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Abstract: Over the past few decades, long acting injectable (LAI) depots of polylactide-co-glycolide
(PLGA) or polylactic acid (PLA) based microspheres have been developed for controlled drug delivery
to reduce dosing frequency and to improve the therapeutic effects. Biopharmaceuticals such as pro-
teins and peptides are encapsulated in the microspheres to increase their bioavailability and provide
a long release period (days or months) with constant drug plasma concentration. The biodegradable
and biocompatible properties of PLGA/PLA polymers, including but not limited to molecular weight,
end group, lactide to glycolide ratio, and minor manufacturing changes, could greatly affect the
quality attributes of microsphere formulations such as release profile, size, encapsulation efficiency,
and bioactivity of biopharmaceuticals. Besides, the encapsulated proteins/peptides are susceptible
to harsh processing conditions associated with microsphere fabrication methods, including exposure
to organic solvent, shear stress, and temperature fluctuations. The protein/peptide containing LAI
microspheres in clinical use is typically prepared by double emulsion, coacervation, and spray drying
techniques. The purpose of this review is to provide an overview of the formulation attributes and
conventional manufacturing techniques of LAI microspheres that are currently in clinical use for
protein/peptides. Furthermore, the physicochemical characteristics of the microsphere formulations
are deliberated.

Keywords: PLGA; PLA; proteins/peptides; microspheres; manufacturing techniques; characteriza-
tion techniques

1. Introduction

Protein and peptide drugs are known to be some of the most effective therapies to elicit
a desired therapeutic activity due to their specific interactions with biological targets [1].
However, effective administration of protein/peptide drugs require repeated doses as
these drugs exhibit low half-lives and are rapidly cleared from systemic circulation [2]. In
addition, repeated dosing or administration leads to low patient compliance affecting the
overall effectiveness of the protein/peptide therapeutics [3]. When administered orally,
protein therapeutics show poor bioavailability, due to rapid enzymatic degradation in
the gastrointestinal tract, and restricted membrane permeability, limiting these drugs to
parenteral (intravenous (IV), subcutaneous (SC), and intramuscular (IM) injections) route
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administration [4]. Polymer microparticle is a particle of polymer of any shape with an
equivalent diameter of approximately 0.1 to 100 µm [5]. They are made up of natural
or biodegradable polymeric materials that entrap or encapsulate proteins/peptides or
other biologically active substances. In general, microspheres can be suspended in an
aqueous vehicle and delivered parenterally with a tiny gauge needle without anesthesia [6].
The particles either feature a continuous polymeric matrix with uniform drug dispersion
or a shell-like wall around the drug reservoir/core [6]. Microspheres have a number of
advantages over conventional controlled drug delivery systems, such as (1) ability to cus-
tomize the rate and duration of drug release by changing the materials and manufacturing
procedures; (2) microspheres are more stable than alternative controlled drug delivery
technologies, such as liposomes; and (3) patient compliance is improved because of the
shorter dose frequency [6–8].

Long-acting injectable (LAI) microspheres have been previously exploited for the
delivery of protein and peptide therapeutics owing to their high drug loading capacity
and potential to provide prolonged drug release for extended periods. The advantages of
LAI microspheres include enhanced stability and bioavailability and improved efficiency
and patient compliance [9]. PLGA/PLA-based LAI microspheres could have a positive
impact on the delivery of proteins/peptides because: PLGA microspheres can be used
as a solution to the inconvenience and discomfort of frequent injections; by enabling the
delivery of drugs to targeted areas, higher drug concentrations can be maintained in the
targeted area, thus reducing systemic exposure; they may improve treatment adherence,
reducing relapse frequency and rehospitalization rates; they could reduce the risk of
accidental or deliberated dose; they allow for the ability to treat patients with more stable
plasma concentrations than oral medications; avoiding first-pass metabolism means there
is a better relationship between dose and blood level of drug, meaning lower and less
frequent peak plasma, which reduces side effects [10,11]. The target product profile of LAI
microspheres contains a number of formulations and process development variables, which
include: developing a formulation that provides a minimal burst release and acceptable
plasma concentration; selecting a polymer type that provides the required duration of
drug release while maintaining the stability of proteins/peptides during storage and
in vivo; developing a suitable and reproducible process that is scalable to commercial
production. The two main challenges in the preparation of LAI microspheres that impede
their development into a commercial success are; (1) achieving uniform size distribution
of microspheres at large scale production; (2) consistent bioactivity of encapsulated drug
during preparation, storage, and release as they are subjected to various forces such as shear
stress (during homogenization), oil–water interface stress, and ice–liquid and dehydration
stress (during lyophilization), leading to significant loss of their therapeutic effect [12–16].
The ideal microsphere formulation should have reasonably high protein loading capacity,
encapsulation efficiency, and sustained release potential of encapsulated protein while
retaining its biological activity [8]. In addition, the particle size of the microspheres
formulation should be small enough to pass through a needle of 22–25 gauge for IM and
SC administration [17].

Protein and peptide therapeutics have been encapsulated in polymer matrixes to
create microspheres or micro particles. Biocompatible and biodegradable polymers such as
polylactide-co-glycolide (PLGA) and polylactic acid (PLA) are most commonly employed
and widely utilized at a clinical level. The Food and Drug Administration (FDA) have
approved a number of LAI microsphere formulations because of their proven safety history.
Details of some commercially available PLGA/PLA-based microsphere formulations are
presented in Table 1.
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Table 1. FDA approved commercial PLGA/PLA-based long-acting injectable microspheres containing proteins and peptides
[18,19].

Clinical Products Active Agent Polymer Encapsulation
Technique Duration Company

Sandostatin®

LAR
Octreotide acetate PLGA glucose Coacervation 4 weeks Novartis

Signifor® LAR
Pasireotide

pamoate PLGA Emulsion solvent
evaporation 4 weeks Novartis

Somatuline®

Depot
Lanreotide acetate PLGA Spray drying 4 weeks Ipsen

Lupron Depot® Leuprolide acetate PLGA/PLA Emulsion solvent
evaporation I.M/4, 12, Takeda

Trelstar® Triptorelin
pamoate PLGA Spray drying or

coacervation
I.M./4, 12, 24

weeks Allergan

Bydureon® Exenatide PLGA sucrose Coacervation Weekly Astra–Zeneca

Although currently available commercial PLGA-based LAI microspheres have often
shown success, there are several challenges that limit the broader development and ap-
plication of LAI microspheres. Peptide and protein instability, poor release kinetics of
PLGA, presence of residual solvents in the product, and increased cost of manufactur-
ing are the major issues [13,20,21]. Despite several PLGA-based LAI microspheres being
marketed well beyond their patent expiration, there are currently no generic PLGA-LAI
microspheres approved by the FDA. This could be related to the formulation and manufac-
turing difficulties related to LAI microspheres having hampered the progress of generic
product development [22]. Because PLGA is a significant element in LAI microspheres,
its composition and amount are critical for the microsphere drug release. The first stage
in the development of LAI microspheres is to identify a PLGA polymer. Understanding
and managing drug release kinetics from PLGA-based microspheres requires a thorough
analysis of PLGA, such as the lactic acid (LA)/glycolic acid ratio (GA) (LA/GA), molecular
weight and distribution, and polymer end group [23,24]. There are several factors that
influence the release profile of protein/peptides from PLGA microspheres, particularly dur-
ing the manufacturing process [25]. The solvent and emulsifier used in the preparation, the
drug distribution in the microsphere, the microsphere’s apparent and intrinsic properties,
and the in vitro testing method all play a significant role in the release behavior and, as a
result, the product performance of microspheres [26]. Furthermore, minor changes in man-
ufacturing techniques can alter the physicochemical properties of the microspheres [27].
Therefore, in the development of LAI PLGA/PLA-based microspheres, elucidation of
quality attributes and essential manufacturing process parameters is a major concern. The
present review discusses the key formulation attributes, and the manufacturing techniques
employed for the development of PLGA/PLA-based LAI microspheres for protein/peptide
delivery. Furthermore, important physicochemical properties of protein/peptide loaded
LAI microsphere formulations are discussed.

2. Formulation Attributes of PLGA/PLA-Based LAI Microspheres
2.1. PLGA/PLA Polymer

The selection of the PLGA/PLA polymer for the development of microspheres de-
pends on the route of administration, which is specific for a particular drug, the amount of
microspheres administered per unit dose, rate of drug release from the microspheres in a
day to meet the therapeutic concentration of the specific drug, and the degradation time of
the polymer. Although the drug release from the microspheres is faster than the complete
degradation of the polymer, the degradation time of the polymer plays a major role in the
selection of the suitable polymer [28]. PLGA is the most studied biodegradable polymer for
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commercial and experimental drug encapsulation, as they are biocompatible and degrade
into non-toxic oligomers or monomers. It is commercially available in different copolymer
compositions, capping groups, and molecular weight(s) (MW), which offers possibilities
to tune drug release kinetics and degradation. A PLGA polymer is synthesized by ring-
opening polymerization of lactide and glycolide monomers, using stannous octoate as a
catalyst, which activates the hydroxyl moieties to initiate ring-opening polymerization [29].
Ring opening polymerization of cyclic monomers, as L-lactide (LLA) and glycolide (GA), is
the most widely applied method for the synthesis of PLGA copolymers with an appropriate
catalyst such as stannous octoate ([Sn(Oct)2]). The [Sn(Oct)2] is used to open the lactide
and glycolide rings because it is a highly efficient transesterification agent. Its typical bulk
reaction times at 100–180 ◦C ranges from a few hours to days, resulting in copolymers
with a random microstructure [30,31]. Figure 1 shows a schematic representation of the
synthesis of poly(lactide-co-glycolide) (PLGA).
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The hydroxyl moiety is usually attached to the growing PLGA chain via an ester bond.
In the formation of PLGA with a free acid end-cap, water itself serves as an initiator [32].
Other alkyl hydroxyl initiators, such as dodecanol, forms PLGAs alkyl ester [33]. By
controlling the access to hydroxyl group initiation sites, a wide arrangement of PLGA
polymers can be synthesized [33]. The high quality PLGA can be obtained by homopoly-
merization of methylglycolide and copolymerization of methylglycolide and glycolide [34].
The important physicochemical characteristics of the PLGA polymer in developing LAI
microspheres are outlined in Figure 2. PLGA is composed of hydroxyl acid monomers
(d-lactic, l-lactic and/or glycolic acids). By changing the molecular mass, monomer ratio,
and end group chemistry, a PLGA polymer can encapsulate the different molecules of
any size. In the development of LAI microspheres, understanding the physicochemical
properties of the PLGA/PLA helps in achieving the target product profile. It is important
to characterize the raw PLGA material and a PLGA present in the microsphere formulation
because properties of the PLGA influence the final structures and other events during
the microsphere formation. Typically, a complete characterization of PLGA relies on
the measurements of the lactide to glycolide (L:G) ratio, MW, polymer shape (linear or
branched), and end group (acid or ester) [35,36]. PLGA is a linear copolymer consisting
of lactic acid and glycolic acid monomers, which is available in molecular weight ranges
from below 10,000 to 200,000 g/mol [37]. As the molecular weight is directly related to the
polymer degradation rate, the intrinsic viscosity of PLGA polymer is one crucial attribute
directly related to the polymer molecular weight. The PLGA polymer with high inherent
viscosity enhances the encapsulation efficiency of proteins/peptides by decreasing the
tendency of protein molecules to diffuse out of the polymer matrix [35,38].
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The selection of PLGA in the microsphere development depends on the appropriate
selection of PLA and PGA ratio. This will determine the degradation kinetics of the micro-
sphere formulation in the body. The hydrophilicity/hydrophobicity nature of the PLGA
matrix depends on the lactide to glycolide ratio. PLA is hydrophobic in nature, whereas
PGA is more hydrophilic; hence, PLGAs with a high ratio of PGA has a faster degradation
rate owing to their hydrophilic nature, which promotes the absorption or penetration of
water molecules into PLGA matrix, causing hydrolysis of polymer chains [39]. The higher
the content of lactic acid monomer in the copolymer, the slower the degradation rate.

PLGA polymers with different lactide to glycolide ratios (e.g., PLGA 50:50 and PLGA
75:25) can exhibit different drug loading and drug release profiles owing to changes in
their solubility profiles, degradation characteristics, and interactions between the drug
and polymer [36]. The nature (crystalline or amorphous) of PLGA impact the encapsu-
lation efficiency and degradation rate of the polymeric chain. The crystallinity of PLGA
is influenced by the stereochemistry of the lactic acids and L:G molar ratio. In addition,
copolymers composed of L-PLA and PGA are semi-crystalline, whereas copolymers pre-
pared with D, L-PLA and PGA are amorphous. D, L-PLGA is preferable in microsphere
formulations because the encapsulated drug molecules are dispersed more homogeneously
in the amorphous polymer than the semi-crystalline one [40]. The PLGA polymer with
amorphous domains degrades faster than the crystalline region because the amorphous
domains are more accessible to water compared to crystalline ones, thus the degradation
proceeds faster. Furthermore, the encapsulation efficiency increases with an increase in the
amorphousness of the PLGA polymer [41].

The glass transition temperature (Tg) is one of the important physicochemical proper-
ties of the PLGA polymer. The Tg of PLGA usually lies above the physiological temperature
(37 ◦C) and increases with the lactide content and molecular weight of the polymer or the ad-
dition of compounds such as active pharmaceutical ingredients (API) or plasticizers [42,43].
The end terminal (acid or ester) group of PLGA is another important physicochemical
parameter that directly affects the functionality of the microsphere formulation. The PLGA
polymer with an ester end cap has shown a four to six week delay in in vivo degradation
compared with the acid end group of PLGA with a similar monomer ratio and molec-
ular weight [44]. Also, the presence of an acid end group in PLGA polymer causes the



Int. J. Mol. Sci. 2021, 22, 8884 6 of 25

swelling of the PLGA matrix and initiates hydrolysis owing to its increased water uptake
potential [44].

Generally, PLGA polymer is degraded into oligomers and monomers via hydrolytic
scission of the ester bonds. The degradation and erosion of PLGA polymer can be explained
in two stages [45]. In the first stage, a large amount of lactic and glycolic acids are formed
resulting in decreased pH and under such conditions proteins/peptides encapsulated in
PLGA are relatively stable. In the second stage, microspheres lose mass as a result of an
increased polymer chain scission. In small particle sized microspheres, the degradation of
PLGA is mostly homogeneous, whereas, in large particle sized microspheres, hydrolytic
degradation is heterogeneous. During the degradation process, acid autocatalysis enhances
the PLGA degradation rate due to an increase in the number of carboxylic end groups.
The accumulation of acidic by-products can affect the PLGA microsphere porosity and
internal structure [46,47]. Scission of long polymer chains causes a reduction in the polymer
molecular weight, leading to an increase in its hydrophilicity and the formation of a water-
soluble fragment. PLGA can also undergo auto-catalytic degradation, where an acidic
by-product remains strapped in the bulk of the polymer, auto-catalyzing the degradation
process and leading to the generation of a highly acidic microenvironment [32]. The
formation of an acidic microenvironment depends on the nature of drugs and excipients
embedded in the microspheres. The interaction of basic molecules with the PLGA polymer
may either accelerate or decelerate the degradation. For instance, basic molecules may
serve as catalysts to the ester bond cleavage that increases the degradation rate of the
polymer [48]. In some cases, it is possible that basic molecules may protect the polymer
terminal carboxylic residues and decrease the catalytic effect of the acidic end chains
on polymer degradation [49,50]. When used in injectable microspheres, the degradation
mechanism of PLGA polymer is as follows; polymer surface erosion with the release
of the encapsulated drug; scission of polymer–drug bonding, and release of physically
entrapped drug by diffusion [51]. Factors that can influence the degradation of PLGA
include; polymer hydrophilicity or hydrophobicity, water permeability, monomer ratio
(L:G ratio), MW, Tg, morphology (crystalline/amorphous), and pH [32].

Most of the injectable PLGA microsphere formulations in clinical use utilize a linear
PLGA except Sandostatin®, which utilizes the star-shaped or branched PLGA, more specifi-
cally a glucose core with attached PLGA chains as glucose-initiated PLGA (Glu-PLGA) [36].
The number of branches (or arms) of the Glu-PLGA is a critical characteristic of the polymer.
There has been limited information available on characterizing the molecular structure of
Glu-PLGA. An accurate calculation of the branch units in Glu-PLGA depends on selecting
the appropriate linear PLGA comparators that cover the entire molecular range of the
branched PLGAs. Also, it is important to use PLGA of the same end cap and L:G ratio [52].
Linear PLGA polymers can easily be characterized by determining MW, end-cap, and L:G
ratio. For star-shaped PLGA, determining the branch numbers and measuring the MW
is not possible with the traditional methods unless a series of branched PLGA standards
were used. Typically, Glu-PLGA polymer exhibits a faster mass loss and degradation rate
than the linear PLGA of similar molecular weight. [36].

2.2. Organic Solvent

Organic solvents are used to dissolve both the drug and the polymer in emulsion-
based microencapsulation techniques. For efficient encapsulation, the organic solvent
should meet the following criteria; low toxicity, low boiling point, high volatility, and
ability to dissolve the polymer [53]. Methylene chloride is the most commonly used solvent
for encapsulation owing to its low boiling point, high volatility, and immiscibility with
water. In addition, high saturated vapor pressure of methylene chloride causes high solvent
evaporation rate, which reduces the manufacturing process duration of microspheres [54].
However, the carcinogenicity property of methylene chloride limits its use in the fabrication
of microspheres [55]. Ethyl acetate exhibits less toxicity as compared to methylene chloride
and can be used as an alternate solvent. However, its partial solubility in water or miscibility



Int. J. Mol. Sci. 2021, 22, 8884 7 of 25

with water limits the microsphere formation. The type of solvent on the microsphere
morphology is shown in Figure 3. It has been observed that when dichloromethane
is used as the solvent, the microparticles are spherical with a rough surface, while the
microparticles have a smoother surface and micropores when ethyl acetate was used
as solvent [53,56]. The difference in morphology (rough and smooth surface) could be
due to the solvent evaporation rate. Solvent evaporation of dichloromethane is faster
than that of ethyl acetate. The ability of the organic solvent to diffuse seems to be a key
factor for the possibility of coalescence phenomena during polymer precipitation and
particle formation [57]. When the dispersed phase (PLGA in ethyl acetate) is introduced
directly into the continuous or aqueous phase, a sudden extraction of a large quantity
of ethyl acetate from the dispersed phase leading to precipitation of the polymer as an
aggregate [58]. However, pre-saturation of aqueous solution with an organic solvent such
as ethyl acetate can resolve this issue by delaying extraction of the solvent and hardening
the droplet surface [59]. Pre-saturation of continuous phase to a certain extent with ethyl
acetate can control the particle size of the microspheres by altering the interfacial tension
between the continuous and discontinuous phase, reduce the diffusion of ethyl acetate from
the dispersed phase into the aqueous phase by decreasing the driving force for the solvent
extraction, and prevent early precipitation of the PLGA (which helps in the formation of
spherical microspheres instead of undesirable large clumps of drug–PLGA) [60,61]. The
L:G ratio has a more significant impact on the polymer’s solubility in an organic solvent.
As the lactide portion increases in L:G ratio, PLGA polymer become soluble in a large
number of solvents. When the glycolide portion increases, PLGA dissolves only in highly
fluorinated solvents, such as hexafluoroisopropanol [35].
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Previous studies reported that the microspheres prepared with methylene chloride
are more uniform and spherical, while the ethyl acetate-based microspheres appear to be
partially collapsed. Moreover, encapsulation efficiency is high for microspheres made with
methylene chloride than the microspheres prepared with ethyl acetate as a solvent [62,63].
The low encapsulation efficiency of ethyl acetate based microspheres could be due to more
drug being bound to the continuous phase by the higher mass flux of solvent diffused from
the dispersed phase into the continuous phase or the large quantity of solvent available in
the continuous phase, which increases the solubility of the drug in the continuous phase,
encouraging the diffusion of the drug into the continuous phase, and leading to the loss
of drug [53]. In summary, solubility of polymer solvent in the continuous phase, the
solubility of water in the polymer phase, solvent removal rate, and solvent toxicity and
regulatory considerations are the key characteristics of the solvent that strongly influence
the microsphere formation. During microsphere formulation preparation, the aqueous
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solubility or miscibility of the organic solvent will affect its initial extraction. Typically, a
rapid precipitation of the polymer due to the initial extraction of the solvent to the external
phase is beneficial for obtaining high encapsulation efficiency. Nevertheless, if a large
volume of water is used or if the solvent is too soluble in the water, which results in fast
solidification of the polymer, creating a dense polymer shell on the droplet forms a particle
with a hollow core. The fast flux of the solvent out of the organic phase further disrupts
the droplets and forms a smaller microsphere as the emulsion droplets shrink [64,65]. The
solubility of the water in the organic phase will impact the reverse flux of the continuous
phase into the dispersed phase, and thus, the porosity of the microspheres.

2.2.1. Solvent Removal Rate

Depending on the boiling point and vapor pressure of the particular solvent, the
solvent removal rate also relies on the evaporation of the solvent from the hardening batch,
which is controlled by the unstirred boundary layer in the liquid or gas. The volatility of
solvent can also impact the solvent removal rate from the microparticles. For a solvent
with lower volatility, the solvent removal process can be expedited by increasing the
temperature or applying reduced pressure. However, increasing the temperature of the
hardening batch may lead to a more rapid flux of the solvent across the oil-in-water (O/W)
interface, causing small fractures on the particles, results in increased porosity and lower
drug loading [66,67]. For appropriate solvent evaporation rates at the industrial level, a
frequent replacement of the gas phase in the closed vessel by effectively flushing the liquid
surface is recommended [28,68].

2.2.2. Solvent Toxicity and Regulatory Considerations

The toxicity of the solvent is crucial for the regulatory approval of the microsphere
product. The maximum residual solvent level in the microsphere product depends on the
toxicity of the respective solvent, and their maximum recommended levels are specified in
the International Council for Harmonization (ICH) guidelines. Several methods, including
elevated temperature drying or final lyophilization of the microspheres, help to reduce the
final residual solvent levels to an acceptable value [28].

2.3. Stabilizer

During microsphere formation, an emulsifier or stabilizer is required to ensure the
stability of the emulsion droplet until enough solvent has been evaporated/extracted (i.e.,
polymer concentration becomes high enough) from the oil droplet to maintain particle
formation [69]. Typically, polyvinyl alcohol (PVA) is the most commonly used emulsifier
or stabilizer to formulate PLGA microspheres. PVA is a semi-crystalline synthetic polymer,
soluble in water and insoluble in other organic solvents. PVA is commercially available in
different grades depending on the degree of hydrolysis and viscosity. Partially hydrolyzed
PVA grades are available in the range from 84.2 to 89.0% (viscosity, 3.4 to 52.0 mPa.s),
moderately hydrolyzed grades range from 92.5 to 96.5% (viscosity, 14.5 to 30.0 mPa.s), and
fully hydrolyzed grades range from 98.0 to 99.0% (viscosity, 4.0 to 60.0 mPa.s) [70]. The
partially hydrolyzed PVA grades contain residual acetate groups, which reduce the degree
of crystallinity, providing greater aqueous solubility and increasing its potential to adhere
to hydrophobic surfaces [71]. In contrast, a fully hydrolyzed PVA grade has a high degree
of crystallinity, low aqueous solubility, and increases its ability to adhere to hydrophilic
surfaces [71]. In PLGA-based microspheres, PVA is usually added in the external aqueous
phase to stabilize the emulsion formed between the aqueous and organic phases. The
hydroxyl groups present in the PVA will interact with the water in the aqueous phase. In
contrast, the vinyl chain of PVA will interact with the organic phase (dichloromethane;
DCM) and remain trapped in the polymeric matrix, thus making the emulsion formed more
stable. Variation in concentration and volume of the PVA solution will affect the emulsion
stability [72]. During manufacturing, the presence of PVA reduces the interfacial tension
between the two liquid phases and prevents the coalescence of the droplets. The particle
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size and distribution of microspheres greatly depend on the concentration of the PVA in
the emulsion system [73]. Despite the repeated washing, the fraction or residual of PVA
remains associated with the microsphere particles because PVA forms an interconnected
network with the polymer at the interface. The binding of PVA to the microparticle surface
is likely to happen when the organic solvent is evaporated or removed from the interface
in which interpenetration of the PVA and PLGA molecules occurs. The residual amount of
PVA associated with the microspheres can influence the properties of the microspheres,
including particle size, protein loading, and in vitro release of the encapsulated protein [74].
Various factors that could affect the amount of residual PVA include the organic solvent
used to prepare the polymer solution a d the concentration of the PVA in the continuous
phase as well as the external aqueous phase.

The polarity of the organic solvent used in the emulsion system can affect the amount
of PVA adsorbed at the interface (polymer–organic solvent–water). With the increasing
organic solvent miscibility in water, the residual PVA associated with the microspheres
increases. This is due to a higher amount of PVA being portioned into the polymeric phase
containing an organic solvent, which is more miscible in the aqueous phase, causing the
deposition of the higher portion of PVA on the surface of the microspheres [74].

PVA Concentration

Drug loading into PLGA microspheres depends on the PVA concentration. The lower
the concentration of PVA, the lower the wettability of formed microspheres will be. There
is a possibility that a lower concentration of PVA might not be high enough to create a
stable emulsion due to leakage of the drug before skin formation of the microparticles.
Chitkara and Kumar et al. evaluated three different concentrations (0.5%, 1%, and 2% w/v)
of PVA in the bovine serum albumin-PLGA nanoparticles made by the water-in-oil-in-
water (W/O/W) double emulsion technique. The highest encapsulation efficiency was
obtained at 1% w/v PVA concentration [75]. The particle size of microspheres is likely to
be dependent on the concentration of PVA in the external aqueous phase, and the smaller
microsphere particle size was obtained from the higher PVA concentrations [72]. The
higher PVA concentration in the continuous phase increases the density of PVA molecules
at the O/W interface of the emulsion droplet, resulting in increasing the thickness of PVA
on the droplet surface. The content of PVA per weight of microspheres increases with a
decrease in particle size as the specific surface area decreases. When the concentration of
PVA is increased, or the molecular weight/viscosity of PVA is increased, it prevents the
separation of nascent emulsion droplets and increases the particle size of the microspheres,
leading to the aggregation or coalescence of particles [76,77].

3. Manufacturing Techniques

The manufacturing techniques for the preparation of microspheres for parenteral
delivery of proteins or peptides have a great impact on the resulting microsphere properties
such as particle size, porosity, and surface morphology. Furthermore, the manufacturing
technique should be well controlled and easy to scale-up. For the preparation of protein or
peptide loaded PLGA/PLA microspheres, the most widely used conventional techniques
are described below, which include double emulsion solvent evaporation, phase separation-
coacervation, and spray drying (Figure 4).
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3.1. Emulsification-Solvent Evaporation

The microencapsulation of PLGA/PLA-based drug products via solvent evapora-
tion/extraction usually involves the formation of a single emulsion (O/W) or double
emulsion (W/O/W). For poorly soluble molecules, the O/W method is frequently used.
This method has the following steps: dissolution of the insoluble drug in an organic solvent
containing the PLGA or PLA polymer; emulsification of organic or dispersed phase in an
aqueous or continuous phase; extraction of the solvent from the dispersed phase by the
continuous phase, accompanied by solvent evaporation, converting the droplets of the
dispersed phase into solid particles; and then collection and drying of microspheres to
eliminate the residual solvent [78]. This O/W method is not suitable for encapsulation of
highly hydrophilic drugs due to the fact that hydrophilic drugs during emulsion formation
diffuse into the continuous phase, leading to loss of drug. The O/W emulsion is produced
by agitation or homogenization of two different phases, and the agitation process is contin-
ued until the solvent is partitioned into the aqueous phase and is subsequently removed
by evaporation [54].

In general, organic solvents can be removed from the emulsion system by evaporation
to a gas phase or by extraction into the continuous phase. For solvent evaporation, the
carrier solvent must be dissolved in the continuous phase before evaporation occurs.

Double Emulsion Solvent Evaporation

The W/O/W double emulsion method is suitable for encapsulating hydrophilic
molecules, and the main steps include the formation of primary and secondary emulsions
and the removal of organic solvents using a suitable washing/evaporation process. To
form a primary emulsion, an aqueous solution containing hydrophilic molecule is added to
the solution of polymer previously dissolved in the water-immiscible organic solvent such
as methylene chloride, chloroform, ethyl acetate, and then the mixture is emulsified by
vortex, homogenization or ultrasonication [79,80]. PVA as an aqueous emulsifier is added
to the primary emulsion to prevent aggregation of droplets in the double emulsion system.
The double emulsion formed is transferred to an aqueous medium to evaporate the organic
solvent and harden the microspheres. Then, the excessive PVA solution or unloaded drug is
removed from the formed microspheres by washing the microspheres with water and then
lyophilizing it for storage [72,81]. In the solvent extraction process, the emulsion is trans-
ferred into a large volume of quench or wash solvent medium, and the solvent associated
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with the oil droplets is diffused out. Meanwhile, in the evaporation process, the emulsion
is exposed to a large quantity of water or co-solvent under appropriate temperature or
pressure [45]. The double emulsion method is capable of producing microspheres with
efficient encapsulation, high yield, and suitable for temperature-sensitive drugs [82,83].
However, leakage of water soluble drugs from the polymer phase to the outer aqueous
phase may limit the encapsulation of the hydrophilic drugs [80]. The solvent removal
step from the emulsion particles is one of the most critical factors in the double emulsion
method because water-in-oil (W/O) emulsion droplets are exposed to a large quantity
of water to remove the solvent and harden the microspheres. As the solvent is removed
from the emulsion droplets into the aqueous media, the encapsulated protein molecules
may diffuse from the emulsion into the aqueous media, accumulating on the microparticle
surface as they become hardened, leading to a lower loading capacity and encapsulation
efficiency and a higher initial burst release [17].

The stability of the primary emulsion is crucial for the successful encapsulation of
proteins or peptides in the double emulsion technique. Schugenes et al. [84] studied the
influence of emulsion stability on the characteristics of the microspheres (morphology
and porosity) prepared by the W/O/W double emulsion technique using two different
molecular weights of semi-crystalline L-polylactide polymer. The high viscosity of the
polymer solution due to the increase in molecular weight of L-polylactide polymer leads to
a less stable primary emulsion and more porous microspheres. The functional properties
of microspheres can be tailored by changing several parameters, including; polymer,
emulsifier, the organic solvent used, drug to polymer ratio, and the parameters of the
emulsification, extraction, or evaporation process [45].

3.2. Coacervation

Coacervation or phase separation is a process by which the polymer solution is sepa-
rated into two immiscible equilibrium liquid phases: dense coacervate phase concentrated
in polymer and a dilute (supernatant liquid) polymer phase. The coacervation technique
relies on the decreasing solubility of the coating polymer with the addition of a third
component (coacervating agent) to the polymer solution in an organic solvent [85]. Coacer-
vation can be initiated by a change in ionic strength, change in temperature, or addition of
a non-solvent. These changes promote polymer–polymer interactions rather than polymer–
solvent interactions, resulting in the dehydration of the polymer [85–88]. The main steps
in microencapsulation by the coacervation technique includes the phase separation of the
coating polymer solution, adsorption of the coacervate around the protein molecules, and
solidification of the microparticles [85].

Generally, the polymer separation or formation of the polymer-rich phase is induced
by adding a coacervating agent, typically silicone oil. Depending on the polymer molecular
weight, concentration, and processing temperature, the phase separation occurs above the
critical concentration of the silicone oil. The forming coacervate droplets are hardened by
adding a hardening agent such as hexane or octamethylcyclotetrasiloxane. The main draw-
back associated with this technique is residual coacervating or hardening agent present in
the microspheres, which may cause a problem of reduced biocompatibility [89]. Briefly,
the coacervation process consists of [90]: (i) formation of W/O emulsion by dispersing the
aqueous protein/peptide solution into a polymer dissolved organic phase (DCM) using
suitable methods such as homogenization and sonication; (ii) formation of coacervate by
gradually adding silicone oil (coacervate agent) to promote the phase separation, at which
point the DCM is extracted into the silicone oil phase, causing embryonic microspheres to
begin to precipitate; (iii) transfer of the mixture into a medium (heptane) to remove the
solvents and harden the soft microspheres; (iv) the excess solvents will be removed by
washing the microspheres with water, and the collected microspheres are sieved and dried
under suitable conditions. In the coacervation method, the PLGA/PLA polymer acts as a
wall or coating polymer, which deposits on the surface of the drug to achieve good encap-
sulation while the coacervate agent works as the phase inducer [91]. The incompatibility
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between the polymer and the coacervation agent is mainly responsible for the induction of
phase separation [23].

3.3. Spray Drying

The preparation of microspheres by spray drying has been reported for the encap-
sulation of proteins to improve the stability of proteins. The spray drying method can
overcome the problem of large volumes of solvent contaminated water phase associated
with the emulsion based microencapsulation methods. However, spray-drying requires
relatively large batch sizes compared to emulsion methods. Therefore, spray drying is often
less suitable in the early stage development of microsphere formulation [28]. The spray
drying process can be divided into (i) atomization of the liquid feed into droplets through
an atomizer by transferring the emulsion solution through tubing at a certain speed into
the atomizer; (ii) drying of the atomized droplets once the sprayed droplets and dry heated
airflow enter the drying chamber, where the mixing of atomized droplets as well as drying
medium (nitrogen gas) occurs; (iii) solvent evaporation via heat transfer from the drying
medium to the droplets and the mass transfer of vaporized moisture from the droplets into
the air allows for fast evaporation of the moisture and subsequent particle formation; and
(iv) separation of the dried particles from the drying medium using a cyclone separation
or baghouse filtration [92]. The air and the dried particles enter the cyclone tangentially,
and the air will follow a strong vortex motion, forming a spiral pattern movement. For
the particles with higher density or larger size, it is hard to follow the air stream; thus, the
particles will strike the glass wall and fall into the collection vessel owing to the centrifugal
forces [93].

In the spray drying method, the aqueous solution of proteins or peptides is dispersed
in the organic phase containing a PLGA/PLA polymer to form a primary emulsion. This
primary emulsion is atomized in a stream of heated air with a proper inlet/outlet tem-
perature, and then the solvent evaporates instantaneously from the droplets formed to
produce microspheres of particle size ranges from 1 to 100 µm depending on the atomizing
conditions. The microspheres are collected from an airstream using a cyclone separator.
Further, vacuum drying might be required to remove the residual solvents. The entire spray
drying process can be operated in closed-loop configurations under aseptic conditions.
Various spray drying process parameters, including inlet/outlet temperature, drying flow
rate, feed rate, and atomization energy input, influence the physicochemical properties
of PLGA/PLA microspheres and thus the stability and release profile of encapsulated
proteins/peptides [94–96]. The proven reproducibility, control of particle size, and drug
release properties of the spray dried microspheres are some of the advantages of the spray
drying technique over other microencapsulation techniques. The spray drying processing
conditions may be likely to induce stress (aggregation and denaturation), resulting in
stability issues for microencapsulated proteins [97].

Although the inlet airflow temperature is high, the contact time between the hot air
and sprayed droplets is limited. Therefore, when the sprayed droplets and hot airflow
proceed through the chamber in the same direction, the droplets will absorb the heat, and
their surface temperature will increase. However, in practice, the actual product temper-
ature is about 15 to 25 ◦C lower than the outlet air temperature. Therefore, it is feasible
to use the spray drying technique for the encapsulation of heat-sensitive molecules, such
as peptides and proteins, by controlling the spray drying process parameters [98,99]. The
processing parameters involved in the formation of primary emulsion in the double emul-
sion evaporation method may also influence the spray drying process in a similar manner.
Since no outer solvent phase is used in the encapsulation of microspheres by the spray
drying process, high entrapment efficiency is possible for hydrophilic molecules [100].
However, the microsphere formation process and the final characteristics of the micro-
spheres can be tuned by selecting the appropriate solvent composition to adjust the feed
drying kinetics and the solute precipitation rate. Recently, a three-fluid nozzle has been
used to produce PLGA/PLA microspheres, where the aqueous phase (peptide/protein
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solution) and organic phase (PLGA/PLA) are fed through two separate channels into the
drying chamber and then atomized into fine droplets. The two separate liquid channels
can avoid the interfacial stresses of the aqueous and organic phases, and the feed rate ratio
of two liquid channels is one critical parameter for this method [101,102]. The one-step,
continuous spray drying process is easy to scale up, and the residual solvents in the spray
dried microspheres is lower than the microspheres produced by the solvent evaporation
method due to the heated airflow in the drying chamber [103].

4. Physicochemical Characteristics and Analytical Techniques of PLGA/PLA-Based
LAI Microspheres

Complex LAI microsphere products have been used to deliver protein/peptide thera-
peutics over weeks to months in a controlled manner. The LAI microsphere products have
complex formulation constituents and complicated manufacturing processing steps [22].
The physicochemical properties of PLGA microspheres are determined by several factors:
type of polymer (polymer MW, monomer composition, and polymer functionalization),
production method, processing and sterilization, drug and formulation parameters, and
the presence of excipients such as stabilizers, surfactants, or osmotic agents. Small man-
ufacturing changes can affect the physicochemical characteristics of microsphere drug
products, which in turn influence the product in vitro and in vivo performance. Different
factors affecting the properties of PLGA/PLA LAI microspheres are presented in Figure 5.
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A variety of characterization techniques have been used to determine physicochemical
characteristics and ensure consistency in manufacturing processing and product perfor-
mance of protein/peptide loaded microspheres. These analytical techniques are used to
determine the physicochemical characteristics of the microspheres, such as particle size
and shape, polymer molecular weight, encapsulation efficiency, in vitro drug release, glass
transition temperature, residual organic solvent, moisture content, and porosity. However,
despite widespread use of microspheres, no specific guidance or standard method has
been developed for in vitro release testing. Some of these physicochemical properties are
determined during the microsphere development stage to guide formulation and process
development, and some are tested for quality control purposes. A summary of various
techniques for testing the physicochemical properties of microspheres is presented in
Table 2.
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Table 2. Summary of analytical techniques used for the characterization of protein /peptide loaded
PLGA/PLA-based LAI microspheres [15,18,36,104–120].

Technique Principle Purpose Comments

Gel permeation
chromatography

Species separation
according to their MW,
high MW species being
eluted first.

Measure the MW of
polymers.

Evaluate the
degradation behavior of
PLGA/PLA in
microspheres during
in vitro release by
measuring the MW of
PLGA/PLA at different
time points.

Nuclear magnetic
resonance

A small chemical shift in
the spectrum arises as
variations in the
magnetic field occur due
to the interaction of
orbiting electrons with
the nucleus in varying
chemical environments.

Characterize the
polymer properties such
as the ratio of lactic and
glycolic acid units and
end-cap group.

The ratio of lactic and
glycolic units and the
end-cap group of PLGA
can be determined by
1H NMR and 13C NMR,
respectively.

Differential scanning
calorimeter

Measure enthalpy
changes due to changes
in the physical and
chemical properties as a
function of temperature.

Characterize the
solid-state of the
polymers.

Determine the glass Tg
of the PLGA in the
microspheres.

Laser diffraction Measure the amount of
light blocked when a
particle gets in front of
the beam, as particles
pass as a single file
through the detector.

Determines the particle
size and size
distribution of
microspheres.

The size distribution is
described as span value,
calculated as D90, D50,
and D10.
Pre-ultrasonication is
required because the
agglomeration of small
particles may disturb the
measurement. Analysis
is fast, stable, and
accurate.

High performance liquid
chromatography

Separation of
components in a liquid
mixture. A liquid
sample is injected into a
mobile phase flowing
through a column
packed with a
separation medium.

Characterize and
quantify proteins/
peptides and their
chemical degradation.

Determines the
important properties of
the microspheres such as
drug load and drug
release on an established
standard curve.

Gas chromatography Separation of the
components present in
the mixture based on the
partition between the
gaseous mobile phase
and liquid stationary
phase.

Evaluate the residual
solvent content to assure
that it is within the
acceptance limit.

Most appropriate
method due to their
various advantages such
as lowest detection
limits, ease of sample
preparation, and
specificity compared to
other analytical
techniques such as
thermo-gravimetric
analysis and
spectrometric methods.

Scanning electron
microscopy (SEM)

Accelerated electrons in
an SEM carry significant
amounts of kinetic
energy, and this energy
is dissipated as a variety
of signals produced by
electron–sample
interactions when the
incident electrons are
decelerated in the solid
sample.

Detect the size, surface
structure, and shape of
microspheres.

Standard method to
obtain information on
the microstructure of the
microspheres.
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Table 2. Cont.

Technique Principle Purpose Comments

Sodium dodecyl
sulfate–polyacrylamide
gel
electrophoresis

Molecules are separated
according to the length
and charge of the
polypeptide chain.

Determines the
structural integrity of
proteins/peptides.

Identify the MW change
of proteins/peptides
after encapsulation. The
aggregation or structural
integrity of the
proteins/peptides can
be measured to some
extent.

Fourier transform
infrared

Explores bonds
vibrations in order to
provide a
second-derivative
spectrum.

Detects the secondary
structural integrity of
peptides/proteins and
determines the
interaction between the
polymer and the
encapsulated drug.

Detect the interaction
between
proteins/peptides and
polymer matrix and
identify the structural
change of
proteins/peptides after
encapsulation.

USP apparatus IV The flow-through
method using the official
USP IV apparatus
operated in open-loop
mode is capable of
maintaining a
continuous flow of fresh
dissolution medium,
thus maintaining infinite
sink conditions. The
microspheres sample are
mixed with glass beads
in a sandwich manner.

USP apparatus IV is the
recommended
compendial method for
in vitro release testing of
microspheres.

Compared to
conventional in vitro
release methods (sample
and separate and USP
apparatus II), USP
apparatus IV method
provides the highest
cumulative release and
lowest variation in data,
offers easy maintenance
of sink conditions, easy
change of media and
media volume can be
easily adjusted during
the test.

Mercury porosimeter Measures both the
pressure and volume of
mercury taken up by a
porous material.

Determines the porosity
of
microspheres.

Measure the total
intrusion volume, total
pore area, and porosity.

4.1. In Vitro Release

In vitro release testing methods with reproducibility and good discriminatory ability
are critical for both quality control purposes and to assist in product development. It is
important to understand the release mechanisms and factors that affect the release rate
in order to modify the drug release. For LAI PLGA/PLA microspheres, real-time release
testing utilizes an extended period, which affects the product batch release time. Therefore,
accelerated in vitro release methods that correlate with the real-time in vitro release of
microsphere products are essential. Several factors, including temperature, pH, and pres-
ence of enzymes and surfactants, can expedite the rate of polymer hydration/degradation
and drug diffusion, thereby accelerating drug release from PLGA microspheres [121,122].
There are four possible release mechanisms for drug molecules to be released from PLGA-
based microspheres: (i) diffusion through water-filled pores, (ii) diffusion through the
polymer, (iii) osmotic pumping, and (iv) polymer erosion. Of these, diffusion through
water-filled pores is the most common if the encapsulated drugs used are large, hydrophilic
biopharmaceuticals (e.g., proteins and peptides) [123].

During the in vitro release of PLGA-based LAI microspheres, water is absorbed by
PLGA upon immersion in aqueous media or administration in vivo, and the volume occu-
pied by the water inside the PLGA matrix creates pores. This porous connected network
allows drug release as the number and size of water-filled pores increases in the polymer
matrix [124]. Also, the scission of ester bonds (hydrolysis) and subsequent decrease in
polymer MW occurs upon contact with the water. Hydrolysis creates acids, which catalyzes
hydrolysis, causes heterogeneous degradation inside PLGA matrices, i.e., degradation of
PLGA matrix at the center is faster than at the surface, and this outcome becomes more
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evident with increasing particle dimensions as the acid gradient increases [125–127]. This
hydrolysis effect makes the polymer less hydrophobic with decreasing MW, and at a partic-
ular molecular weight (1100 Da), the oligomers become water soluble. Erosion (mass loss)
of the polymer starts when the dissolved polymer degradation products are able to diffuse
into the release medium. The dissolved polymer degradation products enhance the drug
release in several ways (by catalyzing the hydrolysis due to its acidic nature, plasticizing
the polymer (which decreases the polymer transport resistance due to an increase in the
rate of water absorption), and increasing the osmolality inside the polymer matrix (which
can be a driving force for water absorption) [128,129].

Due to the lack of compendial in vitro release methods, various in vitro release testing
methods such as sample-and-separate, membrane dialysis, and continuous flow have
been widely used for in vitro release testing of microsphere products [130]. Sample and
separate methods can provide a direct and accurate assessment of in vitro drug release.
However, inadequate agitation during release testing causes aggregation of microspheres
and loss of the dosage form during sampling. In the case of the membrane dialysis
methods, limited media volume is available inside the dialysis sacs, compromising the sink
conditions when the drug is poorly soluble in the release media. USP apparatus 4 with
well-defined geometry and hydrodynamics can minimize the microsphere aggregation
while also avoiding microsphere loss during sampling, and has been demonstrated to be
an appropriate in vitro release testing method for PLGA/PLA microspheres [105,130].

4.2. Particle Size

The particle size of PLGA/PLA microspheres influences the drug release behavior
and injectability of the microspheres. Particle size varies with the different microsphere
preparation techniques. The smaller particle size shows an enhanced initial burst release
than the large size microspheres due to increased specific surface area. On the other hand,
the polymer degradation rate is more prominent with the large microspheres compared
with the small ones [18]. The erosion rate of PLGA polymer is also greater in the case of
smaller sized microspheres compared to larger size microspheres. When comparing the
particle size of microspheres manufactured via different preparation methods, particle size
distribution is more meaningful than average particle size. Because microspheres with the
same average particle size but different size distributions may exhibit different drug release
profiles. To produce microspheres with desired particle size or size distribution, several
factors need to be considered, which includes but are not limited to; polymer and surfactant
type, the concentration of polymer in the organic phase, volume fraction of dispersed
phase, stirring rate during hardening, homogenization speed, and the temperature during
preparation [6,18].

4.3. Encapsulation Efficiency

Encapsulation efficiency is described as the amount of protein/peptide encapsulated
into microspheres following preparation. The physical and chemical properties of the
polymer, the solvent used in the encapsulation process, and drug–polymer interactions
can influence the encapsulation efficiency of proteins/peptides. It has been reported that
microsphere preparation temperature in the solvent evaporation method is likely to affect
the encapsulation efficiency. At a low preparation temperature, the immiscibility between
the polymer phase and the water phase is increased, leading to the rapid formation of the
microsphere wall. On the other hand, at a higher preparation temperature, the solvent
evaporation rate is increased, resulting in the quicker formation of the microsphere similar
to that observed at the low preparation temperature [6]. It is noteworthy that the potency
and the corresponding drug loading efficiencies play an important role in the long-term
release of peptide/protein drugs. For a highly potent peptide/protein, a low drug loading
efficiency might be sufficient to achieve the desired pharmacokinetic profile. In contrast,
for a peptide/protein drug with low potency, a sufficiently high drug loading efficiency is
required to obtain prolonged pharmacokinetic exposure [18].
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4.4. Porosity

Porosity, either on the surface or in the internal polymeric matrix, significantly af-
fects the drug release profiles of the microspheres. The pore size of microspheres can be
modulated by selecting the appropriate solvent. The organic solvent with lower volatility
produces large pores, whereas a more volatile solvent gives rise to small pores [131]. The
polymer concentration also influences the microsphere’s porosity. The porosity degree of
particles reduces with increasing polymer concentration without significantly affecting
the mean diameter of microspheres [132]. Microspheres with a high porosity results in
undesirable initial burst release, leading to the release of drug over a relatively short period.
During the solvent evaporation process, the water soluble protein/peptides will tend to
diffuse into the external aqueous phase, creating a channel on the microsphere surface as
well as the internal polymeric matrix. Thus, the encapsulated drug will quickly leach out
through the pores upon contact of the microspheres with an aqueous environment [6].

4.5. Glass Transition Temperature

The Tg of the PLGA microspheres is closely related to the amount of residual sol-
vent in the formulation. While preparing PLGA microspheres, several formulation and
process parameters influence the Tg of the polymer, which include but are not limited to
PLGA type, drug physicochemical characteristics, residual solvent (s), drying rate, and
post-treatment [133]. Typically, Tg of PLGA polymer decreases with a reduction in polymer
molecular weight or a reduction in lactic acid content [40]. It has been reported that PLGA
microspheres are most commonly prepared by the emulsion based method, where the
polymer is dissolved in organic solvent and becomes hardened once the solvent is extracted
or evaporated [133]. Therefore, the type of organic solvent used and its concentration is
one most important factors affecting the Tg of the PLGA microspheres [134]. The drug
release profile of PLGA microsphere formulations can be controlled by manipulating the
parameters influencing the Tg of the formulation. Depending on the polymer properties,
the drug itself can lower the Tg of the microsphere formulation through its plasticization ef-
fect, which occurs from the interaction of the drug with PLGA polymer [135,136]. However,
drugs such as leuprorelin acetate show an anti-plasticizing effect, resulting in an increase
in Tg [137].

4.6. Particle Morphology

The particle morphology of PLGA microspheres can influence the product perfor-
mance, particularly the in vitro release profile. A modification in the manufacturing process
is known to affect particle morphology [138]. It has been reported that microspheres pre-
pared at low stirring rate show a spherical, smooth surface morphology with a relatively
uniform size [139]. The concentration or viscosity of PLGA and its copolymer ratio can
influence particle morphology. With the higher concentration (4 wt% polymer solutions)
of PLGA, the particles formed were larger and the outer surface of the particles stayed
smooth. The solutions from a PLGA copolymer ratio of 50:50 (lactide to glycolide) pro-
duced spherical particles, while solutions from lactide to glycolide of 75:25 show elongated
or irregular particles [140]. In the emulsion solvent evaporation method, the morphology of
microspheres is influenced by the rate of polymer precipitation during the solvent removal
step. A slow evaporation/removal of the organic solvent produces a smooth surface due
to the slow precipitation of the polymer. On the other hand, the quick removal of organic
solvent gives a porous surface. When using ethyl acetate in the organic phase, PLGA
microspheres express a rough surface owing to its high boiling temperature, which does
not allow for a complete solidification process [141].

5. Recent Progress in PLGA-Based LAI Microspheres

Recent progress in the area of PLGA long-acting injectable formulations mainly in-
cludes: demonstrating the influence of raw materials and manufacturing variables on
the performance of LAI microspheres; exploring biorelevant in vitro–in vivo correlations
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(IVIVCs) for biodegradable injectable PLGA microspheres; obtaining a better understand-
ing of the impact of properties of PLGA polymers on product performance; developing
modeling tools to facilitate the development of generic LAI formulation development as
well as bioequivalence guidances for LAI formulations; investigating potential peptide
PLGA interactions during product manufacturing and use; and developing an analytical
method for separating PLGA polymers. Recent studies aimed to determine the qualitative
sameness of PLGA polymers because altered PLGA characteristics have been recognized
as a critical factor that may cause performance variation in PLGA microsphere drug prod-
ucts. Similar PLGA polymers from different sources may have different physicochemical
properties such as inherent viscosity, Mw, Tg, and blockiness. This could significantly
impact physicochemical properties (such as the particle size distribution and the internal
microstructure) and consequently the release characteristics of PLGA LAI microspheres.
Bo Wan et al. [142] evaluated minor differences in the physicochemical properties of PLGA
polymers from various sources, differences in the physicochemical properties and in vitro
release of leuprolide acetate microspheres have been investigated. The findings suggest
that differences in polymer sources have a considerable impact on the sameness of physico-
chemical properties and the therapeutic performance of long-acting PLGA microspheres.
The basic knowledge of polymer characteristics gained will be crucial in the creation of
quality control measures and future regulatory guidance on the evaluation of LAI PLGA
microspheres.

IVIVC can be used to predict the in vivo burst release based on the in vitro burst
release of microsphere formulations, which helps to predict the in vivo performance of
microsphere formulation(s) with no or minimal burst release [143]. It has been challenging
to establish an IVIVC for complex parenteral microsphere formulations due to a combina-
tion of factors, including their unique traits (such as multiphase drug release profiles) but
also the lack of a standard/compendial in vitro release testing method, which can mimic
and predict their in vivo performance to the maximum extent possible [61,115]. There is a
scarcity of the establishment of IVIVC for complex parenteral microsphere drug products.
Recent research has shown that a reliable Level A IVIVC can be developed for compo-
sitionally equivalent LAI PLGA microspheres with manufacturing differences [144,145].
Diane J Burgess and her team [61] reported in aIVIVC of parenteral naltrexone loaded
polymeric microspheres. Three naltrexone PLGA microspheres with similar compositions
but different fabrication methods were prepared. A previously designed USP apparatus 4
method was used to determine the in vitro release properties of the produced naltrexone
microsphere formulations and the reference listed drug (RLD) product Vivitrol®. The
in vitro release profiles of naltrexone microspheres were compared to the pharmacokinetic
profiles of the microspheres using a rabbit model to develop an IVIVC and evaluate its
prediction. The findings showed that the established USP 4 approach was capable of
detecting manufacturing process-related performance changes, as well as forecasting the
in vivo performance of naltrexone microspheres in the tested animal model. The bi-phasic
and tri-phasic release characteristics of naltrexone microspheres, with varied burst release
and lag phase, are a significant difference. The evolution of IVIVCs is influenced by these
differences in release profiles.

In recent years, considerable research has been conducted to develop modeling tools
to facilitate the development of generic LAI formulation development as well as bioe-
quivalence guidance for LAI formulations. A tool for developing models appropriate for
characterizing the complex absorption process and the pharmacokinetic time course of
LAI formulations is challenging. The plasma concentration–time profiles following admin-
istration of LAI PLGA formulations are often irregular and cannot be interpreted easily
with conventional models based on first-order absorption kinetics and lag time. Sam N.
Rothstein’s team [146,147] demonstrated a simple, deterministic model that can accurately
forecast the release of a wide range of agents encapsulated in bulk biodegradable PLGA
polymer matrices. There is a gap in the current scientific understanding of how different
formulations and raw material variables used to manufacture peptide encapsulated PLGA
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microspheres lead to different levels of peptide–polymer interactions and peptide acylation
during encapsulation, storage, and release in vitro and in vivo. Unpredictable acylation
due to peptide–polymer interaction could lead to variations in pharmacokinetics and a loss
of bioequivalence of generic long-acting release PLGA formulations, which may lead to
differences in safety and efficacy [148]. Cationic peptides are known to bind efficiently to
PLGAs with a carboxylic acid (COOH) end group, which makes developing PLGA-based
peptide therapeutic delivery systems difficult. This interaction is thought to be a critical
step in the peptide acylation process in PLGA-based formulations, as it affects microen-
capsulation and release [148]. Schwendeman and his group [78,148–150] investigated the
thermodynamics of peptide−PLGA binding in dimethyl sulfoxide using a model cationic
octapeptide, octreotide, utilizing the nano isothermal titration calorimetry method. Results
showed that the extent of the interaction with the octreotide was exclusively reliant on
the availability of the acid end group of the PLGA. Furthermore, they concluded that
understanding the underlying driving force of peptide–PLGA binding can help formulate
formulations that prevent the peptide acylation precursor step in PLGA-based long-acting
release formulations and discover differences between PLGA/peptide formulations.

PLGA is the key component of LAI drug products responsible for providing controlled
and sustained drug release. It is important to determine key PLGA characteristics to ensure
comparable product performance because of the impact PLGA has on drug release kinetics.
John Garner et al. [113] developed a protocol for determining the key properties of PLGA,
the L:G ratio, polymer molecular weight distribution, and end-cap in clinical formulations
containing PLGA microparticles. The protocol outlines a procedure for isolating PLGA from
microparticles by eliminating additional excipients and active pharmaceutical ingredients
as well as analysis procedures for identifying the primary parameters. This protocol will be
valuable in developing PLGA-based long-acting therapeutic products because the features
of individual PLGA in clinically utilized formulations are not easily available. Furthermore,
the ability to determine key PLGA properties will aid in the formulation of generic PLGA
depot microsphere formulations.

6. Conclusions

Although PLGA/PLA is the most widely used biodegradable and biocompatible
polymer in LAI microsphere formulations, the limitations, including incomplete drug
release profile and burst release, should be considered while developing an LAI depot
of PLGA/PLA microspheres. Among the three conventional manufacturing techniques
(emulsion–solvent evaporation, coacervation, and spray drying), emulsion–solvent evap-
oration is the most applicable method in clinical LAI microspheres. However, in the
emulsion–solvent evaporation method, several process parameters such as polymer con-
centration, phase ratio, surfactant concentration, protein loading, and intensity of homog-
enization should be optimized because these parameters can affect the characteristics
of microspheres such as particle size, release profile, and encapsulation efficiency. By
modifying the PLGA characteristics, it is possible to produce a microsphere formulation
with desired properties and physiological behavior. Further, it is important to understand
and select appropriate processing conditions to guarantee the desired physicochemical
characteristics of the LAI microspheres. The high complexity of the manufacturing process,
absence of adequate standards, and product-specific regulations hindered the progress of
developing generic LAI depots of PLGA/PLA microspheres. Although FDA guidance on
LAI microspheres is not complete, the information available from the existing literature
might be informative and instructive to bring LAI PLGA/PLA microsphere products to
the market in the near future.
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