to BRAF inhibitors in melanoma patients (70). In
terms of plasticity, IL-1a and b can downregulate the
expression of MITF and melanocytic antigens, favoring
melanoma dedifferentiation and phenotype switching (171).
Lastly, IL-1b can upregulate HIF1a (97), known to inhibit
MITF and increase melanoma invasiveness (55) (Table 2).
FIGURE 3 | Proposed translational regulation of melanoma phenotype switching. In response to environmental stress such as nutrient starvation, p-eIF2a mediates
ISR and inhibits eIF2B activity, which diminishes global translation whilst increasing the translation of ATF4 (9, 57, 147, 148). ATF4 cooperates with the p-eIF2a-
mediated translational reprogramming to drive phenotype switching (9, 57). In a nutrient sufficient environment, eIF2a is not phosphorylated and cap-dependent
translation is on. Efficient global translation enables melanoma cells to sustain a proliferative state (9). Hyperactivated MAPK and PI3K-AKT pathways lead to MNK1/
2-mediated eIF4E phosphorylation, enhancing the translation of a selected subset of mRNAs, including NGFR, MMP3, MMP9, and SNAI1 (146, 149, 150).
Consequently, these oncogenes promote melanoma cell invasion, metastasis, and therapy resistance (37, 70, 146, 149, 151, 152).
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IL-6 is a pro-inflammatory cytokine family of ten proteins
involved in the anti-viral immune response. IL-6 is a key factor in
the acute phase of inflammation and participates in the
establishment of chronic inflammation. IL-6 is produced by
macrophages (172), T-cells, B-cells, and endothelial cells (173).
IL-6 binds to the IL-6R to produce acute phase proteins such as
inflammatory markers (e.g., serum amiloyd A or complement
factors) present in serum during inflammation. On the other
hand, IL-6 is involved in the differentiation of Th17 (174),
follicular helper T-cells (175), or in the proliferation and
survival of CD8 T-cells (176). Similar to IL-1, IL-6 is abundant
in the serum of patients with melanoma (177). IL-6 increases the
invasiveness and motility of melanoma cells through the MAPK
pathway which upregulates WNT5A (98), which as discussed
above is a major regulator of phenotype switching.
Insight Into the Role of Translational
Regulation of Cellular Plasticity
In the past decade, studies on melanoma phenotype switching
have focused largely on mechanisms involving transcriptional
reprograming, through which intracellular cues and extracellular
signals are integrated to enable rapid shifts in cell states. In recent
years, emerging data suggest that translational reprograming
collaborates with epigenetic and metabolic programs to
promote phenotypic plasticity of cancers (178). In eukaryotic
cells, selective translation is regulated mostly, but not exclusively,
at the translation initiation step, through the eIF4F complex and
the ternary complex (179). In 2017, Falletta et al. and Ferguson
et al. independently showed that phenotype switching is driven
by an ISR-dependent translational reprogramming through the
p-eIF2a-eIF2B-ATF4 axis (9, 57). This ternary complex-
mediated pathway is highly associated with nutrient starvation,
resulting in increased ATF4 expression coupled with diminished
global mRNA translation (9, 57, 147, 148) (Figure 3 and
Table 2). Importantly, while blocking p-eIF2a impairs
invasion, without translation reprogramming, increased ATF4
activity alone is not sufficient to drive phenotype switching (9).
More recently, Huang et al. demonstrated a mechanism
involving activation of the MNK1/2-eIF4E axis and cellular
plasticity (146). As a key component of the eIF4F complex,
eIF4E regulates cap-dependent mRNA translation initiation.
Phosphorylation of eIF4E (p-eIF4E) by kinases MNK1/2
selectively enhances the translation of a subset of mRNAs
encoding pro-invasive and pro-survival factors (180, 181).
Blocking the MNK1/2-eIF4E axis reversed phenotype
switching with impaired invasion, increased expression of
MITF, and restored sensitivity to MAPK-targeted and
immunotherapies (146). While we showed that the MNK1/2-
eIF4E axis promotes the translation of NGFR, melanoma
phenotype switching and therapy resistance (146), little
evidence links NGFR inhibition with a fully reversed switch in
melanoma cells (13, 79). These data suggest that more complex
translational mechanisms are likely involved in driving
melanoma plasticity. For example, in numerous models, p-
eIF4E are shown to promote the translation of MMP3, MMP9
and SNAI1 (149, 150, 180), which are known drivers of
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phenotype switching (37, 151, 152, 182, 183). Moreover,
NODAL is shown to promote the invasive phenotype in
melanoma (152) and it is regulated downstream of MNK1
signaling in breast cancer cells (184). Given that previous
studies have largely focused on characterizing transcriptome
changes between melanoma phenotypes (7–9, 25, 28, 57), it
will be important to carry out high-throughput translatomic
studies using pre-defined models of melanoma cell
phenotype switching.
MELANOMA PLASTICITY CONTRIBUTES
TO THERAPY RESISTANCE

Phenotype Switching and MAPK-Targeted
Therapy Resistance
Chronic exposure of cultured melanoma cells to BRAF and/or
MEK inhibitors leads to an initial response phase characterized
by the induction of MITF and enrichment of MITFhigh

populations, followed by emergence of CD36+ SMC
populations, which subsequently undergo continuous
dedifferentiation, and a final state of acquired resistance
marked by a predominance of slow-cycling NCSC-like
NGFRhigh cells (Figure 4) (54, 77, 78, 80, 185). In melanoma
patients receiving MAPK-targeted therapies, similar patterns of
consecutive transcriptional states have also been observed.
Notably, during each phase of MAPKi-response and
-resistance, different phenotypes (MITFhigh/proliferative,
ALXhigh/invasive, and NGFRhigh/NCSC-like) commonly
coexist, while predominant population shifting occurs over the
treatment course as a result of combined phenotype switching
and MAPKi-mediated cell selection (16).

In the initial therapeutic response phase, an immediate
activation of the PAX3-MITF-PGC1a axis protects a subset of
melanoma cells from MAPKi-induced cell death via MITF-
mediated survival signaling, resulting in an early drug-tolerant
state characterized by an enrichment of MITFhigh hyperdifferentiated
populations (16, 185–187). In parallel, the remaining melanoma cells
undergo a fatty acid oxidation-dependent metabolic shift, resulting in
a short-term emergence of drug-tolerant CD36+ SMC populations
(77). The SMC-state cells express medium to low levels of MITF and
subsequently undergo dedifferentiation, which allows these slow-
cycling cells to persist until the (a) acquisition of new mutations
that confer resistance (197), or (b) prolonged MAPKi exposure
stabilizes this dedifferentiated state and leads to acquired resistance
(14, 54, 80, 188). Notably, activation of ATF4 signaling can be
detected in a small group of early MAPKi-tolerant cells, which
exhibit a MITFlow/AXLhigh invasive-like (dedifferentiated)
phenotype (198). Thus, ATF4-mediated phenotype switching might
occur early as melanoma cells are adapting to MAPKi therapy.
Similarly, the MITFlow/NGFRhigh NCSC-like cells also emerge
during early MAPKi treatment (16, 139). The MITFhigh

hyperdifferentiated, CD36+ SMC, MITFlow/AXLhigh dedifferentiated,
and MITFlow/NGFRhigh NCSC-like populations together make up a
reservoir of early MAPKi-persister cells known as minimal residual
disease, from which relapse inevitably arises (Figures 1, 4) (16, 139).
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Following the continued dedifferentiation, MITFlow/AXLhigh

dedifferentiated and MITFlow/NGFRhigh NCSC-like cells increase in
number and often co-emerge within the same tumor (16). These cells
express increased levels of several cellular receptors, such as AXL,
ROR2, PDGFR, EGFR, NGFR, and GFRA2 (10, 14, 16, 39, 54, 71, 75,
76, 78, 80, 189). Mechanistically, these receptors, most being receptor
tyrosine kinases, drive alternative survival signaling bypassing the
MAPK pathway, thereby permittingMAPKi resistance (71, 189, 190).
Consequently, at the acquired resistance and relapse stage,
melanomas show a predominant expression of AXL and NGFR,
along with an overall trend towards an AXL/AP-1/TEAD-driven
gene signature (Figure 4) (54, 137). Importantly, as mentioned above,
invasive melanoma cells communicate with proliferative melanoma
cells through secretory factors to drive their switch to the invasive
state. Therefore, an abundance of pre-existing invasive and NCSC-
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like cells, which are prone to survive initial MAPKi treatment, could
cooperate with BRAF/MEK inhibitors to accelerate the development
of drug resistance mediated via phenotype switching.

Phenotype Switching and Immunotherapy
Resistance
In this last decade, immunotherapies have revolutionized cancer
treatment. Immune checkpoint blockade (ICB) targeting the
PD-1/PD-L1 and the CTLA-4 axes have become the frontline
therapy for patients with metastatic melanoma. In addition,
adoptive T-cell transfer therapy is actively being tested in pre-
clinical melanoma models. These therapies center on enhancing
the function of cytotoxic T cells to improve anti-tumor immune
responses (199). Consequently, primary and acquired resistance
of melanoma to immunotherapies are linked with mechanisms
FIGURE 4 | Melanoma phenotype switching in acquired resistance to MAPK-targeted therapy and immunotherapies. Top: During initial response to MAPK-targeted
therapy, while melanocytic-state cells are susceptible to MAPKi-induced cell death, a subset of cells switch to a drug-tolerant hyperdifferentiated state mediated by
the PAX3-MITF axis. Hyperactivated MITF affords these hyperdifferentiated cells with a survival advantage, enabling them to quickly become the dominant population
during the early drug-tolerant phase (16, 185–187). In parallel, remaining cells undergo a fatty acid oxidation-dependent metabolic shift, resulting in the emergence of
drug-tolerant CD36+ SMC populations (77). These cells undergo a continuous dedifferentiation during prolonged MAPKi treatment resistance (14, 54, 80, 188),
resulting in the co-emergence and increase of MITFlow/AXLhigh invasive and MITFlow/NGFRhigh NCSC-like cells (16). These cells express increased levels of cellular
receptors, allowing them to grow, bypassing the MAPK signaling and thereby permitting MAPKi resistance (10, 14, 16, 39, 54, 71, 75, 76, 78, 80, 189, 190).
Consequently, at the acquired resistance phase, melanomas show a predominant expression of AXL and NGFR (54, 137). Bottom: During initial response to
immunotherapy, activated CD8+ T cells recognize melan-A and GP100 antigens expressed on melanocytic-state cells and subsequently eliminate them (7, 31).
Meanwhile, immunotherapy- and tumor microenvironment (TME)-induced inflammation drives melanoma phenotype switching, leading to decreased expression of
melanocytic antigens and increased levels of pro-inflammatory cytokines (7, 14, 31, 48). Prolonged inflammation leads to increased infiltration of MDSCs (48, 146,
191–195), which further promote phenotype switching via secretion of WNT5A (191, 192). In the acquired resistance phase, melanomas are enriched for the
MITFlow/AXLhigh invasive and MITFlow/NGFRhigh NCSC-like populations (103–105). Consequently, these highly dedifferentiated cells escape immune cell recognition
(7, 14, 31, 48) and attract high numbers of MDSCs, which further mediate immune suppression (193). In addition, MITFlow/AXLhigh invasive cells are associated with
high expression of CD73 (104), and MITFlow/NGFRhigh NCSC-like cells are found to have increased levels of PD-L1 (105, 196), which ultimately contribute to
immunotherapy resistance.
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that ultimately lead to compromised cytotoxic T cell function
(200, 201). Hugo et al. identified an innate anti-PD-1 resistance
gene signature (IPRES) that is enriched in melanoma samples
from anti-PD-1 immunotherapy non-responders (202). IPRES
shares similarities with the invasive melanoma gene signature,
including AXL, ROR2, WNT5A, EGFR and PDGFRA, as well as
some other phenotype switching-associated genes, such as
TWIST2, MMPs, ANGPT2, IGFBP-6, SNAI1, CCL2 (146, 152,
202). In addition to intrinsic resistance, melanoma could also
develop acquired resistance to both ICB and adoptive T cell
transfer therapy via phenotype switching (Figure 4) (7, 14, 31,
103, 105). Mechanistically, immunotherapy-induced
inflammation drives melanoma dedifferentiation, leading to
decreased expression of melanocytic antigens, which impairs
T-cell recognition and elimination of tumor cells (7, 14, 31).
Moreover, melanoma of the invasive phenotype is associated
with increased infiltration of myeloid-derived suppressor cells
(MDSCs) (48, 146, 191–195). MDSCs drive melanoma cells to
the invasive state, at least in part, via their secretion of WNT5A
(191, 192), which in turn increases pro-inflammatory cytokine
secretion by tumor cells and facilitates MDSC recruitment and
function (48, 146). MDSCs mediate immune suppression and
ultimately promote immunotherapy resistance (193). In
addition, the cell surface enzyme CD73 (5’ ectonucleotidase) is
upregulated by AP-1 during therapy-induced phenotype
switching (104), which in turn limits the anti-tumoral
functions of T cells via adenosine receptor signaling (121).

Emerging evidence suggests a link between NGFRhigh NCSC-
like melanoma cells and immune escape of tumors (103, 105).
Although the mechanism by which NGFR promotes
immunotherapy resistance remains unclear, the BDNF-NGFR
axis is suggested to contribute to T-cell therapy resistance (103),
and a subset of NGFR-regulated cytokines are linked to immune
suppression (146). Notably, NGFRhigh expressing melanoma
cells also showed increased PD-L1 expression (Figure 4) (105,
196), with NGFR and PD-L1 protein synthesis both being under
translational control via the eIF4F complex (146, 203, 204).
Again, these studies highlight the importance of examining the
translational regulation of melanoma phenotype switching.
Finally, it is worth mentioning that, although melanoma
phenotype switching is an emerging mechanism underpinning
immunotherapy resistance, its prognostic value in predicting
responders is debatable. For example, in the case of desmoplastic
melanoma where the dedifferentiation phenomenon is high
(205), the mutation rate is also important as it leads to the
apparition of neoantigens and a better response to anti-PD-1 (206).
UVEAL MELANOMA PLASTICITY AND
IMMUNE SUPPRESSION

Whereas the role of cellular plasticity in cutaneous melanoma has
been widely described, phenotype switching in non-skinmelanomas,
acral and uveal melanomas remains less clear (207). Uveal
melanoma (UM) is a malignancy originated from the melanocytes
in the uveal tract. The pathogenesis of UM differs from cutaneous
Frontiers in Oncology | www.frontiersin.org 12
melanoma, where its molecular landscape and metastatic outcome
presents different challenges (208). UM frequently express mutually
exclusive mutations in GNAQ and GNA11. GNAQ and GNA11
encode G-protein alpha-subunits that mediate signaling downstream
from G-protein-coupled receptors, leading to the constitutive
activation of diverse signaling pathways such as MAPK and PI3K/
AKT/mTOR (209). UM rarely harbour mutations in BRAF and is
thus not treatable with the BRAF-targeted therapies used in the
management of cutaneous melanoma (210, 211). No treatment,
including immune-targeted therapies, has shown efficacy in this high
fatality ocular cancer. A unique characteristic of UM is the tendency
to metastasize to the liver at early stages of the disease, where
cells remain dormant until specific signals provided by the
primary tumor, or the liver microenvironment, triggers cell
proliferation (212).

Studies have been performed to determine potential
prognostic factors and biomarkers in UM. In 2006, primary
UM were clustered into two main classes related to their gene
expression profile (also referred to as mRNA class) (213). Class 1
UM has low or medium metastatic potential, while the Class 2
UM present high metastatic potential with the deletion of
chromosome 3. This classification also seems to relate to some
characteristics of tumor cell plasticity. Whereas Class 1 UM
present a melanocytic/neural crest phenotype, the Class 2 UM
are characterized by the downregulated expression of
melanocyte-specific and neural crest specification genes (e.g.,
TYR, DCT, EDNRB) and upregulated epithelial and cell adhesion
markers (e.g., EMP1/3, CDH1). Whereas epithelial-derived
tumors lose expression of CDH1 (i.e., E-cadherin) as they gain
invasive and metastatic potential, E-cadherin upregulation plays
an important role in the dissemination of Class 2 UM. In that
context, E-cadherin allows circulating tumour cells to survive
once intravasation has been achieved, providing cell-cell
interactions so the tumor cells avoid apoptosis (213).

Studies have been performed in recent years to better define
the role of cellular plasticity (i.e. EMT) in UM. Repression of a
number of transcriptional regulators of EMT, namely ZEB1,
TWIST1, and SNAIL, results in decreased UM invasiveness
(214). Other critical regulators of cutaneous melanoma
phenotype switching are also important in UM. Class 2 UM
tumours present with an upregulation of certain proteins and
ligands related to the Notch pathway, triggering proliferation
and invasion in vitro and in vivo, thus making it a possible
druggable target (215). The expression of IGF-R, c-Fos and c-Jun
in patients with Class 2 liver metastasis, indicates a role for
plasticity in metastatic UM (216). Additional factors that might
have a role in UM plasticity have been explored, such as HIFs
and their role in regulating the expression of c-met and C-X-C
chemokine receptor type 4 (CXCR4) (217). Moreover,
expression of TGF-b and proinflammatory molecules like IL-6
and IL-8 in the liver microenvironment might enhance the
survival of UM in the liver (218).

A major signaling pathway that has been proposed to have a
pivotal role in UM proliferation and invasion, is the YAP
pathway, which lies downstream target of GNAQ and GNA11
aberrant signaling (219). Whereas the reliance of UM on YAP
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signaling is still debated, in other cancers this signaling pathway
has a central role in plasticity (220, 221). The role of YAP/TEADs
and AP-1 cooperation was explored in UM tumors lacking
expression of LATS1/2 and Kras activation. This study showed
that YAP/TEADs and MAPK might cooperate to reinforce each
other’s signaling, where AP-1 upregulation or its factors (c-Jun)
might have a role in increasing the transcriptional activity of
YAP/TEADs (221).

Tumor progression attributed to cancer stem cells (CSCs) has
also been explored in UM. CSCs have been described as small
clusters of cells that can trigger tumor growth, proliferation and
increased metastatic potential. It was found that UM cell lines
show upregulation of putative markers of stem-like cells (e.g.,
CD44, CD133) but are not specific to a subset population of UM
cells. The authors suggested UM plasticity might be explained by
the neural crest origin of uveal melanocytes rather than presenting
a specific hierarchy (222). Nevertheless, other studies showed that
expression of nestin, CD166 and NGFR by specific clusters of cells
provided a survival advantage, increased metastatic potential and
migratory capacity of UM cells (223). Finally, it appears that
NGFR also plays an important role in the plasticity and
progression of UM. Primary choroidal UM express NGFR,
whereas in vitro UM cell lines express NGFR when grown in a
3D matrix. In addition, vascular mimicry forming UM cell lines
specifically express NGFR, indicating that there might be a
possible role of NGFR in UM aggressiveness and resistance to
therapy (105, 224). In summary, it is becoming evident that similar
to cutaneous melanoma, the phenotypic states of UM will likely be
an important mechanism underpinning metastasis. Future work
employing single-cell level characterization of UM should enable a
deeper understanding of the transitory cell states and phenotypic
heterogeneity underlying this high fatality cancer.
EMERGING STRATEGIES TO TARGET
MELANOMA PLASTICITY AND THEIR
POTENTIAL CLINICAL IMPACT

Given the growing understanding of the regulatory networks that
drive phenotype switching and its role in melanoma metastasis and
therapy resistance, an important next step in research is whether
this process is targetable and if so, how can we target it
pharmacologically? One strategy is to direct melanoma cells
towards the more therapy-sensitive proliferative/melanocytic state
by blocking or reversing the invasive switch (225). In the past years,
several therapeutic agents have been developed and tested (Table 3),
among which the WNT5A-Protein Kinase C (PKC) pathway was
among the first to be targeted (120, 133, 134). In 2002, a polyclonal
antibody against theWNT5A receptor Frizzled-5 showed efficacy in
decreasing melanoma cell invasion (120). Another early study
showed that a pan-PKC inhibitor, Gö 6983, blocked WNT5A-
mediated melanoma dedifferentiation in vitro, with increased
expression of PAX3 and melan-A (133). Moreover, a soluble
PORCN inhibitor C59, which functions by blocking WNT5A
secretion, showed a synergistic effect with an anti-CTLA-4
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antibody in vivo (134). Together, these studies provided early
evidence that blocking phenotype switching is a promising
strategy to sensitize melanoma to standard of care therapies.

More recently, several therapeutic agents that target the
transcriptional/epigenetic reprogramming of phenotype switching
have been tested. The JNK inhibitor JNK-IN-8, which reduces c-Jun
phosphorylation, decreased melanoma cell migration and sensitized
melanoma cells to BRAF inhibition (49). Small molecule inhibitors
against EZH2, a key effector of the BRN2 signaling, restored
differentiation and impaired invasion of melanoma cells in vitro
(72, 113), and inhibited melanoma growth and metastasis in mouse
models (135). Similarly, pharmacological inhibition of NFATc2, a
transcription factor that acts upstream of BRN2, drove a melanoma
cell switch to a more differentiated state with decreased invasiveness
(111, 136). Importantly, combined inhibition of NFATc2 and EZH2
(i.e., AM404+GSK126, respectively) reversed melanoma phenotype
switching overnight (136). That drug combination further induced
apoptosis in treatment-naïve melanoma cells and restored drug
sensitivity in MAPKi-resistant melanoma cells (136). Notably,
AM404 alone reversed phenotype switching following a 6-day
treatment (111, 136). These observations are in agreement with a
paradigm that switching between cell phenotypes is driven by
various signals over a prolonged period of time (13), and indicate
that co-targeting multiple drivers of phenotype switching might be
necessary to achieve optimal therapeutic efficacy.

An alternative strategy is to co-target different cell states of
therapy resistance, namely, the SMC state, the dedifferentiated state,
and the NCSC-like state. This is feasible due to specific markers for
each cellular state (Figure 1). For example, enapotamab vedotin
(AXL-107-MMAE), was designed to specifically target the AXLhigh

dedifferentiated melanoma cells (137). By eliminating the MITFlow/
AXLhigh therapy-tolerant and the MITFhigh/AXLlow therapy-
sensitive populations, respectively, enapotamab vedotin combined
withMAPK inhibitors or with an anti-PD-1 antibody, cooperatively
inhibited melanoma growth in vivo (137, 138). Several agents have
shown efficacy targeting the MITFlow/NGFRhigh NCSC-like
populations, including HSP90 inhibitors (103), an NGFR kinase
inhibitor AG-879 (103), an RXR antagonist HX531 (16), and a focal
adhesion kinase (FAK) inhibitor PF562271 (139). As anticipated,
blocking the NCSC-like state of cells led to enhanced/restored
therapy sensitivity (16, 103, 139). The drug-tolerant SMC state is
marked by the expression of CD36 (16, 77). It is therefore logical to
target this population using CD36 inhibitors or neutralizing
antibodies (3). Notably, several CD36-blocking agents have been
identified and shown anti-tumor activities in different cancer types,
including melanoma (140, 141, 143). Building on the concept that
redirecting cell state switching might be necessary to achieve
optimal therapeutic efficacy, the Marine group went on to show
that melanoma lesions escaping a combination of MAPK-targeted
therapy (dabrafenib+trametinib) and NCSC-directed therapy
(HX531+PF562271) could be further targeted by ERK
inhibitors (139).

Finally, accumulated evidence suggested that the mRNA
translation machinery represents a therapeutic opportunity to
modulate cancer cell plasticity and overcome therapy resistance (9,
144–146, 178). While agents targeting the eIF2a-eIF2B axis/ternary
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complex-mediated phenotype switching are yet to be explored,
inhibitors targeting different eIF4F components have shown
efficacy in preclinical melanoma models. For example, the eIF4A
inhibitor silvestrol selectively killed MAPKi-tolerant melanoma cells
(144). Combining MAPK inhibitors with an eIF4A inhibitor or with
an inhibitor blocking the eIF4E-eIF4G interaction synergistically
inhibited melanoma growth (144, 145). MNK1/2 inhibitors, which
block eIF4E phosphorylation, decreased melanoma cell invasion,
restored MITF expression and repressed NGFR expression in
BRAFi-resistant cells, and cooperatively inhibited their growth in
combination with vemurafenib (146). Importantly, MNK1/2
inhibitors are capable of sensitizing melanoma to anti-PD-1
immunotherapy in multiple melanoma mouse models (146).
CONCLUSIONS, PERSPECTIVES, AND
OUTSTANDING QUESTIONS

Intratumoral heterogeneity and phenotype plasticity is essential
for melanoma metastasis and therapy resistance. The phenotype
switching model describes a cellular plasticity that enables
melanoma cells to adapt to a variety of environmental stress
signals including standard of care therapies. Emerging data
suggest multiple phenotypic states of melanoma cells,
representing a melanocyte differentiation gradient with
different sensitivity to therapies, frequently coexisting
throughout melanoma progression and throughout anti-cancer
treatment (14, 16). At least six distinguished states have been
identified, including a MITFhigh hyperdifferentiated/pigmented
state, a MITFhigh differentiated/melanocytic state, an
intermediate state, a CD36+ starved-like SMC state, an
NGFRhigh NCSC-like state and an AXLhigh dedifferentiated
state (Figure 1) (10, 12–16, 71, 77). Therefore, although most
commonly used to describe the proliferative-to-invasive switch,
the term “phenotype switching” actually describes cellular
plasticity that enables melanoma cells to switch among all the
distinct states. With accumulating studies carried out to
understand the mechanism underpinning melanoma cell
plasticity, it has become clearer to us that the switch between
phenotypes is driven by a collaborative reprogramming of the
transcriptional, the epigenetic, the translational, and the
metabolic regulatory networks (13). In line with the complexity
of these networks, blocking multiple drivers of the invasive
switch is anticipated, and has been shown, to have better
efficacy in reversing phenotype switching than blocking any
single driver (111, 136, 139). Similarly, targeting an upstream
regulator of the invasive switch has shown superior efficiency
than targeting a downstream effector (9). Alternatively, a more
direct strategy is to co-target multiple cell states, which has
become feasible due to markers defining each cell state (Figure 1
and Table 1). However, a real challenge is, while many state-
specific makers have been identified, not all of them are real
drivers of phenotype switching. For example, the fatty acid
translocase CD36 is a hallmark of the SMC state, which is
shown to have an altered metabolic profile (16). It is therefore
tempting to speculate that CD36 is a functional driver of the
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SMC state, perhaps by enabling more efficient uptake of fatty
acids and hence confer a selective advantage during therapy (3,
143). However, a recent study suggested that while MAPKi-
induced CD36+ melanoma cells have increased fatty acid
oxidation (FAO), CD36 is not functionally involved in the
FAO changes (77). Therefore, inhibitors or neutralizing
antibodies against CD36 might not be able to eliminate the
SMC population. Rather, a CD36 antibody-drug conjugate,
similar to enapotamab vedotin, might be more effective. It is
hence important to conduct more studies to distinguish drivers
of phenotype switching from melanoma cell state-
specific markers.

Another important aspect is the translational control of
melanoma plasticity. Whereas the transcriptional, the
epigenetic, and the metabolic reprogramming of melanoma
phenotype switching have been comprehensively investigated
(13), few studies highlight the translational regulation of this
process (9, 146). As summarized in Figure 3, ATF4 needs to
cooperate with reduced energy demand, exhibiting by an
inhibition of global mRNA translation, to drive the invasive
switch (9). However, blocking the upstream p-eIF2a alone was
sufficient to decrease invasion (9), indicating additional
regulators downstream of p-eIF2a. Moreover, under nutrient
sufficient conditions, cap-dependent global translation is
activated, driving melanoma cells to the proliferative state (9,
148). Our recent study suggested, even under such seemingly
suitable conditions, melanoma cells could still switch to an
invasive state through the MNK1/2-eIF4E axis (146). Notably,
phosphorylation of eIF4E doesn’t affect global mRNA translation
(149), indicating this invasive switch occurs while maintaining
high energy demand (178). Do these two distinct translational
regulators lead to different invasive cell states? It is tempting to
hypothesize that the p-eIF2a-driven switch leads to a starved-
like phenotype, resembling the CD36+ SMC state in vivo (16, 77),
whereas the p-eIF4E-driven switch leads instead to the NGFRhigh

NCSC-like state (14, 16, 79). Further investigation is needed to
demonstrate the role of these two translational factors in
mediating melanoma phenotype switching.

Finally, uveal melanoma is a complex disease where the role
of cell plasticity has not been sufficiently explored. Although
exhibiting different genomic mutations from cutaneous
melanoma, GNAQ and GNA11 mutations in UM ultimately
lead to the hyperactivation of MAPK and PI3K signaling (209).
Similar microenvironmental stress conditions such as hypoxia,
nutrient limitation, and chronic inflammation are also
commonly observed in UM. Thus, UM cells are likely to
undergo similar stress-induced phenotypic plasticity. Indeed,
many genes that are known to determine invasiveness of
cutaneous melanoma cells have also been reported to drive UV
progression, such as transcription factors AP-1 and TEADs
(219–221), EMT-like markers ZEB1, TWIST1, and SNAIL
(214), Notch signaling, and extracellular factors TGF-b, IL-6
and IL-8 (218). These data suggest a potentially significant
overlap in plasticity regulators between cutaneous melanoma
and UM. Notably, no targeted therapy or immunotherapy has
shown efficacy in UM management. Several clinical trials using
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new molecules, inhibitors alone or in combination are being
developed based on preclinical work. MEK inhibitors when
combined with dacarbazine or other chemotherapy agents
failed to improve progression free survival in UM (226).
However, new combination treatments co-targeting MEK with
PKC, FAK, GNAQ/11 and other main pathways such as YAP
have revealed promising new therapeutic vulnerabilities that can
be exploited in a clinical manner (NCT03875820) (227–229).
Remarkably, a state-of-the-art immunotherapy agent,
Tebentafusp, is showing clinical benefit in patients with
advanced UM. Tebentafusp is a molecule that consists in a
TCR targeting domain (specific for an antigen of interest) and
single-chain variable fragment (scFv) anti-CD3 effector domain.
The soluble TCR is designed to bind to GP100, presented by
HLA-A*02:01 UM, where the CD3+ effector domain will later
bind and activate CD3+ T cells (230). One might speculate that,
similar to immunotherapy resistance in cutaneous melanoma,
that the loss of GP100 in UM cells through phenotype switching
could lead to Tebentafusp resistance. Therefore, blocking UM
Frontiers in Oncology | www.frontiersin.org 15
phenotype switching is expected to overcome drug resistance,
and potentially reduce liver metastasis and sensitize UM cells to
future therapies.
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