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Abstract
Identification of environment-specific QTL and stable QTL having consistent genetic effects

across a wide range of environments is of great importance in plant breeding. Inclusive

Composite Interval Mapping (ICIM) has been proposed for additive, dominant and epistatic

QTL mapping in biparental populations for single environment. In this study, ICIM was

extended to QTL by environment interaction (QEI) mapping for multi-environmental trials,

where the QTL average effect and QEI effects could be properly estimated. Stepwise

regression was firstly applied in each environment to identify the most significant marker

variables which were then used to adjust the phenotypic values. One-dimensional scanning

was then conducted on the adjusted phenotypic values across the environments in order to

detect QTL with either average effect or QEI effects, or both average effect and QEI effects.

In this way, the genetic background could be well controlled while the conventional interval

mapping was applied. An empirical method to determine the threshold of logarithm of odds

was developed, and the efficiency of the ICIM QEI mapping was demonstrated in simulated

populations under different genetic models. One actual recombinant inbred line population

was used to compare mapping results between QEI mapping and single-environment

analysis.

Introduction
QTL by environment interaction (QEI) widely exists in crops and other organisms. Studies on
QEI contribute to the efficient use of marker-assisted selection (MAS) in breeding, and better
understanding of genetic architecture of important quantitative traits and genotype by envi-
ronment interactions [1,2,3]. As a consequence, many theoretical and applied studies have
been conducted on QEI analysis in multi-environmental trials.

Analysis of variance (ANOVA), the simplest method, tested one marker at a time and had
no background control, which gave rise to many false positive QTL [4]. Composite interval
mapping was applied to detect QEI when multiple environments were regarded as multiple
traits [5,6], but the effect of QTL at the current interval may be absorbed by the background
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variables, which resulted in biased estimation [7]. Tinker and Mather [8] proposed the simpli-
fied composite interval mapping suitable for large dataset. Approximate analysis of QEI was
proposed with no limits on the number of environments [9]. Hackett et al. [10] proposed a
multi-trait QTL mapping method for QTL position estimation based on the regression map-
ping approach of Haley and Knot [11].

Mixed model approaches have also been used in QEI detection. Wang et al. [12] developed
a methodology using mixed linear models, but the results may be susceptible to the specified
models [13]. Piepho [13] showed how random QEI effects and genetic correlation could be
straightforwardly handled in the mixed model framework. Malosetti et al. [14] presented a
strategy combining mixed model with factorial regression. A method using factorial regression
and partial least squares [15] was an extension of the statistical approaches developed by
Crossa et al. [16] and van Eeuwijk et al. [17]. A strategy combining mixed model, simple and
composite interval mapping, and introducing environmental co-variables was developed by
Boer et al. [1]. However, inconsistent mapping results were observed owing to different fixed
and random effect assumptions and variance-covariance matrix choices, for example, identical
genetic variation, compound symmetry, first-order analytic model, uniform covariance and
heterogeneous variance and so on [1]. Further studies are needed so as to validate the efficiency
of the mixed-model based methods. In addition, mixed models have high computational com-
plexity and are much time consuming, which is less suitable for large data sets.

Recently, the method based on Bayesian model [18,19] was proposed for QEI analysis,
using Markov Chain Monte Carlo. In this method, estimation of QEI was simplified by treating
each marker as a putative QTL. Strategies combining composite interval mapping with additive
main effects and multiplicative interaction model were proposed to decrease the noise of phe-
notypic values especially when the GEI noise is large [20]. Generally speaking, Bayesian model
is hard to be implemented because of its computation burden and difficulty in choosing appro-
priate prior distributions [18,19].

Inclusive Composite Interval Mapping (ICIM) was proposed for additive, dominant and
epistatic QTL mapping in biparental populations [7,21–24]. ICIM applies a two-step mapping
strategy. Firstly, stepwise regression is conducted to select the significant markers for additive
QTL mapping or marker-pairs for epistatic QTL mapping considering all marker information
simultaneously. Secondly, the phenotypic values are adjusted by the marker variables retained
in the regression equation except the two markers flanking the current scanning position(s) for
background control. The adjusted phenotypic values are subsequently used in interval map-
ping. This strategy effectively separates the cofactor selection from the interval mapping using
Maximum Likelihood (ML) method. Genetic background control decreases variance of the
estimated genetic parameter, and therefore increases accuracy of estimates and the detection
power [5,7,21,25]. Extensive simulations have illustrated that ICIM is an efficient mapping
method with higher detection power, lower false discovery rate (FDR) and less biased estimates
of QTL effect and position [7,22–24,26,27]. With the user-friendly software of QTL IciMap-
ping (freely available from www.isbreeding.net), ICIM has been widely applied in QTL map-
ping researches (for examples, see [28–31]).

In this study, we focused on the additive QEI analysis. Our objectives were: (1) to propose
an inclusive linear model capable of absorbing all genetic effects in QEI mapping; (2) to extend
ICIM to additive QTL by environment interactions, and estimate the average effect, QEI effects
and the phenotypic variance explained (PVE); (3) to propose an empirical method to deter-
mine the LOD threshold in QEI mapping; (4) to validate the proposed QEI mapping methods
in simulated and an actual maize recombinant inbred lines (RIL) populations.
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Materials and Methods

Genetic and linear regression models in QEI mapping
DH population was used to illustrate the ICIM QEI mapping. For simplicity, it is supposed
that two inbred lines P1 and P2 differ atm QTL, being located inm intervals defined bym+1
markers on one chromosome. If no QTL is located in a marker interval, the average and inter-
action effects of the QTL are treated as zero. QTL genotypes of P1 and P2 are assumed to be
Q1Q1Q2Q2. . .QmQm and q1q1q2q2. . .qmqm, respectively. Suppose that a DH population is
derived from the F1 hybrids of P1 and P2 and phenotyped in e environments. For each individ-
ual, X = (x1, x2,. . ., xm, xm+1) represents the marker variables equal to 1 or -1, standing for two
marker types (i.e. P1 marker type and P2 marker type). G = (g1, g2,. . ., gm) represents QTL vari-
ables equal to 1 or -1, standing for two QTL genotypes (i.e. P1 QTL type and P2 QTL type). Let
a1h, a2h,. . ., amh represent the additive effects of them QTL in the hth environment, respec-
tively. Under the assumption of additivity of QTL effects, Gh, the genotypic value of an individ-
ual in the hth environment under the additive genetic model, can be written in Eq (1).

Gh ¼ mh þ
Xm

j¼1

ajhgj ðh ¼ 1; � � � ; eÞ: ð1Þ

The expected frequency of the jth QTL genotype depends on its position at the chromosomal
interval flanked by the jth and (j+1)th markers and the length of this interval [7,23,32,33,], i.e.,

EðgjjXÞ ¼ ljxj þ rjxjþ1; ð2Þ

where λj and ρj are functions of the three recombination fractions between the jth marker and
jth QTL, between the jth QTL and (j+1)th marker, and between the jth and (j+1)th markers. The
expectation of genotypic value Gh conditional on marker type X can be denoted as,

EðGhjXÞ ¼ mh þ
Xm

j¼1

ajhðljxj þ rjxjþ1Þ¼̂b0h þ
Xmþ1

j¼1

bjhxj; ð3Þ

where b0h = μh, b1h = λ1a1h, and bjh = ρj-1a(j-1)h+λjajh(j = 2,. . .,m). The coefficient of the jth

marker in the hth environment, i.e. bjh, is only affected by QTL in the (j-1)th and jth marker
intervals. Therefore, when QTL are isolated by at least one blank interval, bjh and b(j+1)h contain
all the position and additive effect information of QTL in the jth interval. These statistical prop-
erties provide the theoretical basis of QEI mapping.

Suppose a DH mapping population has observations on a quantitative trait of interest and
genotyping information onm+1 ordered markers. The following linear regression model can
be used in the additive QEI mapping, i.e.,

yih ¼ b0h þ
Xmþ1

j¼1

bjhxij þ εih; ð4Þ

where yih is the phenotypic value of the i
th individual in the hth environment; b0h is the overall

mean of linear model in the hth environment; xij is the indicating variable for the j
th marker’s

genotype of the ith individual, which is equal to 1 or -1 standing for P1 type or P2 type respec-
tively; bjh is the partial regression coefficient of phenotype on the j

th marker in the hth environ-
ment; and εih is the residual random error in the hth environment that is assumed to be normally
distributed. Stepwise regression can be therefore conducted for phenotypic value in each envi-
ronment to select significant markers, similar to additive mapping in single environment [7].

Mapping of QTL by Environment Interactions
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One-dimensional scanning of QEI mapping
For a testing position in the kth marker interval, the phenotypic value of the ith individual in the
hth environment was adjusted by

Dyih ¼ yih �
X
j 6¼k;kþ1

b̂jhxij; ð5Þ

where b̂jh is the estimate of bjh of significant markers selected by stepwise regression in model

(4). The phenotypic value Δyih contains QTL information in the current interval and does not
change until the testing position moves to the next interval. Traditional interval mapping was
conducted on the adjusted phenotypic values given by Eq (5).

For a testing position in an interval, individuals of DH population can be classified into four
groups based on the types of the two flanking markers. If there is one QTL (with the two alleles
denoted as Q and q) at the current testing position, each marker group has both QTL genotypes
QQ and qq, and hence follows a mixture distribution of two components Nðm1h; s

2
εhÞ and

Nðm2h; s
2
εhÞ. In each marker group, frequencies of the two QTL genotypes depend on the

recombination fractions between the putative QTL and two flanking markers, and they are dif-
ferent for the four marker groups. Existence of QTL at the current scanning position can be
tested by the following hypotheses:

H0 : m1h ¼ m2h; i:e:; �a ¼ 0 and aeh ¼ 0 ðh ¼ 1; � � � ; eÞ;

H1 : non�H0; i:e:; for at least one environment; m1h 6¼ m2h;

H2 : non�H0; but �a ¼ 0;

where �a is the average effect of the putative QTL across the environments, i.e., �a ¼ 1
e

Xe

h¼1

ah,

and aeh ¼ ah � �a is the QEI effect in the hth environment. In H1, �a 6¼ 0, or aeh 6¼ 0 for at
least one environment. Therefore, the likelihood ratio of hypotheses H1 versus H0 can be
used to test all effects, i.e. both the average effect and QEI effects. In H2, �a ¼ 0, but aeh 6¼ 0
for at least one environment. Therefore, H2 is nested into H1 by adding the condition �a ¼ 0.
Size of the average effect makes the difference between H1 and H2. The likelihood ratio of
hypotheses H1 versus H2 can test the significance of average effects. Difference between likeli-
hood functions of H2 and H0 came from the QEI effects, as both of them have the restriction
�a ¼ 0. Therefore, the likelihood ratio of hypotheses H2 versus H0 can test the significance of
QEI effects.

The log-likelihood function under the alternative hypothesis H1 is,

L1 ¼
Xe

h¼1

X4

l¼1

X
i2Sl

log½pl1f ðDyih; m1h; s
2
εhÞ þ pl2f ðDyih; m2h; s

2
εhÞ�; ð6Þ

where Sl (l = 1, 2, 3, and 4) denotes the lth marker type group; πl1 and πl2 are the proportions of
two QTL genotypes QQ and qq in the lth group, respectively; f ð� ; mkh; s

2
εhÞ represents the den-

sity of the kth normal distribution in the hth environment.
The expectation and conditional maximization (ECM) algorithm [34] was used to estimate

the two means and one variance in the hth environment in Eq (6). Their initial values can be
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determined by:

mð0Þ
1h ¼ 1

n1

Xn1
i¼1

Dyih; m
ð0Þ
2h ¼ 1

n4

Xn

i¼n1:3þ1

Dyih; and

s2ð0Þ
εh ¼ 1

n1 þ n4

Xn1

i¼1

ðDyih � mð0Þ
1h Þ2 þ

Xn

i¼n1:3þ1

ðDyih � mð0Þ
2h Þ2

2
4

3
5 ðh ¼ 1; � � � ; eÞ;

where n1:3 is the summation of n1 to n3. In the E-step, the posterior probability of the i
th individ-

ual (i = 1, . . ., nh; h = 1, . . ., e) belonging to the kth QTL genotype (k = 1, 2) was calculated as,

wð0Þ
ik ¼ plk

Xe

h¼1

f ðDyih; mð0Þ
kh ; s

2ð0Þ
εh Þ pl1

Xe

h¼1

f ðDyih; mð0Þ
1h ; s

2ð0Þ
εh Þ þ pl2

Xe

h¼1

f ðDyih; mð0Þ
2h ; s

2ð0Þ
εh Þ

" #
;

,

where l denoted the marker group into which the ith individual was classified. In the M-step, the
three groups of parameters were updated as,

mð1Þ
kh ¼

Xn

i¼1

wð0Þ
ik Dyih

Xn

i¼1

wð0Þ
ik ðk ¼ 1; 2Þ; and s2ð1Þ

εh ¼ 1

n

Xn

i¼1

X2

k¼1

wð0Þ
ik ðDyih � mð1Þ

kh Þ2:
,

The EM algorithm continued until the difference in the likelihood between two consecutive
iterations reached a pre-assigned precision, say 10−6. The ML estimates thus obtained were rep-
resented by m̂1h, m̂2h and ŝ

2
εh. Then the additive effect under the hth environment was calculated

as ah ¼ 1
2
ðm̂1h � m̂2hÞ.

The log-likelihood function under the alternative hypothesis H2 is,

L2 ¼
Xe

h¼1

X4

l¼1

X
i2Sl

log½pl1f ðDyih; m1h; s
2
εhÞ þ pl2f ðDyih; m2h; s

2
εhÞ� � l�a;

where λ is the Lagrange multiplier.
In the EM algorithm for L2, the calculation of posterior probability was the same as previous

one. In the M-step, the three parameters were updated as follows,

mð1Þ
1h ¼

Xn

i¼1

wð0Þ
i1 Dyih �

1

2e
s2
εhl

" # Xn

i¼1

wð0Þ
i1 ;

,

mð1Þ
2h ¼

Xn

i¼1

wð0Þ
i2 Dyih þ

1

2e
s2
εhl

" # Xn

i¼1

wð0Þ
i2 and

,

s2ð1Þ
εh ¼ 1

n

Xn

i¼1

X2

k¼1

wð0Þ
ik ðDyih � mð1Þ

kh Þ2;

where l ¼ 2e

1Pn
i¼1

wi1

þ 1Pn
i¼1

wi2

0
B@

1
CAPe

h¼1

s2
εh

Pe
h¼1

Pn
i¼1

Dyihwi1Pn
i¼1

wi1

�
Pn
i¼1

Dyihwi2Pn
i¼1

wi2

0
B@

1
CA:
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Under the null hypothesis H0, the Δyih follow the normal distribution of Nðm0h; s
2
0hÞ. The

mean and variance of this distribution can be estimated as,

m̂0h ¼
1

n

Xn

i¼1

Dyih; and ŝ
2
0h ¼

1

n

Xn

i¼1

ðDyih � m̂0hÞ2:

The log-likelihood function under the null hypothesis H0 is,

L0 ¼
Xe

h¼1

Xn

i¼1

log½f ðDyih; m0h; s
2
0hÞ�:

The LOD score (denoted by LODA) calculated by L1-L2 indicates whether there is significant
average effect at the testing position. The LOD score (denoted by LODAE) calculated by L2-L0
indicates whether there are significant QEI effects. Sum of LODA and LODAE (denoted by
LOD) gives the overall test statistic indicating the significance of both average effect and QEI
effects.

Phenotypic variation explained (PVE) by the identified QTL
In the QTL IciMapping software, PVE of additive and QEI effects at each scanning position
were estimated by posterior probability wik and two QTL genotypic means m̂kh ðk ¼ 1; and 2Þ,
which have been estimated by EM algorithm previously. For illustration, we assume there is
one QTL at the current scanning position, and the expected frequency of the kth QTL genotype
(QQ or qq) in the hth environment is fkh, (k = 1 and 2, and h = 1,. . ., e). The marginal frequency
of QTL genotype is defined as the sum of QTL genotype frequencies in all environments, i.e.,

fk� ¼
Xe

h¼1

fkh, which can be estimated by f̂ k� ¼ 1
n

Xn

i¼1

wik. QTL genotype is independent of envi-

ronment, therefore fkh can be estimated by f̂ kh ¼ 1
e
f̂ k�,. Genetic variance and QEI variance can

be calculated from Table 1, a two-way table of two QTL genotypic means and a set of
environments.

Table 1. Means and effects of QTL genotypes in multi-environmental trials.

QTL genotype Environment Genotypic mean Genotypic effect

E1 . . . Eh . . . Ee

QQ m̂11 . . . m̂1h . . . m̂1e m̂1� m̂1� � m̂ ��

qq m̂21 . . . m̂2h . . . m̂2e m̂2� m̂2� � m̂ ��

Environmental mean m̂ �1 . . . m̂ �h . . . m̂ �e m̂ ��(grand or overall mean)

Environmental effect m̂ �1 � m̂ �� . . . m̂ �h � m̂ �� . . . m̂ �e � m̂ ��

The grand mean and two weighted means were calculated as, m̂ �� ¼
X2

k¼1

Xe

h¼1

fkhm̂kh, and m̂k� ¼
Xe

h¼1

f�hm̂kh ¼ 1
e

Xe

h¼1

m̂kh and m̂ �h ¼
X2

k¼1

fk�m̂kh, respectively, where

fkh is the frequency of the kth QTL genotype (QQ or qq) in the hth environment; f�h ¼ 1
e is the frequency of hth environment; fk. is the frequency of the kth QTL

genotype.

doi:10.1371/journal.pone.0132414.t001
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The deviation between QTL genotypic mean and the grand mean can be decomposed into
three components, i.e.,

m̂kh � m̂ �� ¼ ðm̂k� � m̂ ��Þ þ ðm̂ �h � m̂ ��Þ þ ðm̂kh � m̂k� � m̂ �h þ m̂ ��Þ:

The three components stood for QTL average effect, environmental effect and QEI effect,
respectively. In statistics, it can be proved the decomposition is orthogonal. In DH population,
genetic variance is equal to the additive variance, which can be calculated as,

VA ¼
X2

k¼1

fk�ðm̂k� � m̂ ��Þ2 ¼ 4f1�f2��a
2:

QEI effect and variance can be calculated as,

QEIkh ¼ m̂kh � m̂k� � m̂ �h þ m̂ �� and VAE ¼
X2

k¼1

Xe

h¼1

fkhQEI
2
kh ¼

4

e
f1�f2�

Xe

h¼1

ðah � �aÞ2:

Then, PVEA and PVEAE can be calculated from PVEA ¼ VA
VP
and PVEAE ¼ VAE

VP
, respectively,

where VP was the average of phenotypic variances in the e environments. Take DH population
and four environments as an example. Assume the expected marginal frequencies of QTL
genotypes QQ and qq are 0.4 and 0.6, which indicated the frequencies of the two genotypes in
each environment were 0.1 and 0.15, respectively. Phenotypic variances in the four environ-
ments were set at 30, 20, 10 and 40 respectively, and the values of m̂kh were given in Table 2.
PVEA and PVEAE can be calculated as follows,

VA ¼
X2

k¼1

fk�ðm̂k� � m̂ ��Þ2 ¼ 0:4� 0:32 þ 0:6� ð�0:2Þ2 ¼ 0:06;

VAE ¼
X2

k¼1

X4

h¼1

fkhQEI
2
kh ¼ 3:18; and VP ¼

1

e

Xe

h¼1

VPh ¼
1

4
� ð30þ 20þ 10þ 40Þ ¼ 25;

PVEA ¼ 0:06

25
¼ 0:24%; and PVEAE ¼

3:18

25
¼ 12:72%:

Empirical formula of LOD threshold in QEI mapping
In single-environment analysis, when the null hypothesis is true, likelihood ratio test (LRT) at
each scanning position follows the χ2 distribution with the degree of freedom (df) equal to the

Table 2. Means and effects of QTL genotypes in a DH population.

QTL genotype Environment Genotypic mean Genotypic effect

E1 E2 E3 E4

QQ 14 10 12 16 13 0.3

qq 12 10 17 11 12.5 -0.2

Environmental mean 12.8 10 15 13 12.7

Environmental effect 0.1 -2.7 2.3 0.3

doi:10.1371/journal.pone.0132414.t002
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number of genetic parameters be estimated in the genetic population [32,35]. Sun et al. [36]
found that the number of independent tests (denoted asMeff) was proportional to the genome
length in one-dimensional QTL scanning, and the proportion varied with marker density and
population type. SoMeff can be estimated as the product of proportion efficient and the
genome length. Let αg be the genome-wide type-I error, the type-I error at each testing position

should be ap ¼ ag
Meff

based on the Bonferroni correction. Therefore, the empirical LOD threshold

can be determined by formula LOD ¼ w2apðlÞ=2lnð10Þ, where w2apðlÞ is the inverse χ
2 distribu-

tion that returns the critical value of a right-tailed probability αp for the degree of freedom λ. In
QTL mapping, λ is equal to the number of genetic parameters to be estimated [36].

This formula can also be used to determine the LOD threshold in QEI mapping by consider-
ing the difference in degree of freedom. In QEI mapping, each QTL genotype has its own distri-
bution in each environment, and the number of independent genetic parameters to be
estimated is the sum of parameters in each environment. In other words, λ is equal to e for BC1

(or DH and RIL) population and 2e for F2 population. For validation, LOD threshold was
determined in simulated BC1 and F2 populations under null genetic model (S1 and S2 Files).
The genomic information and mapping parameters were the same as unlinked and linked QTL
models (to be described in the next section), except that there was no QTL located on the
genome. LOD thresholds for αg = 0.05 and αg = 0.01 were estimated at the 95th and 99th percen-
tiles of the 1000 maximum LOD scores out of 1000 runs.

Putative genetic models in simulation studies
QTL IciMapping is integrated software for linkage map construction and QTL detection. QEI
mapping has been implemented in version 4.0 of the software as the MET functionality [37]. In
this study, unlinked and linked QTL models were both considered to evaluate the efficiency of
QEI mapping. The genome consisted of six chromosomes, each of 150 cM in length with 16
evenly distributed markers. Two environments were considered with equal heritability in the
broad sense in both models. In the unlinked QTL model, five QTL were located on five chro-
mosomes, and the broad sense heritability was 0.5 for both environments. QTL additive effects
in the two environments were given in Table 3, representing three QEI levels, i.e., strong inter-
action (Q2), environment-specific interaction (Q3 and Q4) and no interaction (Q1 and Q5).

Eight QTL effect scenarios were considered for two linked QTL (Table 4), i.e., Q1 and Q2,
located at 25 and 55 cM on chromosome 1. These scenarios represented different QEI levels
and linkage phases (coupling or repulsion phases). For example, Q1 and Q2 had strong QEI,
and they were linked in the coupling phase in model L3, and in the repulsion phase in model
L7. Three levels of heritability were considered, i.e., H2 = 0.1, H2 = 0.5 and H2 = 0.8.

Table 3. Predefined chromosomal positions and additive effects of five unlinked QTL.

QTL Chr. Pos. (cM) A AE1 AE2 PVEA (%) PVEAE (%) PVE (%)

Q1 1 16 0.5 0 0 12.5 0 12.5

Q2 2 3 0 0.5 -0.5 0 12.5 12.5

Q3 3 33 0.25 -0.25 0.25 3.13 3.13 6.25

Q4 4 26 0.25 0.25 -0.25 3.13 3.13 6.25

Q5 5 35 0.5 0 0 12.5 0 12.5

A, AE1 and AE2 represent average additive effect, QEI effect in E1 and QEI effect in E2 respectively. PVE, the percentage of variance explained by

individual QTL, was calculated under the assumption that the frequencies of two QTL genotypes QQ and qq are equal to 0.5.

doi:10.1371/journal.pone.0132414.t003
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One thousand DH populations, each of a size of 200, were generated for unlinked model (S3
File) and for each effect scenario of the two linked QTL under each heritability level (S4–S6
Files). The LOD threshold was set at 3.11 by empirical formula to ensure the genome-wide
Type-I error rate (αg) to be less than 0.05. The scanning step was set at 1 cM. The two probabil-
ities for entering and removing variables in stepwise regression were set at 0.001 and 0.002.

Detection power and FDR were used to evaluate the efficiency of QEI mapping. Each prede-
fined QTL was assigned to a support interval of 10 cM centered at the predefined location.
Power of each QTL was calculated as the percentage of the simulation runs having significant
peaks higher than the LOD threshold in its support interval. QTL identified but out of this
interval were treated as false positives. FDR was calculated as the ratio of the number of false
positives to the total number of significant discovery [26,38]. For each genetic model, estimated
positions and effects were calculated as the average values of all detected QTL.

One RIL population in maize
The actual maize population used in this study was derived from a cross between inbred
parents CML444 and SC-Malawi, consisting of 236 RILs [39]. A subset of 160 markers with an
average missing rate of 5.12% was used to build the linkage map. Total genome length was
2105.6 cM by Haldane mapping function, and the average marker density was 13.16 cM. Days
of male flowering (MFLW) were investigated in seven environments, i.e., water-stress condi-
tions in Mexico (WSM, in 2003 and 2004) and Zimbabwe (WSZ, in 2003 and 2004), and well-
watered conditions in Mexico (WWM, in 2003 and 2004) and Zimbabwe (WWZ, in 2004),
which were named as WSM1, WSM2, WSZ1, WSZ2, WWM1, WWM2, andWWZ2, respec-
tively. The average MFLW (d) in environments WSM, WSZ, WWM andWWZ were 104.2,
121.1, 65.4 and 75.6 for parental line CML444, 101.1, 114.1, 64.5 and 74.9 for parental line
SC-Malawi, and 101.1, 117.3, 64.1 and 75.5 for the RIL population. Single-environment analy-
sis and QEI mapping were conducted by QTL IciMapping 4.0 [37] (S7 File). LOD thresholds
were set at 3.0 and 5.67 for single-environment analysis and QEI mapping, respectively, same
as Messmer et al. [39]. To compare with the empirical LOD threshold values, permutation tests
were conducted on the maize population for 1000 times [40].

Results

Empirical LOD threshold in QEI mapping
Fig 1 showed the LOD thresholds based on empirical formula and simulation method. Obvi-
ously, higher LOD threshold can be seen by the increase in the environment number, and the
two methods resulted in similar LOD thresholds under the same significance level for both

Table 4. Predefined chromosomal positions and additive effects of two linked QTL.

Effect model L1 L2 L3 L4 L5 L6 L7 L8

QTL Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2

Effect in E1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 -0.5 0.5 0

Effect in E2 -0.5 0 -0.5 0.5 -0.5 -0.5 0 0.5 0 0 0.5 0.5 -0.5 0.5 -0.5 0.5

PVE (%) (H2 = 0.1) 4.88 2.44 5.00 5.00 3.23 3.23 2.44 4.88 2.86 2.86 3.23 3.23 11.08 11.08 10.51 2.63

PVE (%) (H2 = 0.5) 24.40 12.20 25.00 25.00 16.14 16.14 12.20 24.40 9.81 9.81 16.14 16.14 55.41 55.41 52.57 13.14

PVE (%) (H2 = 0.8) 39.05 19.52 40.00 40.00 25.83 25.83 19.52 39.05 12.70 12.70 25.83 25.83 88.65 88.65 84.10 21.03

PVE, the percentage of variance explained by individual QTL, was calculated under the assumption that the frequency of genotype QQ is equal to 0.5.

doi:10.1371/journal.pone.0132414.t004
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populations (i.e. BC1 and F2 populations). Thus, the empirical formula from individual envi-
ronments [36] is also suitable for QEI mapping in multi-environments, considering the change
in degree of freedom.

As for the RIL population, accumulated recombination frequency (represented by R) is
much larger than the one-meiosis recombination frequency (represented by r) due to the con-
tinuous self-pollinations. Their relationship is well known as R ¼ 2r

1þ2r
, indicating R is approxi-

mately two times of r, when r is small. The larger recombination frequency estimated in RIL
population is equivalent to a longer genome. When map distance is 1 cM in DH population, r
and R are equal to 0.0099 and 0.0194 under the Haldane mapping function. The corresponding
map distance is 1.98 cM for the accumulated recombination frequency in RIL population.
Therefore 1 cM in DH population is expanded by 1.98 times in RIL population. Similarly, 5 cM
and 10 cM are expanded by 1.91 and 1.83 times. In most genetic populations, marker density is
around 5 to 10 cM, and the genome size is expanded by about 1.9 times. Therefore, the genome
length should be multiplied by 1.9 before applying the LOD threshold empirical formula to
RIL population.

When marker density is 10 cM, the number of independent tests is about 0.072 (αg = 0.05)
or 0.084 (αg = 0.01) times the genome size [36]. Empirical LOD thresholds for common
genome lengths were given in Table 5, by which empirical LOD thresholds can be found and
applied. For example, one population is planted in four environments, the genome length is
1000 cM, and the average marker density is 10 cM. So df is equal to 4 for BC1, DH or RIL popu-
lations, and 8 for F2 population. According to Table 5, LOD threshold should be 4.19 for BC1

and DH populations, 5.87 for F2 population, and around 4.50 for RIL population (referring to
length of 1900 cM which is between 1800 cM and 2000 cM) and αg = 0.05. For the actual maize
population, “a QTL was considered to be significant (comparison-wise Type-I error rate αc =
0.001, experiment-wise error rate αe = 0.02) when the LOD exceeded the appropriate threshold
5.67 (joint QTL, seven experiments)” in Messmer et al. [39]. LOD thresholds 6.08 and 6.89
were achieved under αg = 0.05 and αg = 0.01 by 1000 permutation tests. According to the

Fig 1. LOD thresholds of QEI mapping based on empirical formula and simulation method. (A) BC1

population and αg = 0.05. (B) BC1 population and αg = 0.01. (C) F2 population and αg = 0.05. (D) F2 population
and αg = 0.01.

doi:10.1371/journal.pone.0132414.g001
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empirical formula, the LOD threshold were 6.20 and 6.05 for marker densities of 10 and 20 cM
under αg = 0.05, and 7.11 and 7.09 under αg = 0.01 for marker density of 10 and 20 cM respec-
tively. The marker density of this population was about 13.6 cM, and the empirical LOD
threshold should be around 6.1 under αg = 0.05 and 7.1 under αg = 0.01, close to that by permu-
tation tests and Messmer et al. [39].

Power analysis for the unlinked QTL model
Fig 2 displayed five clear peaks along the average LOD profiles at the five predefined QTL posi-
tions. LOD scores around the predefined QTL positions increased by the increasing PVE. For
example, PVE of Q1 and Q3 were 12.5 and 6.25%, and LOD scores at the two predefined posi-
tions were 15.86 and 8.15, respectively. Q1, Q2 and Q5, having the same PVE = 12.5%, had almost
the same LOD score. Likewise, LODA and LODAE increased as the increase in PVEA and PVEAE.

Table 5. Empirical LOD thresholds in QEI mapping.

Genome length (cM) αg = 0.05 αg = 0.01

Meff df = 1 df = 2 df = 4 df = 6 df = 8 df = 10 Meff df = 1 df = 2 df = 4 df = 6 df = 8 df = 10

200 14 1.85 2.46 3.41 4.22 4.98 5.69 17 2.56 3.23 4.26 5.14 5.96 6.72

400 29 2.13 2.76 3.74 4.59 5.37 6.10 34 2.84 3.53 4.59 5.50 6.33 7.12

600 43 2.29 2.94 3.94 4.80 5.59 6.34 50 3.01 3.70 4.78 5.70 6.55 7.34

800 58 2.41 3.06 4.08 4.95 5.75 6.51 67 3.12 3.83 4.92 5.85 6.70 7.50

1000 72 2.50 3.16 4.19 5.07 5.87 6.64 84 2.56 3.23 4.26 5.14 5.96 6.72

1200 86 2.57 3.24 4.27 5.16 5.97 6.74 101 3.29 4.00 5.11 6.05 6.92 7.73

1400 101 2.63 3.30 4.35 5.24 6.06 6.83 118 3.35 4.07 5.18 6.13 7.00 7.81

1600 115 2.69 3.36 4.41 5.31 6.13 6.90 134 3.41 4.13 5.24 6.20 7.07 7.88

1800 130 2.74 3.41 4.47 5.37 6.19 6.97 151 3.46 4.18 5.30 6.26 7.13 7.95

2000 144 2.78 3.46 4.52 5.42 6.25 7.03 168 3.50 4.23 5.35 6.31 7.18 8.01

2200 158 2.82 3.50 4.56 5.47 6.30 7.08 185 3.54 4.27 5.39 6.36 7.23 8.06

2400 173 2.85 3.54 4.60 5.51 6.35 7.13 202 3.57 4.30 5.44 6.40 7.28 8.11

2600 187 2.89 3.57 4.64 5.55 6.39 7.18 218 3.61 4.34 5.47 6.44 7.32 8.15

2800 202 2.92 3.61 4.68 5.59 6.43 7.22 235 3.64 4.37 5.51 6.48 7.36 8.19

3000 216 2.94 3.64 4.71 5.63 6.47 7.26 252 3.67 4.40 5.54 6.51 7.40 8.23

3500 252 3.01 3.70 4.78 5.70 6.55 7.34 294 3.73 4.47 5.61 6.59 7.48 8.31

4000 288 3.06 3.76 4.85 5.77 6.62 7.42 336 3.79 4.53 5.67 6.65 7.54 8.38

LOD thresholds shown in the table were calculated under a marker density of 10 cM. The proportion coefficients of Meff and genome length are 0.072 and

0.084 when αg is 0.05 and 0.01.

doi:10.1371/journal.pone.0132414.t005

Fig 2. Average LOD profiles across 1000 simulation runs for the unlinked QTLmodel. LOD, LODA and
LODAE are LOD scores for detecting QTL with both average and QEI effects, QTL only with average effect,
and QTL only with QEI effects, respectively.

doi:10.1371/journal.pone.0132414.g002
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Detection powers of the predefined QTL were higher than 80%, and FDR was 14.11%
(Table 6). The larger PVE was, the higher detection power would be. Q1, Q2 and Q5 had the
same PVE = 12.5%, and their detection powers were 91.2, 98.3 and 89.5% respectively; the
detection powers were 85.4 and 80.7% for Q3 and Q4, respectively, having the same PVE of
6.25%.

When detection powers were calculated by marker intervals along the six chromosomes, it
can be seen that most detected QTL were distributed around the marker intervals where the
QTL were located (Fig 3). In other words, the ICIM QEI mapping was less likely to locate a QTL
in chromosome regions far from the predefined QTL or in other chromosomes where no QTL
were located. For example, Q1 was located at 16 cM on chromosome 1. Power at the marker
interval where Q1 was located was 83.4%, and powers at its nearest left and right intervals were
5.1% and 14.0%, respectively. Powers at other intervals on chromosome 1 were close to 0.

Estimation of QTL positions and effects for the unlinked model
Estimated QTL positions and effects from the 1000 simulated populations given in Table 6
showed their unbiasedness. Estimated positions of Q1 to Q5 were 16.21, 2.83, 32.59, 26.16 and
34.92 cM, corresponding to the true values 16, 3, 33, 26 and 35 cM on chromosomes 1 to 5. Esti-
mated average additive effects of Q1 to Q5 were 0.47, 0.00, 0.24, 0.24 and 0.46, corresponding to
the true values 0.5, 0, 0.25, 0.25 and 0.5 respectively. Estimated QEI effects in E1 were 0.00, 0.47,
-0.24, 0.24 and 0.00, corresponding to the true values 0, 0.5, -0.25, 0.25 and 0 respectively. Esti-
mated QEI effects in E2 were 0.00, -0.47, 0.24, -0.24 and 0.00, corresponding to the true effects 0,
-0.5, 0.25, -0.25 and 0 respectively. The standard errors of the estimated positions and effects
across 1000 simulations ranged from 2.01 to 2.62 and from 0.05 to 0.08, respectively.

Table 6. Estimates of QTL positions and effects, and power analysis in the unlinkedmodel based on 1000 simulation runs.

QTL Pos. (cM) (mean±SE) A (mean±SE) AE1 (mean±SE) AE2 (mean±SE) Power (%)

Q1 16.21±2.33 0.47±0.07 0.00±0.07 0.00±0.07 91.2

Q2 2.83±2.01 0.00±0.06 0.47±0.06 -0.47±0.06 98.3

Q3 32.59±2.58 0.24±0.05 -0.24±0.05 0.24±0.05 85.4

Q4 26.16±2.62 0.24±0.06 0.24±0.05 -0.24±0.05 80.7

Q5 34.92±2.26 0.46±0.07 0.00±0.08 0.00±0.08 89.5

FDR = 14.11%

A, AE1 and AE2 represent average additive effect, additive QEI effect in E1 and additive QEI effect in E2, respectively. Estimated positions and effects

were calculated as the average of significant QTL in the support interval. Power of each QTL was calculated as the proportion of runs where the QTL was

detected in the 10 cM support interval. FDR, false positive rate, was calculated as the proportion of false QTL to the total number of QTL detected. SE:

standard error.

doi:10.1371/journal.pone.0132414.t006

Fig 3. Power analysis by marker interval for the unlinked QTLmodel. Power was calculated as the
proportion of runs where QTL on the interval was detected. There were 90 marker intervals defined by the 96
markers evenly distributed on six chromosomes.

doi:10.1371/journal.pone.0132414.g003
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Power analysis for the linked QTL model
Fig 4 showed average LOD score profiles of the eight effect models senarios under three herita-
bility levels. Clear peaks were observed around the predefined positions of the two linked QTL,
especially for higher heritabilities 0.5 and 0.8 (Fig 4B and 4C). The trend that higher PVE
resulted in larger LOD score was also observed in linked QTL model. For example, PVE of Q1
and Q2 in models L3 and L6 were both 16.14% under H2 = 0.5, and similar LOD scores at
peaks around predefined positions were obtained, i.e., 20.84 and 20.60 in model L3, and 20.32
and 20.85 in model L6, respectively. PVE of Q1 and Q2 in model L2 were both 25% under H2 =
0.5, and the LOD scores at peaks around QTL were 32.46 and 32.22, respectively, which were
much higher than those in models L3 and L6 (Fig 4B).

For the same QTL effect model, higher heritability results in larger PVE and consequently
increases the LOD score. Compared withH2 = 0.1, LOD scores at QTL peaks ofH2 = 0.5 were
larger for all effect models. LOD scores at QTL peaks of H2 = 0.8 were the largest for the three
heritability levels (Fig 4). For instance, LOD scores at peaks around Q1 and Q2 in model L8
were 5.20 and 1.67 for H2 = 0.1, 48.99 and 22.01 for H2 = 0.5, and 117.96 and 51.75 for H2 =
0.8. Linked QTL with larger PVE were also easier to be separated. For example for H2 = 0.1,
PVE of Q1 and Q2 in model L1 were 4.88 and 2.44%, and only one peak appeared in the aver-
age LOD profile (Fig 4A). PVE of Q1 and Q2 in model L7 were both 11.08% for H2 = 0.1, and
two clear peaks appeared around the two predefined QTL positions.

Fig 5 displayed the detection power and FDR for the two linked QTL in QEI mapping.
Detection power increased with the increase of heritability and PVE of QTL. For example in
model L1 under H2 = 0.1, 0.5 and 0.8, PVE of Q1 were 4.88, 24.40 and 39.05%, and PVE of Q2
were 2.44, 12.20 and 19.52%, respectively. Their detection powers were 60.4 and 19.4% for H2

= 0.1, 98.1 and 81.3% for H2 = 0.5, and 100 and 98.2% for H2 = 0.8. FDR decreased by the
increase of heritability. Taking model L1 as an example, FDR were 41.7, 14.7 and 8.8% for H2 =
0.1, 0.5 and 0.8, respectively. Powers of all QTL in all effect models increased to about 80% for
H2 = 0.5 and nearly 100% forH2 = 0.8. Meanwhile, FDR of all effect models was less than 22%
for H2 = 0.5 and less than 16% for H2 = 0.8.

Fig 4. Average LOD profiles on chromosome 1 across 1000 simulation runs for the linked QTLmodel.
(A)H2 = 0.1. (B)H2 = 0.5. (C) H2 = 0.8. LOD scores on other chromosomes were not shown because no QTL
was defined there. LOD score was close to zero on chromosomes 2 to 6.

doi:10.1371/journal.pone.0132414.g004
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When detection powers were calculated by marker intervals along chromosome 1, most
detected QTL were distributed around the marker intervals where the two QTL were located
especially for H2 = 0.5 and H2 = 0.8 (Fig 6). For example, Q1 and Q2 in model L3 were located
at 25 and 55 cM on chromosome 1. Powers at their two marker intervals were 96.4 and 96.9%,
respectively for H2 = 0.5. Powers were 3.8 and 3.7% at the nearest left and right intervals of Q1,
and 4.4 and 4.1% at the nearest left and right intervals of Q2. Powers were rather low at other
intervals. It could be found that even for the linked QTL, ICIM QEI mapping was less likely to
locate a QTL in chromosome regions far away from the predefined QTL or in other chromo-
somes where no QTL were located.

QEI mapping in the maize RIL population
Through stepwise regression, 4, 5, 2, 3, 4, 2 and 4 markers were selected for environments
WSM1, WSM2, WSZ1, WSZ2, WWM1, WWM2 andWWZ2 respectively. In QEI mapping,
profiles of LOD, LODA and LODAE along the maize genome were shown in Fig 7A. Under the
LOD threshold 5.67, a total of 13 QTL affecting MFLW were identified across the seven envi-
ronments: one each on chromosomes 8 and 10, two each on chromosomes 2, 3, 4, and 6, and
three on chromosome 1 (Table 7). Although QEI was observed in some chromosomal regions,
e.g., chromosomes 2, 3 and 10 (Fig 7A), most identified QTL were relatively stable with large
LODA and small LODAE (Table 7). Five QTL had positive average effects (Table 7). qMFLW-2-
2 had the highest LOD = 24.45, LODA = 18.45 and LODAE = 5.99, and had the largest average
and QEI effects as well. Average additive effect was -0.43, indicating the allele from CML444 at
this locus would reduce MFLW by 0.43 days on the basis of population mean. qMFLW-1-1 was

Fig 5. Power (A) and FDR (B) for linked QTLmodel. Power (A) of each QTL was calculated as the
proportion of runs where the QTL was identified in a 10 cM support interval. FDR (B), false discovery rate,
was calculated as the proportion of false positive QTL to total QTL detected for each model and each
heritability level.

doi:10.1371/journal.pone.0132414.g005
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Fig 7. LOD profiles for MFLW in the maize population by QEI mapping (A) and single-environment
analysis (B). The dash line denotes the LOD threshold of 5.67 in QEI mapping.

doi:10.1371/journal.pone.0132414.g007

Fig 6. Power analysis by marker interval of chromosome 1 for the linked QTLmodel. (A) H2 = 0.1. (B)
H2 = 0.5. (C) H2 = 0.8. Power was calculated as the proportion of runs where QTL on the interval was
detected. There were 15 marker intervals defined by the 16 markers evenly distributed on chromosome 1.
Power on other chromosomes were close to zero on chromosomes 2 to 6 where no QTL was predefined.

doi:10.1371/journal.pone.0132414.g006
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relatively stable, whose LOD = 5.76, LODA = 5.07 and LODAE = 0.70. The allele of CML444 at
this locus would delay MFLW by 0.35 days. qMFLW-2-1 had strong QEI, whose LOD = 12.82,
LODA = 0.31 and LODAE = 12.50.

LOD profiles along the maize genome by single-environment analysis were shown in Fig
7B. Under the LOD threshold 3.0, a total of 19 QTL were identified, four of which were coinci-
dent in more than two environments. Respectively, 2, 5, 2, 3, 4, 1 and 2 QTL were identified in
environments WSM1, WSM2, WSZ1, WSZ2, WWM1, WWM2 and WWZ2 (Table 8). Ten
QTL detected by QEI mapping, i.e., qMFLW-1-2, qMFLW-2-1, qMFLW-2-2, qMFLW-3-1,
qMFLW-3-2, qMFLW-4-1, qMFLW-4-2, qMFLW-6-1, qMFLW-6-2 and qMFLW-10, were also
detected by single-environment analysis, while other QTL were detected only by single-envi-
ronment analysis (Tables 7 and 8). Take a common QTL around 220 cM on chromosome 1 as
an example, the estimated positions were 217 and 220 cM by single-environment analysis in
WSM1 and WSZ1 respectively, which was close to qMFLW-1-2 detected by QEI mapping.
Compared with single-environment analysis, QEI mapping has the following properties.

Table 8. Estimated effects and positions of QTL detected in the maize RIL population by single-envi-
ronment analysis.

Environment Chr. Pos. Left Marker Right
Marker

LOD PVE Add QTL identified by QEI
mapping

WSM1 1 217 umc1128(07) umc128(08) 4.8 9.71 0.66 qMFLW-1-2

WSM1 10 70 bnlg1079(03) umc1115
(04)

3.94 11.07 -0.7 qMFLW-10

WSM2 2 113 umc135(04) umc8g(05) 6.85 11.52 0.67 qMFLW-2-1

WSM2 2 120 csu54a(07) umc55a(06) 13.17 21.93 -0.92 qMFLW-2-2

WSM2 3 56 umc154(04) umc92a(04) 4.66 7.29 0.55 qMFLW-3-1

WSM2 4 161 umc15a(08) csu11b 4.16 6.59 0.5 qMFLW-4-2

WSM2 6 6 umc85a(01) bnlg426(01) 4.3 7.36 -0.54 qMFLW-6-1

WSZ1 1 220 umc128(08) umc166b
(08)

3.05 5.78 0.64 qMFLW-1-2

WSZ1 3 54 bnlg1447(03) umc154(04) 4.14 8.24 0.79 qMFLW-3-1

WSZ2 2 120 csu54a(07) umc55a(06) 3.46 6.04 -0.63 qMFLW-2-2

WSZ2 3 53 bnlg1447(03) umc154(04) 4.79 9.78 0.81 qMFLW-3-1

WSZ2 6 32 bnlg2151(02) umc1887
(03)

3.42 7.14 -0.69 qMFLW-6-2

WWM1 1 199 umc1122(06) umc1128
(07)

3.18 9.1 0.59 —

WWM1 3 83 bnlg1019a
(04)

phi053(05) 4.75 7.49 0.57 qMFLW-3-2

WWM1 4 169 csu11b npi593a(09) 5.62 9.88 0.61 qMFLW-4-2

WWM1 8 69 bnlg669(03) umc1858
(04)

3.41 7.62 -0.54 —

WWM2 1 248 dupssr12(08) phi011(09) 4.87 20.87 1.01 —

WWZ2 2 198 csu109a(09) umc36a(09) 3.14 5.49 -0.29 —

WWZ2 4 4 umc1017(01) umc1294
(02)

3.23 7.21 -0.33 qMFLW-4-1

Positive effect indicates the allele increasing trait value is from parental line CML444. Negative effect

indicates the allele increasing trait value is from parental line SC-Malawi. PVE is the percentage of variance

explained by individual QTL.

doi:10.1371/journal.pone.0132414.t008
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1. Both QTL stability and QEI effect can be analyzed. For example, major effect of qMFLW-1-
1 was -0.22 and additive by environment effects in the seven environments were 0.16, -0.04,
-0.10, 0.00, -0.04, -0.09, and 0.11 respectively. It could be considered to be stable, as the
absolute value of major effect was much larger than the interactions. In contrary, major
effect of qMFLW-2-1 was -0.06, but additive by environment effects in the seven environ-
ments were -0.28, 0.68, -0.26, 0.27, -0.19, -0.12 and -0.09 respectively. The much larger
interactions showed the higher level of QEI, and the less stability.

2. Most QTL identified by single-environment analysis can also be detected by QEI mapping,
especially for QTL detected in more than one environment. QEI mapping can detect some
QTL which were not identified by single-environment analysis. In this study, qMFLW-1-1,
qMFLW-1-3 and qMFLW-8 were detected only by QEI mapping (Tables 7 and 8). Small
peaks with LOD scores lower than threshold 3.0 were observed around these QTL positions
on LOD profiles in several environments. Therefore, it is not strange that they were detected
in QEI mapping (Fig 7). For example, qMFLW-8 identified by QEI mapping located at 133
cM on chromosome 8. Peaks of LOD scores were also observed around this position in envi-
ronments WSM1 and WSZ2 by single-environment analysis.

3. For some common QTL, positions estimated by single-environment analysis fluctuated
around the positions estimated by QEI mapping. For example, qMFLW-3-1 was located at
55 cM on chromosome 3 in QEI mapping, but was located at 56, 54 and 53 cM on chromo-
some 3 in WSM2, WSZ1 andWSZ2, respectively, by single-environment analysis (Tables 7
and 8). QEI mapping used multi-environment phenotypic data simultaneously and there-
fore may result in more precise and reliable estimation of QTL position.

4. The estimated effects by QEI mapping and single-environment analysis were similar,
although minor differences were observed. Taking qMFLW-4-2 as an example, the esti-
mated effects were 0.50 and 0.61 in WSM2 andWWM1 by single-environment analysis,
corresponding to 0.45 and 0.54 estimated by QEI mapping (Tables 7 and 8).

Compared with the mapping results in Messmer et al. [39], the ICIM QEI mapping detect
more QTL. Four QTL reported by the joint analysis for seven environments in Messmer et al.
[39] were all identified in this study, i.e., qMFLW-1-2, qMFLW-3-1, qMFLW-4-2 and qMFLW-
6-1. However, nine more QTL were detected by QEI mapping in this study, and many of which
can also be detected in single-environment analysis. For example, LOD score of qMFLW-2-2
was 24.45 by QEI mapping. It was identified in environments WSM2 and WSZ2 with LOD
scores 13.17 and 3.46 by single-environment analysis. In addition, there were peaks at LOD
profiles in environments WSZ1, WWM2 and WWZ2 lower than LOD threshold in single-
environment analysis. Similar were qMFLW-2-1, qMFLW-4-1 and qMFLW-10. The truth of
these QTL was validated by the single-environment analysis.

Discussion
QEI can be investigated when genetic populations are planted in multiple locations and/or
years. QEI information thus obtained is of great value for breeders and genetic researchers.
According to the QTL mapping results, breeders can design ideal genotype of favorable alleles
and more efficiently perform marker-assisted selection. Stable QTL of agronomic traits is use-
ful to a wide range of environments, while environment-favorable QTL can be used within spe-
cific target environments. However, the detection of QEI is not easy.

“Results of separate analysis by environment is hard to interpret, and cannot take advantage
of built-in replication provided by multiple environments”, pointed by Tinker and Mather [8].
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Single-environment analysis is subject to the errors from different environments probably
resulting in different positions and effects of the same QTL. It is not inconvenient to evaluate
QTL stability and QEI effect by directly comparing the effects estimated by single-environment
analysis. Some studies conduct QTL mapping using the mean phenotypic value across multi-
environments or the genotypic value predicted by best linear unbiased prediction [41,42]. But
this approach can only detect QTL with significant major effects. When dealing with multi-
environment phenotypic data, the estimated positions and effects by QEI mapping are more
reliable than single-environment analysis as the data across all environments are used
simultaneously.

The two-step strategy used in ICIM simplifies the mapping procedure by separating the
cofactor selection from interval mapping [7]. This study demonstrated that the superiority of
ICIM has been maintained when extended to QEI mapping. Stepwise regression was conducted
only once, based on which the phenotype was adjusted during the interval mapping. This strat-
egy avoids the repeated interval mapping in Boer et al. [1], and requires much less computing
time. Another feature distinguishing ICIM from other methods is that major effect and QEI
effect of QTL are estimated based on genotypic value of two QTL genotypes, QQ and qq, across
multi-environments through the orthogonal decomposition. QTL stability and QEI level can
be directly evaluated from the mapping results, including three LODs, three PVEs, major
effects and QEI effects.

Using similar algorithms described in this study, ICIM has been extended to dominant QEI
mapping, and epistatic QEI mapping as well. In the case of epistatic QEI mapping, the first step
was to use stepwise regression to select significant markers and significant marker pairs in each
environment. The second step was to apply the two-dimensional interval mapping on the
adjusted phenotypic values. Both major epistasis effect and epistasis by environment interaction
effect can be estimated. QEI mapping of additive, additive and dominant, and epistatic effects in
most biparental populations have been well implemented in the QTL IciMapping software [37].

LOD threshold is used to control false positive in QTL mapping. Use of a suitable threshold
is an important issue, as it determines the number of identified QTL and control the genome-
wide error rate. For convenience, we used an empirical formula to select the LOD threshold in
this study. The LOD threshold to define a stable QTL can also be obtained from the empirical
formula. For LODA, df is equal to 1 for DH, BC1 and RIL populations, and 2 for F2 population
when one-dimension scanning is conducted. Similarly for LODAE, df is equal to e-1 for DH, BC1

and RIL populations, and 2(e-1) for F2 populations to obtain LOD threshold for significant QEI.
LOD threshold in QEI mapping is much higher than that in single-environment analysis,

due to the increased degree of freedom. Some QTL detected in single environment may result
in peaks lower than the threshold, which will not be reported in QEI mapping. But, most QTL
detected in more than one environment and QTL with higher LOD score in single-environ-
ment analysis are more likely to be detected in QEI mapping. In the maize RIL population,
most QTL detected in WS condition had higher LOD than that in WW condition. For exam-
ple, 12 QTL were detected in WS, 8 of which had LOD scores over 4. In WW condition, 7 QTL
were detected, 3 of which had LOD scores over 4. In addition, more QTL in WS were detected
in more than one environment. For example, QTL around 217 cM on chromosome 1 was
detected in WSM1 and WSZ1; QTL around 120 cM on chromosome 2 was detected in WSM2
andWSZ2. In comparison, more QTL in WWwere detected in only one environment, espe-
cially those not identified by QEI mapping.

Genetic architecture of quantitative traits could be more complicated than additive, domi-
nance and digenic epsitatsis discussed in this study. The environments where the traits are phe-
notyped can be equally complicated. Though we see benefits to apply QEI analysis for multi-
environmental trials, we cannot exclude the use of QTL mapping by each environment, and
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then summarize the mapping results across the environments. Neither can we exclude the use
of the estimated breeding values in QTL mapping where the target is to locate the highly-
adapted and stable genes.
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