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Abstract

Review Article

IntroductIon

Diseases which caused by bacteria, viruses, fungi, and 
parasites are an important cause of mortality and morbidity, 
in all regions of the world particularly in the developing 
countries.[1] Bacteria and fungi resistance to antibiotics has 
grown in the last decades, but the rate of discovery of new 
antibiotics has steadily decreased.[2] The cause behind the 
lack of antibiotic discoveries are diverse and include among 
others, the poor return on investment compared to drugs 
for chronic diseases and regulatory burdens for smaller 
pharmaceutical companies.[3] Infections caused by resistant 
pathogens can be overcome using a combination of antibiotics 
with the variable mode of actions. However, the increased 
prevalence of pathogen resistant and the formation of bacterial 
biofilms that are difficult to eradicate have targeted the 
efforts to find alternatives to the current antibiotic therapy,[4] 
which is inadequate to control the infection of microbes[5] 
and creates major public health problems.[6] Thus, various 
pharmacognostical and pharmacological studies are performed 
to discover new therapeutic measures to prevent infection 
among drug-resistant bacterial pathogens.[7] An important 
approach is to target bacterial cell-to-cell communication, 

commonly known as quorum sensing (QS).[8] It is a way that 
bacteria use to sense information from other cells.

Quorum sensing mechanism
The QS mechanism is depend on the synthesis, release, and 
uptake of autoinducers (AIs) in the surrounding medium, 
whose concentration related to the density of secreting bacteria. 
AIs, extracellular signaling molecules, which accumulate 
in the environment in proportion to cell density is utilized 
for this intercellular communication.[9-11] Their function is 
to regulate gene expression in other cells of the community, 
which in turn, controls a number of bacterial responses. 
Various bacterial physiological processes, including virulence, 
motility, luminescence, biofilm formation, sporulation, 
development of genetic competence, synthesis of peptide 
antibiotics, production of secreted proteolytic enzymes, and 
fluorescence are regulated by QS.[12,13] Xavier and Bassler 
reported that signal molecule production is depending on 
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an autoinducing mechanism and their type differs between 
Gram-negative and Gram-positive bacteria.[14] These signaling 
molecules and their receptors have been broadly divided into 
three major classes: (1) N‑acyl homoserine lactones (AHLs), 
which vary in the length and oxidation state of the acyl side 
chain and produced by Gram-negative bacteria to monitor 
their population density in QS control of gene expression. 
The signals are synthesized by members of the LuxI family 
of proteins; (2) oligopeptides or autoinducing peptides, 
consisting of 5–34 amino acids residues, are generally involved 
in intercellular communication in Gram-positive bacteria. 
Many of these peptides are exported by dedicated systems, 
posttranslationally modified in various ways and finally 
sensed by other cells through membrane-located receptors that 
are part of two-component regulatory systems; and (3) AI-2 
employed by both Gram-positive and Gram-negative bacteria 
for interspecies communication. It has been chemically 
identified as a furanosylborate diester synthesized by members 
of the LuxS family of proteins.[14-16] Gram-positive bacteria: 
the precursor peptide AIs are modified and transported out of 
the cell by ATP-binding cassette exporter complex. When the 
concentration of the peptide AIs reaches the threshold value, 
the sensor kinase protein will be activated and phosphorylate 
the response regulator protein, which will then binds to the 
target promoter that will lead to QS gene regulation. However, 
in Gram-negative bacteria, the AIs are produced and diffused 
freely out of the cell. When the concentration of the AIs reaches 
the threshold value, a positive feedback loop will be formed 
that causes more AIs to be synthesized. The AIs produced 
will bind to their cognate receptor to form an AI-receptor 
complex which will then binds to the target promoter that 
lead to QS gene regulation [Figure 1]. The concentration of 
the AIs increases proportionally with the growth of a bacterial 
population, and when it reaches a certain point, those molecules 
diffuse back into the bacteria to regulate the transcription 
of specified genes responsible of the formation and release 
of virulence factors, antibiotic production, and biofilm 

formation.[17] The modulation of the physiological processes 
controlled by AHLs induces expression of QS genes.[18] All 
AHLs thus far reported are composed of an acyl chain with an 
even number of carbon atoms ranging from 4 to 14 in length, 
ligated to the homoserine lactone moiety [Figure 2].[19] The 
components of AHL-driven QS systems are typically members 
of the protein families: LuxI and LuxR. LuxI generates AHLs 
and LuxR activates or represses the transcription of specific 
genes such as virulent genes.[14,20]

Quorum sensing pathways inhibition
Because QS is implicated in various pathologically relevant 
events, it is conceivable that inhibitors of bacterial QS could 
have therapeutically application. There are different ways 
for QS inhibition in each pathway. They can be summarized 
as follows: (1) inhibition of AIs synthesis, (2) AIs receptor 
antagonism, (3) inhibition of targets downstream of receptor 
binding, (4) sequestration of AIs using, for example, 
antibodies against AIs, (5) the degradation of AIs using 
either catalytic antibodies (abzymes) or enzymes (such 
as lactonases), (6) inhibition of AI secretion/transport, 
and (7) antibodies that “cover” and therefore block AIs 
receptors. Not all seven different types of inhibition have been 
explored in the various pathways identified.[21,22]

Disrupting of this communication system or bacterial QS 
activity leads to attenuation of microbial virulence.[17,23] 
Many strategies have been designed to intervene with QS 
systems, which will have wide application in the control 
of QS-dependent infections produced by bacterial.[24] This 
motivated research of inhibition of this process through the 
utilization of QS inhibitors.[25] The inactivation or degradation 
of QS signal molecules is known as QS inhibition or quorum 
quenching (QQ). This can be accomplished by several ways 
such as through the development of antibodies to QS signal 
molecules, the enzymatic demolition of QS signal molecules, 
or through agents which block QS.[26] These strategies 
interfere with this cell-to-cell communication and monitor the 

Figure 1: A graphic presentation of QS molecular signaling network of Gram‑positive bacteria (a) and Gram‑negative bacteria (b)
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Figure 2: Chemical structures of N‑acyl homoserine lactones autoinducers

infectious bacteria without stopping their growth, thus averting 
the development of antibiotics resistance.[25,26] The ideal QS 
inhibitors have been defined as chemically stable and highly 
effective low molecular-mass molecules, which exhibit a high 
degree of specificity for the QS regulator without toxic side 
effects on the bacteria or an eventual eukaryotic host. Therefore, 
the development of new, nontoxic, and broad-spectrum QQ 
drugs from both plants and microorganisms is of great 
benefit in recent years. Plants produce diverse compounds 
such as simple phenolics, flavonoids (FLs), alkaloids, and 
terpenoids.[5,27] There is a great interest in the biological 
activities and therapeutic roles of these natural products in 
defeating QS pathogens. Since, there is a growing demand 
for anti-QS agents to overcome the bacterial resistance to 
antibiotics, it is necessary to examine and identify alternative 
and safe approaches for controlling pathogens. The plant 
kingdom has long been a source of medicines, and as such, 
there have been many ethnobotanically directed searches for 
agents that can be used to treat infections. The use of plants, 
plant products, and their purified components could open up the 
possibility of using these compounds as novel anti-QS agents. 
Therefore, this review presents the recent reported researches 
on the plants and natural products as QQ agents.

PhytochemIcals as Quorum sensIng‑InhIbItors

In this section, an overview of the QS inhibitory activity of the 
compounds derived plants that have been used since ancient 
times as traditional medicine. Plant-derived compounds are 
mostly secondary metabolites, most of which are phenols 
or their oxygen-substituted derivatives. These secondary 
metabolites possess various benefits, including antimicrobial 
properties against pathogenic microbes.[25] Major groups of 
compounds that are responsible for antimicrobial activity from 
plants include phenolics, phenolic acids, quinones, saponins, 
FLs, tannins, coumarins, terpenoids, and alkaloids.[28,29] 
Variations in the structure and chemical composition of 
these compounds result in differences in their QS inhibitory 
action [Figure 3].

Halogenated furanones produced by the benthic marine 
macroalga Delisea pulchra were the first identified anti-QS 
compounds. They were found to inhibit the QS-regulated 
behaviors by competitively bind to the LuxR type proteins. Thus, 
promote their rate of proteolytic degradation without killing 
the bacteria for their role in inhibiting biofilm formation.[25,29] 
Furthermore, the plant constituents such as naringenin, oroidin, 
salicylic acid, ursolic acid, cinnamaldehyde, methyl eugenol, 

as well as extracts of garlic and edible fruits, had anti-biofilm 
properties toward various pathogens.[30]

Dwivedi and Singh 2016 investigated the effects of the natural 
compounds, embelin and piperine on the biofilm-formation 
property of Streptococcus mutans using the microtiter plate 
method. It was found that minimum biofilm inhibitory 
concentration of embelin was 0.0620 ± 0.03 mg/mL, whereas 
that of piperine was 0.0407 ± 0.03 mg/mL, which was lower than 
that of embelin. These compounds might exhibited their effects 
by inhibiting the activity of receptors and molecules involved 
in the QS pathway, which is required for biofilm formation.[31]

The anti-QS potential of an anacardic acids mixture (AAM) 
isolated from Amphipterygium adstringens as well as its hexane 
extract (HE) on the rhamnolipid and pyocyanin production 
constraint as well as decrease of elastase activity, all being 
QS-controlled virulence factors expressed in the pathogenic 
bacteria Pseudomonas aeruginosa. They induced a 91.6% and 
94% inhibition of the violacein production at concentrations 55 
and 166 µg/mL, respectively without affecting the viability of 
the bacterium. Moreover, AAM inhibited pyocyanin (86% at 
200 µg/mL) and rhamnolipid (91% at 500 µg/mL) production 
and decrease the elastase (75% at 500 µg/mL) activity 
in P. aeruginosa without affecting its development.[32]

Kang et al. reported that piericidin A and glucopiericidin 
A isolated from Streptomyces xanthocidicus KPP01532 
are potential QS inhibitors that suppress the expression 
of the virulence genes (pelC, pehA, celV, and nip) of 
Erwinia carotovora subsp. Atroseptica (a plant pathogen 
that causes blackleg and soft rot diseases on potato stems 
and tubers).[33] Malabaricone C isolated from the bark of 
Myristica cinnamomea inhibited violacein production 
by Chromobacterium violaceum CV026. Furthermore, 
it inhibited the QS-regulated pyocyanin production and 
biofilm formation in P. aeruginosa PAO1.[34]

FLs are a large class of phenylpropanoid-derived plant 
metabolites that are classified according to the degree of oxidation 
of their C-ring and whose structural diversity results from 
substitutions of their carbon skeleton through hydroxylation, 
glycosylation, methylation, acylation, and prenylation.[35,36] 
Some FLs have been shown to inhibit gyrase activity, nucleic 
acid synthesis, type IV topoisomerase, cytoplasmic membrane 
functions, and energy metabolism.[37] FLs are also known for 
their implication in cell-to-cell communication mechanisms 
involved in the establishment of the symbiosis between rhizobia 
bacteria and their respective legume hosts.[35]

The flavone, baicalein has been shown to inhibit biofilm 
formation, which is QS dependent in P. aeruginosa 
PAO1 (at micromolar concentrations) as well as to promote 
the proteolysis of the Agrobacterium tumefaciens QS-signal 
receptor TraR in Escherichia coli cells at millimolar 
concentrations.[38,39] Vikram et al. screened many of the citrus 
plants FLs for their ability to interfere with QS-dependent 
bioluminescence mechanisms and biofilm formation.[40] 
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The results showed that naringenin reduces the induction of 
bioluminescence by the QS signals HAI-1 and AI-2 in Vibrio 

harveyi reporter strains as well as the production of biofilm 
by V. harveyi BB120 and E. coli 0157 : H7. Moreover, the 

Figure 3: Some phytochemicals as quorum sensing inhibitors
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expression of three type III secretion system genes suggested 
to be controlled by cell-to-cell signaling, is down-regulated 
by naringenin.[40]

Flavanones, naringenin, eriodictyol, and taxifolin identified 
in the extract of Combretum albiflorum significantly reduced 
the production of pyocyanin and elastase in P. aeruginosa 
without affecting bacterial growth. Further, naringenin and 
taxifolin reduced the expression of several QS-controlled 
genes (i.e., lasI, lasR, rhlI, rhlR, lasA, lasB, phzA1, and rhlA) 
in P. aeruginosa PAO1.[41]

Vandeputte et al. stated that the action of naringenin most 
probably results from a combination of the reduction of the 
production of both AHL molecules (which is corroborated by 
the down-regulation of the expression of the lasI and rhlI genes) 
and of the capacity of the LuxR-type transcription factors to 
perceive their cognate molecules, with a consequent reduction 
of the expression of QS-related genes.[41] It is noteworthy 
that lasI and rhlI mutants deficient in AHL synthesis is 
indeed impaired  in their capacity to express a wide range of 
QS genes, among which are lasB (encoding lasB elastase), 
rhlA (encoding the first protein involved in the production of 
rhamnolipids), and the phz operon involved in the production 
of pyocyanin.[42,43]

Quercetin (80 µg/mL) showed a significant reduction in 
QS-dependent phenotypes such as violacein production, 
biofilm formation, exopolysaccharide (EPS) production, 
motility, and alginate production in a concentration-dependent 
manner. It can act as a competitive inhibitor for signaling 
compound toward lasR receptor pathway.[44] Moreover, it 
significantly inhibited biofilm formation and production of 
virulence factors, including pyocyanin, protease, and elastase 
at a lower concentration. Furthermore, the expression levels 
of lasI, lasR, rhlI, and rhlR were significantly reduced by 34%, 
68%, 57%, and 50%, respectively, in response to 16 µg/mL 
quercetin.[45]

Moreover, catechin isolated from C. albiflorum (Tul.) 
Jongkind (Combretaceae) had a significant negative effect 
on pyocyanin and elastase productions and biofilm formation, 
as well as on the expression of the QS-regulated genes lasB 
and rhlA and of the key QS regulatory genes lasI, lasR, rhlI, 
and rhlR. It might interfere with the perception of the QS 
signal N-butanoyl-l-homoserine lactone by RhlR, leading to 
a reduction of the production of QS factors.[46]

Gopu and Shetty reported that the naturally occurring 
anthocyanin-cyanidin significantly inhibited QS-dependent 
phenotypes such as biofilm formation (72.43%), violacein 
production (73.96%), and EPS production (68.65%) in 
the opportunistic pathogen Klebsiella pneumoniae in 
a concentration-dependent manner.[47] Rosmarinic acid 
extracted from sweet basil bound to the QS-regulator RhlR 
of P. aeruginosa PAO1 and competed with the bacterial ligand 
N-butanoyl-homoserine lactone (C4-HSL). Furthermore, it 
stimulated a greater increase in RhlR-mediated transcription 

in vitro than that of C4-HSL. In P. aeruginosa, rosmarinic 
acid-induced QS-dependent gene expression and increased 
biofilm formation and the production of the virulence factors 
pyocyanin and elastase.[48] The disulphides and trisulphides 
metabolites which are extracted from garlic can inhibit 
LuxR-based QS inhibition in P. aeruginosa.[49] Naturally 
occurring furocoumarins from grapefruit showed strong 
inhibition of AI-1 and AI-2 activities based on the V. harveyi 
AI bioassay. In addition, they hinder the formation of biofilm 
in E. coli, Salmonella typhimurium, and P. aeruginosa.[50] 
Moreover, obacunone a grapefruit limonoid has been proven 
to have a strong antagonistic activity against both AHL and 
AI-2 systems, biofilm formation, and enterohemorrhagic 
E. coli virulence.[51]

The citrus limonoids, isolimonic acid, and ichangin are potent 
inhibitors of EHEC biofilm and adhesion to Caco-2 cells. 
They repressed locus of enterocyte effacement-encoded 
genes and flhDC. Furthermore, isolimonic acid interferes 
with AI-3/epinephrine activated cell-to-cell signaling 
pathway.[52] Moreover, isolimonic acid, deacetylnomilinic acid 
glucoside, and ichangin demonstrated significant inhibition of 
AI-mediated cell-to-cell signaling and biofilm formation. In 
addition, isolimonic acid and ichangin induced expression of 
the response regulator gene luxO.[53]

The diterpene phytol reduced the biofilm formation, twitching, 
and flagella motility of P. aeruginosa PAO1. It exhibited good 
P. aeruginosa pyocyanin inhibitory activity.[54] Carvacrol, 
one of the major antimicrobial components of oregano oil, 
inhibited the formation of biofilms of C. violaceum ATCC 
12472, Salmonella enterica subsp. Typhimurium DT104, 
and Staphylococcus aureus 0074. Furthermore, it reduced 
expression of civil (a gene coding for the N-acyl-L-homoserine 
lactone synthase), production of violacein, and chitinase 
activity (both regulated by QS).[55]

The total anthocyanin of Syzygium cumini (STA) specifically 
inhibited the violacein production in C. violaceum, biofilm 
formation, and EPS production in K. pneumoniae up to 82%, 
79.94%, and 64.29%, respectively. The QS inhibitory activity 
of S. cumini was attributed to malvidin, which reduce the 
violacein production, biofilm formation, and EPS production 
of K. pneumoniae in a concentration-dependent manner.[44]

Mohamed et al. reported that mangostanaxanthone I and 
α-mangostin isolated from isolated from the pericarp of 
Garcinia mangostana, possessed QS inhibitory activity against 
C. violaceum ATCC 12472 with MIC values 2 and 3 µg/mL, 
respectively compared to (+) - catechin (MIC 2 µg/mL).[1]

Plant by‑Products as Quorum sensIng‑InhIbItors

Lee et al. (2011) reported that acacia and multifloral Korean 
honeys at low concentrations (0.5% v/v) were capable of 
reducing biofilm formation in an enterohemorrhagic E. coli 
strain due to their contents of fructose and glucose, that 
appeared to be the main contributors to biofilm formation 
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inhibition.[56] Truchado et al. studied the effect of chestnut 
honey and its aqueous and methanolic extracts on biofilm 
formation by Yersinia enterocolitica, E. carotovora, and 
Aeromonas hydrophila.[57] Chestnut honey and its aqueous 
extract showed a significant QS inhibitory activity through the 
inhibition of AHL production and degradation of AHLs by the 
bacterial strains. While its methanolic extract did not possess 
any effect. In another study, Truchado et al. stated that the 
phenolic compounds, including rutin, ellagic, and chlorogenic 
acids were capable of reducing the concentration of ALHs on 
E. carotovora and Y. enterocolitica.[58] Savka et al. showed 
that the FL pinocembrin, which regulates immune genes in the 
western honey bee Apis mellifera, can disrupt AHL-dependent 
QS in bacteria. This referred to the potential role of the 
phenolic honey constituents as QS inhibitory.[59] Moreover, 
the study conducted by Truchado et al. on 29 unifloral honeys 
showed that most of them were capable of interfering with 
QS, especially chestnut and linden honeys had the highest 
anti-QS activity.[60] Whereas, orange and rosemary honeys 
were less effective. Further studies carried out on New Zealand 
manuka (Leptospermum scoparium) honey revealed that this 
honey can inhibit biofilm formation of clinically important 
pathogenic bacteria such as Proteus mirabilis,[61] S. aureus,[62] 
and Clostridium difficile.[63] Three nectar honeys (eucalyptus, 
thyme, and forest) and two honeydew honeys (fir and Metcalfa) 
from Italy were assessed for their anti-QS activities. All 
inhibited violacein production in C. violaceum in a dose 
dependent manner, thus demonstrating their ability to affect 
QS-regulated biofilm formation.[64] Chenia has studied QS 
inhibitory activity of four extracts of Kigelia africana fruit 
using the C. violaceum and A. tumefaciens biosensor systems. 
All extracts showed varying levels of anti-QS activity with 
zones of violacein inhibition ranging from 9 to 10 mm in 
the following order: hexane > dichloromethane > ethyl 
acetate > methanol. Inhibition was concentration dependent, 
with the ≥90% inhibition being obtained with ≥1.3 mg/mL 
of the HE. They also affected the LuxI and LuxR activities, 
indicating that the phytochemicals targeted both QS signal 
and receptor.[65]

The anti-QS activity of the FL fraction of Psidium guajava 
L. leaves was determined using a biosensor bioassay with 
the mutant C. violaceum CV026. In addition, its effect 
on QS-regulated violacein production in C. violaceum 
ATCC12472 and pyocyanin production, proteolytic, 
elastolytic activities, swarming motility, and biofilm formation 
in P. aeruginosa PAO1 was performed. The FL-fraction 
showed concentration-dependent decreases in violacein 
production in C. violaceum 12472 and inhibited pyocyanin 
production, proteolytic and elastolytic activities, swarming 
motility, and biofilm formation in P. aeruginosa PAO1. 
Interestingly, the FL-fraction did not inhibit AHL synthesis. 
Quercetin and quercetin-3-O-arabinoside the major FLs in 
FL fraction, inhibited violacein production in C. violaceum 
12472, at 50 and 100 µg/mL, respectively.[66] It was also 
reported that the P. guajava extract guava leaf extract (GLE) 
significantly down-regulated 816 genes which comprises 19% 

of the C. violaceum MTCC 2656 genome by at least 3-fold. 
These genes were distributed throughout the genome and 
were associated with virulence, motility and other cellular 
processes, many of which have been described as quorum 
regulated in C. violaceum and other Gram-negative bacteria. 
Interestingly, GLE did not affect the growth of the bacteria. 
However, GLE-treated C. violaceum cells were restrained from 
causing lysis of human hepatoma cell line, HepG2, indicating 
a positive relationship between the QS-regulated genes and 
pathogenicity.[67]

The anti-QS activity of the ethyl acetate fraction (EAF) 
of S. cumini L. and Pimenta dioica L. was screened using 
C. violaceum CV026 biosensor bioassay. It is noteworthy 
that, all the tested plant extracts completely inhibited 
AHL-mediated violacein production in 0.75–1.0 mg/mL 
concentration in C. violaceum. However, synthesis of AHL in 
C. violaceum was not inhibited by the plant extracts.[68] Husain 
et al. reported that the oil of peppermint (Mentha piperita) at 
sub-minimum inhibitory concentrations (sub-MICs) strongly 
interfered with AHLs-regulated virulence factors and biofilm 
formation in P. aeruginosa and A. hydrophila due to menthol, 
which interferes with QS systems of various Gram-negative 
pathogens comprising diverse AHL molecules. It reduced the 
AHL-dependent production of violacein, virulence factors, 
and biofilm. Moreover, it significantly enhanced survival of 
the nematode Caenorhabditis elegans.[69]

Anti-QS-dependent therapeutic function of clove oil was 
evaluated against P. aeruginosa PAO1 and A. hydrophila 
WAF-38. Subinhibitory concentrations of the clove oil 
demonstrated significant reduction of las-regulated and 
rhl-regulated virulence factors: LasB, total protease, chitinase, 
and pyocyanin production, swimming motility, and EPS 
production. Furthermore, it reduced the biofilm forming 
capability of PAO1 and A. hydrophila WAF-38. Further, the 
PAO1-preinfected C. elegans displayed an enhanced survival 
when treated with 1.6% v/v of clove oil.[70]

Khan et al. reported that clove oil showed promising anti-QS 
activity on both C. violaceum CV12472 and CVO26 with zones 
of pigment inhibition 19 and 17 mm, respectively, followed by 
cinnamon, lavender, and peppermint oils. The sub-MICs of clove 
oil revealed 78.4% reduction in violacein production and up to 
78% reduction in swarming motility in P. aeruginosa PAO1.[71]

Trigonella foenum‑graecum L. (Fenugreek, Leguminosae) 
seed methanol extract exhibited significant inhibition of 
AHL-regulated virulence factors: protease, lasB elastase, 
pyocyanin production, chitinase, EPS, and swarming motility 
in P. aeruginosa PAO1 and PAF79. Further, it reduced 
the QS dependent virulence factor in the aquatic pathogen 
A. hydrophila WAF38. It decreased the biofilm forming 
abilities of PAO1, PAF79, and WAF38 and AHL levels 
and subsequent down-regulation of lasB gene. The major 
compound detected in the extract is caffeine, which reduced 
the production of QS regulated virulence factors and biofilm 
at 200 µg/mL concentration.[72]
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Shukla and Bhathena (2016) reported that the extracts rich 
in hydrolysable tannins of Phyllanthus emblica, Terminalia 
bellirica, Terminalia chebula, Punica granatum, S. cumini, and 
Mangifera indica (flower) exhibited a broad spectrum anti-QS 
activity that is affecting activity of AHLs as well as AIs over 
a wide range of subinhibitory concentrations. All the extracts 
showed distinct protein binding ability and may be disrupting 
QS either by inactivating enzymes responsible for the synthesis 
of the AIs or by binding to protein receptors of QS signals.[73]

The dichloromethane extract from root barks of Cordia 
gilletii was found to quench the production of pyocyanin, 
a QS-dependent virulence factor in P. aeruginosa PAO1. 
Moreover, it specifically inhibits the expression of several 
QS-regulated genes (i.e., lasB, rhlA, lasI, lasR, rhlI, and rhlR) 
and reduces biofilm formation by PAO1.[74]

Six south Florida medicinal plants – Conocarpus erectus 
(Combretaceae), Chamaecyce hypericifolia (Euphorbiaceae), 
Callistemon viminalis (Myrtaceae), Bucida buceras 
(Combretaceae), Tetrazygia bicolor (Melastomataceae), and 
Quercus virginiana (Fagaceae) were assessed for their anti-QS 
activities against P. aeruginosa PAO1. The C. erectus, B. 
buceras, and C. viminalis extracts caused a significant inhibition 
of lasA protease, lasB elastase, pyoverdin production, and 
biofilm formation. In addition, each plant presented a distinct 
effect profile on the las and rhl QS genes and their respective 
signaling molecules. Furthermore, the extracts of all plants 
caused inhibition of QS genes and QS-controlled factors, with 
marginal effects on bacterial growth, suggesting that the QQ 
mechanisms are unrelated to static or cidal effects.[75]

QS-blocking properties of garlic have been demonstrated by 
Rasmussen et al., 2005 and Persson et al., reported that the 
crude extract of garlic specifically inhibits 92 QS-regulated 
gene expressions in P. aeruginosa and the amounts of mRNA 
of neither lasI, lasR, rhlI, nor rhlR (the key components of the 
las and Rhl QS communication systems in P. aeruginosa) were 
notably affected by the garlic treatment.[76,77]

The essential oils (EOs) of tea tree (Melaleuca alternifolia 
[Maiden & Betche] Cheel) and rosemary (Rosmarinus 
officinalis L.) and extracts of propolis, bee pollen, and 
pomegranate (P. granatum L.) as well as resveratrol were 
evaluated for their QS inhibitory activities.  All these samples 
showed a significant drop in violacein production even at the 
low-tested concentration; 0.125 µL/mL to rosemary, 0.25 to 
tea tree, 1 µL/mL to propolis, 5 µL/mL to pollen, 20 µg/mL 
to resveratrol, and 40 µg/mL to pomegranate extract. Their 
minimum QS inhibitory concentrations are 0.21, 0.21, 1.14, 
8.67, 24.87, and 20.80 µL/mL, respectively. These results 
revealed that tea tree EO and rosemary EO showed the highest 
anti-QS activity, while resveratrol and pomegranate extract 
showed the lowest inhibitory activity.[78] Lamberte et al. 
reported that the extracts of propolis have also been proven 
to inhibit the production of violacein in C. violaceum, as well 
as the lasA and lasB protease activities in P. aeruginosa.[79]

Vattem et al. found that raspberry (Rubus idaeus), 
blueberry (Vaccinium angustifolium), and grape (Vitis sp.) 
extracts inhibited AHL activity-mediated violacein production 
by 60%, 42%, and 20%, respectively. Basil (Ocimum basilicum) 
had the highest activity and decreased the pigment formation 
by 78%. Thyme (Thymus sp.) and Kale (Brassica oleracea) 
decreased the pigment formation by 60% and were followed 
by rosemary (R. officinalis), ginger (Zingiber officinale), 
and turmeric (Curcuma longa) which decreased violacein 
formation by 40%. Oregano (Origanum vulgare) did not affect 
the pigment production in C. violaceum O26 (CVO26).[80]

Vegetables as carrot, chamomile, and water lily as well as an 
array of peppers have been proven to have anti-QS activity 
against the LuxI-gfp reporter strain.[29] Moreover, pea seedlings 
and root exudates are also found to inhibit pigment production, 
exochitinase activity, and protease activity in C. violaceum.[29] 
Medicago truncatula, rice, tomato, and soybean can also 
produce substances that mimic the activities of the AHL.[29,81]

Plant root-associated fungi such as Phialocephala fortinii and 
Meliniomyces variabili and an Ascomycete isolate have been 
found to have the ability to degrade the AHL and have been 
proposed as an option for diminishing the bacterial virulence.[82]

The leaves extracts of Myoporum laetum G. Forst., Adhatoda 
vasica Nees, and Bauhinia purpurea L. possessed strong 
QS inhibitory/AHL-mediated violacein inhibition activities, 
while extracts of Piper longum L., T. officinale F. H. Wigg., 
and Lantana camara L. showed moderate QS inhibitory 
activities.[83] The extracts of C. erectus L.(Combretaceae), C. 
hypericifolia (L.) Millsp. (Euphorbiaceae), C. viminalis (Sol. 
ex Gaertn.) G. Don (Myrtaceae), Bucida burceras 
L. (Combretaceae), T. bicolor (Mill.) Cogn. (Melastomataceae), 
and Quercus virginiana Mill. (Fagaceae) showed QS inhibition 
on C. violaceum and A. tumefaciens.[84]

The EOs of Piper bredemeyeri, Piper bogotense, and Piper 
brachypodom showed inhibiting QS on C. violaceum CV026.[85] 
The ethanolic extract of Scutellaria baicalensis Georgi was 
found to inhibit violacein production, a QS-regulated behavior 
in C. violaceum CV026. In addition, it was also able to inhibit 
QS-regulated virulence in Pectobacterium carotovorum subsp. 
Carotovorum.[86]

Ethanolic and methanolic extracts of Manilkara hexandra 
Roxb (Sapotaceae), and methanolic extract of Pyrus pyrifolia 
Burm (Rosaceae) seeds enhanced QS-regulated violacein 
production in C. violaceum.[87] Vanilla planifolia Andrews 
extract significantly reduced violacein production on 
C. violaceum CV026 in a concentration-dependent manner.[25]

The EOs of Lippia alba showed anti-QS activity through the 
inhibition of the QS-controlled violacein pigment production 
by C. violaceum CV026.[88]

The ethyl acetate extract and butanol fraction of Nymphaea 
tetragona (Water Lily) significantly inhibited pigment production 
of C. violaceum.[89] Oregano EO (concentration 0.0156, 0.0312, 
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0.0625, and 0.125 mg/mL) showed a significant anti-QS activity 
expressed as inhibition of violacein production by C. violaceum.[90]

The extracts of the Malaysian plants; Parkia speciosa, 
Cosmos cardatus, Centella asiatica, Manihot esculenta leaf 
sprigs, Psophocarpus tetragonolobus, Polygonum minus, and 
Oenanthe javanica were tested for their anti-QS potentials on 
C. violaceum ATCC 12472. It is noteworthy that the highest 
anti-QS activity was recorded by P. minus and C. asiatica 
extracts.[91] The extract of Bellis perennis showed promising 
anti-QS activity on C. violaceum CV026. It inhibited 
QS-regulated violacein production in C. violaceum ATCC 
12472 and swarming motility in P. aeruginosa PA01.[92] 
Salvadora persica methanol extract showed inhibition of 
violacein production in C. violaceum.[93]

conclusIon

In the last few decades, many researches have been learned 
about the mechanisms used by bacteria to communicate and 
control virulence traits. New molecules and their effects on 
microbial virulence continue to be discovered. It is clear that 
the relation between QS and bacterial virulence represents a 
promising area from which new, effective anti-virulence drugs 
can emerge. The examples mentioned here demonstrate that 
inhibition of virulence through inhibition of QS is possible and 
somewhat practical. Utilization of these products could also be 
a more cost-effective way. However, further research is needed 
to determine their mechanism of action and the optimum levels 
of anti-QS agents that can be safely applied.
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