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Abstract
Ecologists are challenged by the need to bridge and synthesize different approaches 
and theories to obtain a coherent understanding of ecosystems in a changing world. 
Both food web theory and regime shift theory shine light on mechanisms that confer 
stability to ecosystems, but from different angles. Empirical food web models are 
developed to analyze how equilibria in real multi-trophic ecosystems are shaped by 
species interactions, and often include linear functional response terms for simple 
estimation of interaction strengths from observations. Models of regime shifts focus 
on qualitative changes of equilibrium points in a slowly changing environment, 
and typically include non-linear functional response terms. Currently, it is unclear 
how the stability of an empirical food web model, expressed as the rate of system 
recovery after a small perturbation, relates to the vulnerability of the ecosystem to 
collapse. Here, we conduct structural sensitivity analyses of classical consumer-
resource models in equilibrium along an environmental gradient. Specifically, we 
change non-proportional interaction terms into proportional ones, while maintaining 
the equilibrium biomass densities and material flux rates, to analyze how alterna-
tive model formulations shape the stability properties of the equilibria. The results 
reveal no consistent relationship between the stability of the original models and the 
proportionalized versions, even though they describe the same biomass values and 
material flows. We use these findings to critically discuss whether stability analy-
sis of observed equilibria by empirical food web models can provide insight into 
regime shift dynamics, and highlight the challenge of bridging alternative modelling 
approaches in ecology and beyond.
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1 Introduction

Human action is transforming global ecosystems through processes such as land 
conversion, climate change, overexploitation and pollution (Millenium Ecosystem 
Assessment 2005). These changes in structure and function alter nature’s contribu-
tions to people (IPBES 2019). Changes in ecosystem functioning are particularly 
troublesome for people when they are large, abrupt and difficult to reverse (Scheffer 
et al. 2001). Such catastrophic transitions in the ecosystem state have been observed 
in various ecosystems, including shallow lakes, peat bogs, coral reefs and arid range-
lands (Rocha et al. 2015). A principal challenge for ecologists is to understand and 
forecast the stability properties of natural ecosystems in a changing world (Clark 
et al. 2001; Evans 2012).

Assessing the stability properties of complex ecosystems requires more than a 
single metric (Peterson et al. 1997; Ives and Carpenter 2007; Donohue et al. 2013). 
One classical measure is the rate at which a stable system recovers from a small 
perturbation, originally defined as resilience by Pimm (1984) and later referred to 
as engineering resilience by Holling (1996). Importantly, dynamical systems theory 
predicts that this engineering resilience may be used as an indicator of the mag-
nitude of disturbance that a system can absorb without undergoing radical change 
in its structure, that is, ecological resilience (Holling 1996; Van Nes and Scheffer 
2007; Boettiger et al. 2013). This principle underlies the development of statistical 
techniques that may detect signals of ‘critical slowing down’ in high frequency time 
series, potentially providing early warning to abrupt regime shifts (Scheffer et  al. 
2009). Unfortunately, this statistical approach is still in its infancy (Spears et  al. 
2017), and many limitations remain (Dakos et  al. 2015). Alternatively, dynamical 
models may be used to understand and predict the resilience of ecological systems. 
A conventional method is local stability analysis of the Jacobian matrix of all first-
order partial derivatives. The real part of the dominant eigenvalue of the Jacobian 
matrix evaluated at the equilibrium reveals the rate at which a small perturbation to a 
system in equilibrium decays (Pimm and Lawton 1977; Neubert and Caswell 1997). 
This recovery rate can be considered a measure of engineering resilience (Van Nes 
and Scheffer 2007). Ideally it would be possible to construct a mathematical descrip-
tion of a natural ecosystem and evaluate its local stability using the Jacobian matrix 
to obtain a reliable estimate of the actual engineering resilience of the system that is 
portrayed, ultimately to be used as an indicator of ecological resilience by ecosystem 
managers.

The modelling of species interactions often forms the first step in analyzing more 
complex behavior of ecosystems. As such, the seminal work by Lotka (1920) and 
Volterra (1926), who independently discovered the cycles that arise in a set of cou-
pled differential equations representing consumers and resources, forms the foun-
dation for innumerable ecological models that have been developed since. The 
Lotka-Volterra (LV) system is one of the earliest models in mathematical ecology 
and represents the simplest model of predator–prey interactions, using proportional 
(linear) per capita growth and mortality rates and mass-action interaction rates. To 
describe and analyze more realistic ecological systems the classical LV system can 
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be extended along two fundamentally different complexity axes: (i) the number of 
interacting species and their arrangement in a network, and (ii) the type of func-
tional response terms to characterize the interactions.

Minimal dynamic models, which consist of just a few equations, are the pre-emi-
nent tools for studying the often striking and surprising effects of incorporating non-
proportional interaction terms on model outcome (Wangersky 1978; Kooi 2003). 
One of the most famous examples comes from Rosenzweig and MacArthur (1963), 
who replaced the linear functional response interaction term of the original LV 
model with a Holling type II functional response, and included logistically instead of 
proportionally growing resource. Their observation that increasing resource density 
tends to destabilize the system led to the formulation of the ‘paradox of enrichment’ 
(Rosenzweig 1971). Minimal models are often used to scrutinize the local stability 
along a gradient of environmental change to detect bifurcations that reveal qualita-
tive changes in the long-term dynamics, e.g. productivity in the Rosenzweig–Mac-
Arthur example (Kooi 2003). As such, minimal dynamical models help to unveil 
which ingredients are minimally required to evoke phenomena that are qualitatively 
similar to phenomena observed in real life (Scheffer 2004). For example, minimal 
models have been decisive in revealing positive feedback loops as a key ingredient 
for the emergence of alternative stable states and the occurrence of regime shifts 
(May 1977; DeAngelis et al. 1986; Scheffer 1989). These simple models thus pro-
vide a strong theoretical foundation for the concept of ecological resilience (Holling 
1973; Scheffer et al. 2001; Van Nes and Scheffer 2007), which presumes the exist-
ence of multiple alternate states in nature. However, minimal models of ecosystems 
are not intended to give quantitative descriptions of the system under study. Hence, 
minimal models are not suitable for producing accurate estimations of the stability 
properties of observed complex ecosystems.

Potentially more suitable candidates are empirical food web models with 
numerous coupled equations, which provide some of the most detailed mathe-
matical descriptions of natural ecosystems to date. We here focus on a particular 
class of food web models that have been developed specifically for local stability 
analysis of observed equilibria in multi-trophic ecosystems (De Ruiter et al. 1995; 
Moore and de Ruiter 2012). Interestingly, despite the important theoretical results 
on stability that were obtained by entering non-linear terms, these empirically-
based food web models tend to adhere to the use of Lotka-Volterra type equa-
tions with proportional (linear) interspecific interaction terms (Neutel and Thorne 
2016). The crux is that linear interaction terms make it possible to derive the par-
tial derivatives of Lotka-Volterra type growth equations in equilibrium directly 
from readily available empirical information such as biomass densities and feed-
ing rates (De Ruiter et  al. 1993, 1995; Neutel and Thorne 2016; Heijboer et al. 
2017). The partial derivatives represent per capita interaction strengths and give 
the elements of the Jacobian matrix representation of the food web. Typically the 
dominant eigenvalue of the Jacobian matrix is used as a dependent variable for 
comparing systems with different network structures to identify which network 
properties are relatively important for stability (Van Altena et  al. 2014). Stud-
ies unravelling the ‘stability in real food webs’ have yielded compelling insights 
into which stabilizing structures are prevalent in nature, and have been published 
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in multidisciplinary journals with a broad readership (e.g. De Ruiter et al. 1995; 
Neutel et al. 2002, 2007; Jacquet et al. 2016).

Unfortunately, however, these studies have not clearly explained how the cal-
culated stability in multi-trophic ecosystems relates to the concept of ecological 
resilience and the imminence of catastrophic regime shifts. Local (fixed-point) 
stability analysis of empirically-based food web models emphasizes the bounc-
ing back after disturbance, and thus the engineering view on resilience (Pimm 
1984). An advantage is easy comparison with empirical ecological research in, 
for example, community ecology, where recovery time after a natural or exper-
imental disturbance might be used to detect relationships between biodiversity 
and stability (Tilman and Downing 1994; McCann 2000; Loreau et al. 2001; Kui-
per et  al. 2014). Insights may also be translated to other disciplines that focus 
on disturbance and recovery, such as disaster risk management and economic 
geography (Fingleton et al. 2012), which often have an implicit focus on resist-
ing and controlling change. However, although seldom articulated, there is also 
an implicit assumption of global stability (Gunderson 2000), that is, that there is 
only a single stable interior state (all species with positive biomasses) showing 
an attracting equilibrium, limit cycle or chaos. Indeed, the few studies that have 
analyzed empirical food web models along environmental gradients of e.g. pro-
ductivity (Neutel et al. 2007), grazing pressure (Andres et al. 2016) and climate 
warming (Schwarz et  al. 2017) did not discuss their results in relation to eco-
logical resilience and potential whole-system regime shifts. Kuiper et al. (2015), 
however, did find evidence for a relationship between food web stability and eco-
logical resilience when they parameterized food web models using data sampled 
from a virtual reality created by a complex ecosystem model with alternative 
stable states, but the complexity of their models makes it difficult to fully grasp 
the results. As a result, it remains largely unclear to what extent the stabilizing 
structures in trophic networks that are identified through local stability analysis 
of empirical food web models are important for preventing catastrophic regime 
shifts (Kuiper et al. 2015). Reconciling food web theory and regime shift theory 
is crucial for better understanding the relation between biodiversity decline and 
ecosystem collapse (Cardinale et al. 2012; Downing et al. 2012), and the develop-
ment of empirical indicators of ecological resilience to anticipate regime shift.

To serve as an indicator of ecological resilience and reveal insights in the vulner-
ability of the real-world ecosystem to regime shifts, the calculated stability of empir-
ically-based food web models must correspond reasonably well to the actual engi-
neering resilience of the system that is being modelled (Fig. 1; Van Nes and Scheffer 
2007; Aldebert et al. 2016a; Neutel and Thorne 2016). A fundamental underlying 
question is how the assumption of linear interaction terms shapes the calculated sta-
bility properties of empirically-based food web models, and potentially disrupts the 
connection with the stability properties of the actual ecosystem that is being mod-
elled, considering that it is common knowledge that the type of functional response 
term can have a drastic influence on the stability properties of a dynamic model 
(Strogatz 1994; Kot 2001). While we here focus on empirical food web models with 
linear interaction terms, this question speaks to the broader challenge of develop-
ing mathematical models to describe stability properties of real world ecosystems, 
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and, in that regard, the need for critical evaluation of how the selection of functional 
response types determines model behavior.

In this paper we address this question by conducting structural sensitivity analy-
ses of classical consumer-resource models in equilibrium along an environmental 
gradient. Specifically, we change non-proportional interaction terms into linear 
ones, while maintaining the equilibrium biomass densities and flux of mass, to ana-
lyze how alternative model formulations shape the stability properties of the equi-
libria. We repeat our analysis along an environmental gradient, knowing that notice-
able qualitative changes in model behavior will occur in the more complex systems 
with non-linear interaction terms. We check to what extent the stability properties 
of these alternative model systems with identical equilibrium solutions correspond, 
and evaluate whether the stability of the simpler systems with linear interaction 
terms may serve as an indicator of the ecological resilience of the more complex 
non-linear systems.

While the historical trend has been to add complexity to Lotka-Volterra mod-
els, we argue that there is much to gain from starting with more complex models 
and working from them towards simpler models. This may help to identify the least 
amount of information needed to disclose the stability properties of complex ecosys-
tems, and better understand what mathematical models can teach us about the stabil-
ity properties or real systems. Yet, we deliberately use minimal dynamic models to 
benefit from their analytical tractability and explain our findings mathematically. We 
use these results as a solid basis for discussing whether and how food web models 

Fig. 1  A challenge for ecologists is to provide human societies with estimates of how much stress an 
ecosystem can withstand without losing the ability to recover and shifting to an alternate state, that is, 
ecological resilience [1]. Empirically-based food web models are developed to analyze the stability of 
complex ecosystems [2]. Empirical observations are used to construct a detailed material (energy) flux 
description of the ecosystem [3]. When equilibrium conditions and type I functional response terms are 
assumed, this food-web description can be used to estimate per capita interaction strengths and quantify 
the elements of the Jacobian matrix representation of the food web model. Local (fixed-point) stability 
analysis of the Jacobian matrix provides the stability properties of the model system [4]. The dominant 
eigenvalue provides an estimate of the return rate to equilibrium following a perturbation and hence can 
be used as a measure of engineering resilience [5]. It is unclear whether this measure of engineering 
resilience provides a meaningful indicator of ecological resilience [6] of the real-world ecosystem that is 
being portrayed [1]. Photo credit: the corresponding author
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with linear interaction terms that are developed to analyze equilibria in real multi-
trophic ecosystems can be used to study and anticipate regime shifts, and identify 
research needs to reconcile alternative theoretical approaches to ecosystem stability.

2  Models and Analyses

We base our experiments on three widely used minimal models of consumer-
resource interactions with non-linear functional response terms. For each of the 
models we present explicit expressions for the equilibria and the elements of the 
Jacobian matrix. The elements of the matrix determine the dynamic behaviour of the 
system in the vicinity of the equilibrium and are used to calculate the eigenvalues. 
Subsequently, we produce linear versions of the original models, by changing the 
non-proportional functional response terms into proportional terms, while maintain-
ing the equilibrium solutions. We then parameterize the original non-linear models 
to obtain values of the equilibrium solutions and use these equilibrium values to 
parameterize the linear counterpart models. This enables us to analyse the local sta-
bility of the equilibria using both the non-linear and the linear model systems and 
compare the stability properties. We repeat this step along a gradient of environmen-
tal stress, knowing that bifurcations, characterized by qualitative changes in model 
behaviour, will occur in the non-linear systems. We check whether the stability anal-
ysis of the simpler system discloses any information about the changing stability 
properties occurring in the complex non-linear system.

2.1  The Models

We focus on three key extensions of the classical Lotka-Volterra (LV) consumer-
resource model. We define all models for algae and zooplankton, and, therefore, 
identify the resource as A and the consumer as Z (Table 1). The original LV model 
contains proportional growth and death rates of resource and consumer, respec-
tively, and a mass-action interaction term between consumer and resource, that is, a 
Holling type I functional response without ceiling. The dynamics of the original LV 
model are given by:

The expressions of the nontrivial equilibria are:

(1)
dA

dt
= rA − gZA − lA

dZ

dt
= egZA − mZ

(2)A∗ =
m

eg
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The expressions of the elements of the Jacobian matrix are:

Following ecological modelling terminology, in this paper we will refer to 
consumer-resource models with proportional growth, loss and interaction terms 
as having ‘linear’ equations, and refer to models that have non-proportional 
terms as ‘non-linear’ equations (cf. Arditi and Michalski 1996).

Z∗ =
r − l

g

(3)J1,1 = r − gZ∗ − l =
1

A∗

dA∗

dt
= 0

J1,2 = −gA∗ = −g
m

eg
= −

m

e

J2,1 = egZ∗ = eg
r − l

g
= e(r − l)

J2,2 = egA∗ − m =
1

Z∗

dZ∗

dt
= 0

Table 1  States and parameters of the consumer-resource models and their linearized counterpart models

Description Unit Value

A Resource Resource unit
Z Consumer Consumer unit
r Maximum growth rate resource Time−1 0.5
K Carrying capacity resource Resource unit 0–10
g Maximum intake rate consumer LV and LVV model: consumer 

 unit−1·time−1; RM and RMS model: 
resource unit·consumer  unit−1·time−1

0.4

a Half saturation consumer on resource Resource unit 0.6
l Resource loss rate Time−1 0.01
e Consumer-resource conversion efficiency Consumer unit·resource  unit−1 0.6
F Maximum intake rate top-consumer Consumer unit·time−1 0–0.3
z Half saturation rate top-consumer on 

consumer
Consumer unit 0.5

m Consumer loss rate Time−1 0.15
rlin Growth rate resource Time−1

glin Intake rate consumer Time−1

Flin Intake rate top-consumer Time−1
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2.1.1  The Lotka‑Volterra‑Verhulst Model

The first key extension of the original LV model is the inclusion of negative density 
dependence in the resource so as to prevent unbounded growth in absence of the con-
sumer. A classical formulation of negative density dependence is the logistic equation 
introduced by (Verhulst 1845). Hence, we replace the linear growth term rA in the 
resource with a the non-linear logistic term rA(1 − A∕K) , and refer to this extension as 
the Lotka-Volterra-Verhulst (LVV) model. The dynamics of the LVV model are given 
by:

The expressions of the equilibria are (for  Z* > 0):

The only element of the Jacobian Matrix that is affected by the addition of 
the logistic growth term is J1,1. The partial derivative of the logistic term is 
r(1 − A∗∕K) − rA∗∕K , which is included in J1,1 (compare Eq. 3). The full expression 
of the element is:

2.1.2  The Rosenzweig–MacArthur Model

A second key extension of the LV model results from the realization that consumers 
approach a maximum intake rate at high resource levels. This can for instance be 
achieved by replacing the linear interaction term of the Lotka Volterra model gZA 
with a non-linear Holling type II functional response gZA∕A + a (Holling 1959), 
which in turn is mathematically equal to Michaelis–Menten kinetics (Michaelis and 
Menten 1913). The combination of both extensions, logistic growth in the resource 
and a Holling type II functional response, results in the aforementioned Rosenz-
weig–MacArthur (RM) model (Rosenzweig and MacArthur 1963). The dynamics of 
the RM model are given by:

(4)
dA

dt
= rA

(

1 −
A

K

)

− gZA − lA

dZ

dt
= egZA − mZ

(5)A∗ =
m

eg

Z∗ =
r
(

1 −
A∗

K

)

− l

g

(6)J1,1 = r
(

1 −
A∗

K

)

− r
A∗

K
− gZ∗ − l = r

(

1 −
2A∗

K

)

− gZ∗ − l

(7)
dA

dt
= rA

(

1 −
A

K

)

− gZ
A

A + a
− lA
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The expressions of the equilibria are (for  Z* > 0):

The Holling type II functional response term is part of both the equation of the 
resource and the consumer and therefore affects all elements of the Jacobian matrix. 
The partial derivative of the functional response term is gZ∗a∕(A∗ + a)2. The expres-
sions of the elements of the Jacobian Matrix are:

2.1.3  The Rosenzweig–MacArthur‑Scheffer Model

A third key extension of the LV model stems from the notion that above a given thresh-
old density the consumer itself might become an attractive resource for a top-consumer. 
Such prey switching responses in the top-consumer can be modelled with a sigmoid 
Holling type III functional response of the top-consumer, which is a specific case of a 
Hill function (Hill 1910). A RM model with a Hill function in the loss term of the con-
sumer was analyzed by Scheffer et al. (2000). We will further refer to this model as the 
Rosenzweig–MacArthur-Scheffer (RMS) model. In the RMS model a nonlinear Hol-
ling type III loss term of the consumer FZ2∕Z2 + z2 is added to the linear loss term of 
the LV model mZ. To fully comply with the formulation used by Scheffer et al. (2000) a 
constant influx of the resource is also added, thus mimicking chemostat dynamics. The 
dynamics of the RMS model are given by:

dZ

dt
= egZ

A

A + a
− mZ

(8)A∗ =
am

eg − m

Z∗ =

(

r
(

1 −
A∗

K

)

− l
)

(A∗ + a)

g

(9)

J1,1 = r
(

1 −
A∗

K

)

− r
A∗

K
− gZ∗ a

(A∗ + a)2
− l = r

(

1 −
2A∗

K

)

− gZ∗ a

(A∗ + a)2
− l

J1,2 = −g
(

A∗

A∗ + a

)

J2,1 = egZ∗ a

(A∗ + a)2

J2,2 = eg
A∗

A∗ + a
− m =

1

Z∗

dZ∗

dt
= 0

(10)
dA

dt
= rA

(

1 −
A

K

)

− gZ
A

A + a
− lA + lK
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For the RMS model there are no explicit expressions of the equilibria, which 
need to be solved numerically. The addition of the nonlinear Holling type III in the 
consumer only affects the element J2.2 (compare Eq. 9). The partial derivative of the 
functional response is −2FZ∗z2∕

(

Z∗2 + z2
)2 . The expressions of J2.2 is:

All of these models have been fully described in the literature and analyzed for 
their stability properties through bifurcation analysis (e.g. Rosenzweig and MacAr-
thur 1963; Scheffer et al. 2000; Kooi 2003). The stability properties range from neu-
trally stable (LV), always stable (LVV), for some parameter values stable, for oth-
ers unstable (RM) and for some parameter values showing alternative stable states 
(RMS).

2.2  The Linearization of Functional Response Terms

In our linearization step, we replace the nonlinear growth-, interaction- and loss 
terms in the LVV, RM and RMS models by a single parameter. To maintain a link 
with the original models, and to allow an analysis of the linearized models along the 
same environmental gradients against which the original models can be analyzed, 
we express these linear parameters in terms of the original parameters r, K, g, a, F 
and z, and the equilibrium densities A* and Z*. By doing so, we guarantee that the 
equilibrium biomass densities and material flows of the original LVV, RM and RMS 
models are by definition equal to those for their linearized counterparts. Hence, we 
are able to analyze the same equilibria but using Lotka-Volterra dynamics instead 
of the original non-linear dynamics. We identify the linearized models with a refer-
ence to the LV model:  LVV(LV) for the linearized Lotka-Volterra-Verhulst model, 
 RM(LV) for the linearized Rosenzweig–MacArthur model and  RMS(LV) for the lin-
earized Rosenzweig–MacArthur-Scheffer model. For each of the linearized models 
we also present the explicit expressions of the elements of the Jacobian matrix. We 
first present the elements in terms of the new parameters rlin, glin and Flin and there-
after in terms of the original parameters r, K, g, a, F and z. This allows for a one 
to one comparison of the original Jacobian matrix with the Jacobian matrix of the 
linearized models.

2.2.1  The Linearized Lotka‑Volterra‑Verhulst Model  LVV(LV)

The only parameter of the LVV model that is linearized is the resource growth rate 
rlin (Eq.  13). This parameter increases with increasing carrying capacity K and is 
further determined by the resource concentration, that is, the equilibrium density of 
the original model A*. The dynamics of the  LVV(LV) model are given by:

dZ

dt
= egZ

A

A + a
− mZ − F

Z2

Z2 + z2

(11)J2,2 = eg
A∗

A∗ + a
− m − 2FZ∗ z2

(

Z∗2 + z2
)2
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with

and:

The expression of element J(LV)1.1 is (compare with Eq. 6):

2.2.2  The linearized Rosenzweig–MacArthur model  RM(LV)

During linearization of the RM model, two parameters are linearized, namely the 
resource growth rate rlin and the interaction term glin (Eq. 17). However, of these two, 
only the resource growth rate increases with increasing carrying capacity K. The inter-
action term glin stays constant because its only variable is the resource concentration 
A*, which itself does not depend on the carrying capacity. The dynamics of the  RM(LV) 
model are given by:

with

(12)
dA(LV)

dt
= rlinA(LV) − gZ(LV)A(LV) − lA(LV)

dZ(LV)

dt
= egZ(LV)A(LV) − mZ(LV)

(13)rlin = r
(

1 −
A∗

K

)

(14)A∗
(LV)

= A∗ =
m

eg

Z∗
(LV)

= Z∗ =
r
(

1 −
A∗

K

)

− l

g

(15)

J(LV)1,1 = rlin − gZ∗
(lin)

− l = r
(

1 −
A∗

K

)

− gZ∗ − l =
1

A∗

dA∗

dt
= 0 = J1,1 +

rA∗

K

(16)
dA(LV)

dt
= rlinA(LV) − glinZ(LV)A(LV) − lA(LV)

dZ(LV)

dt
= eglinZ(LV)A(LV) − mZ(LV)

(17)rlin = r
(

1 −
A∗

K

)
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The expressions of the equilibria of linearized RM model are:

After reformulation, the partial derivative of the linearized Holling type II func-
tional response is expressed as −g Z∗

(A∗+a)
 . The full expressions of the elements of the 

linearized Jacobian matrix are (compare with Eqs. 9):

2.2.3  The Linearized Rosenzweig–MacArthur‑Scheffer Model  RMS(LV)

During linearization of the RMS model, three parameters are linearized, namely the 
resource growth rate rlin, the interaction term glin and the consumption rate by the 
top-consumer Flin (Eq. 21). The rlin is determined by the carrying capacity and the 
equilibrium density of the resource A*, glin is only determined for the equilibrium 
density of the resource A*, while Flin is dependent on the equilibrium density of the 
consumer Z* and changes with increases in the top-consumer consumption rate F. 
The dynamics of the  RMS(LV) model are given by:

glin =
g

(A∗ + a)

(18)A∗
(LV)

= A∗ =
am

eg − m

Z∗
(LV)

= Z∗ =

(

r
(

1 −
A∗

K

)

− l
)

(A∗ + a)

g

J(LV)1,1 = rlin − glinZ∗
(LV) − l

= r
(

1 − A∗

K

)

− g Z∗

(A∗ + a)
− l

= 1
A∗

dA∗

dt
= 0

= J1,1 + rA
∗

K
+ gZ∗ a

(A∗ + a)2
− g Z∗

(A∗ + a)

(19)J(LV)1,2 = −glinA
∗
(LV)

= −g
A∗

(A∗ + a)
= J1,2

J(LV)2,1 = eglinZ
∗
(LV)

= eg
Z∗

(A∗ + a)
= J2,1

A∗ + a

a

J(LV2,2 = eglinA
∗
(LV)

− m = eg
A∗

(A∗ + a)
− m =

1

Z∗

dZ∗

dt
= 0 = J2,2
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with:

and:

After reformulation, the partial derivative of the Holling type III functional 
response term is expressed as: −FZ∗∕

(

Z∗2 + z2
)

 . The full expression of element 
J(LV)2.2 is (compare with Eq. 11):

By replacing all non-linear terms with linear terms we imposed LV dynamics 
on the LVV, RM and RMS systems. However, we acknowledge that many empiri-
cal food web models presented in the literature actually include self-limitation 
(Moore and de Ruiter 2012; Van Altena et al. 2014; Dakos 2018). Therefore, we 
additionally present partially linearized versions of the RM and the RMS models 
whereby the logistic growth term in the resource is maintained. Thus, instead of 
LV dynamics we impose LVV dynamics on the RM and the RMS systems. An 
added advantage of creating intermediate versions is that we obtain a more com-
plete understanding of the contribution of the different non-linear terms. We iden-
tify these partially linearized models with reference to the LVV model:  RM(LVV) 
for the Rosenzweig–MacArthur model where the Holling type II functional 
response in the predation term is replaced by a Holling type I without ceiling, but 

(20)
dA(LV)

dt
= rlinA(LV) − glinZ(LV)A(LV) − lA(LV) + lK

dZ(LV)

dt
= eglinZ(LV)A(LV) − mZ(LV) − FlinZ(LV)

(21)rlin = r
(

1 −
A∗

K

)

glin =
g

(A∗ + a)

Flin =
FZ∗

(

Z∗2 + z2
)

(22)A∗
(LV)

= A∗

Z∗
(LV)

= Z∗

J(lin)2,2 = eglinA
∗
(LV)

− m − F
�

= eg
A∗

(A∗ + a)
− m −

FZ∗

(

Z∗2 + z2
) =

1

Z∗

dZ∗

dt
= 0

(23)= J2,2 + 2FZ∗ z2

(

Z∗2 + z2
)2

−
FZ∗

(

Z∗2 + z2
)
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the logistic growth in the resource is maintained, and  RMS(LVV) for the Rosen-
zweig–MacArthur-Scheffer model where the Holling type II and type III terms 
are linearized but the logistic growth in the resource is maintained. Finally, we 
also consider the RMS version where the Type III functional response term is lin-
earized but the logistic growth term and the Holling type II functional response 
term are maintained, and identify this model as  RMS(RM). A complete overview 
of all equations, original and linearized, of the LV, LVV, RM and RMS models is 
presented in Online Resource 1.

2.3  Stability Analyses of the Equilibria Along an Environmental Gradient

The LVV, the RM and the RMS models contain the carrying capacity K of the 
resource and can therefore be analyzed along an environmental gradient represent-
ing eutrophication. The RMS model, however, is intended for analysis along another 
gradient, namely that of consumption of the consumer by a top-consumer expressed 
in parameter F. For easy comparison with the RMS model as it is described in lit-
erature, we therefore choose to present the analysis for F in the main results, and 
present the analysis for K in Online Resource 2.

We parameterize the models and calculate the equilibrium values along the envi-
ronmental gradients. We use the same parameters values as were used by Scheffer 
et al. (2000), to simplify comparison with previous research (Table 1). Their param-
eters were inspired by algae-zooplankton dynamics. Next, we take the equilibrium 
solutions, as if they are observations sampled from the virtual reality of the models 
with nonlinear terms, and use them to parameterize the models with the linear terms. 
Both the linear and the nonlinear model versions thus describe the same equilibrium 
biomass values and material flows. This step mimics the development of empirical 
food web models to describe observed equilibria in ecosystems as described by De 
Ruiter et al. (1993, 1995). We use the elements of the Jacobian matrix to calculate 
the eigenvalues and characterize the dynamic behavior of the systems.

To evaluate and compare the stability properties of both the non-linear and the 
linear models along the same environmental gradients, we present the equilibrium 
solutions, the real part of the dominant eigenvalues (Re(λ)) and the dynamic behav-
ior of each system. The Re(λ) gives an indication of the rate of recovery of the sys-
tem after a small perturbation and is used as a measure of engineering resilience. 
Additionally, we present phase planes and nullclines for all models at two points 
along the environmental gradient to provide more insight into system behavior.

3  Results

3.1  Lotka‑Volterra‑Verhulst Model

The LVV model goes through a predator invasion threshold (or transcritical bifurca-
tion) at K = 0.64 and is stable for higher carrying capacities, first as a stable node 
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and thereafter as a stable focus (Figs.  2b and 3a, c). Above the predator invasion 
threshold the equilibrium density of the resource is not dependent on the carrying 
capacity because the loss rate of the consumers does not depend on K and therefore 
its R* (cf. (Tilman 1982)) is constant over the environmental gradient (Fig. 2a, line 
A*). Instead, the increasing productivity of the system ends up in increasing biomass 
of the consumer (Fig. 2a, line Z*).

The linearized version of the LVV model, denoted as  LVV(LV), also shows a tran-
scritical bifurcation at a corresponding value of K = 0.64 but thereafter shows the 
type of neutral stability that is typical for LV models with only linear terms (Figs. 2b 
and 3b,d).

3.2  Rosenzweig–MacArthur Model

The RM model goes through a predator invasion threshold at K = 1.02. For higher 
values of K, up to K = 2.65, the model shows a stable equilibrium. First as a stable 
node and then as a stable focus for values (Figs. 4a and 5a). At a value of K = 2.65 
a supercritical Hopf bifurcation occurs and the model shows stable limit cycles as 
its dynamic behavior at higher carrying capacities (Figs. 4a and 5b). This is the 
famous ‘paradox of enrichment’ that states that increasing the carrying capac-
ity of the resource tends to destabilize consumer-resource interactions (Rosenz-
weig 1971). Also in the RM model, the equilibrium density of the resource is not 

Fig. 2  Equilibrium densities (a) 
and real part of the dominant 
eigenvalue (Re(λ)) (b) for the 
LVV model (Lotka-Volterra-
Verhulst) and its counterpart 
with linear interaction terms, 
the  LVV(LV) model, along an 
environmental gradient. Also 
the dynamical behavior along 
the gradient is depicted, follow-
ing Kot (2001)
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dependent on the carrying capacity above the transcritical bifurcation because the 
loss rate of the consumer does not depend on K and therefore the R* is constant 
over the environmental gradient (Fig. 4a, line A*). And again, the increasing pro-
ductivity of the system ends up in increasing biomass of the consumer (Fig. 4a, 
line Z*).

The fully linearized version of the RM model, denoted as  RM(LV), also shows 
a transcritical bifurcation at the corresponding value of K = 1.02 and thereafter the 
type of neutral stability that is typical for LV models with only linear terms (Figs. 4b 
and 5e, f). The intermediate version  RM(LVV), however, with logistic growth in the 
resource but a linear predation term, is stable after the critical invasion threshold, 
first as a stable node and thereafter as a stable focus (5c, d). Unlike the original RM, 

Fig. 3  Phase planes and nullclines of the LVV model (Lotka-Volterra-Verhulst) for carrying capacity 
K = 0.8 (a) and K = 5 (b), and its counterpart with linear interaction terms, the  LVV(LV) model, for K = 0.8 
(c) and K = 5 (d). While for each K the equilibrium solutions of the LVV and the  LVV(LV) systems are the 
same, the dynamical behavior differs distinctly. LVV shows a stable node (a) and a stable focus (b) while 
the  LVV(LV) is neutrally stable (c, d)
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the  RM(LVV) does not show a supercritical Hopf bifurcation with increasing carrying 
capacity, as it is the saturating functional response in the RM model that leads to a 
positive feedback and instability of the equilibrium point, and thus a limit cycle.

3.3  Rosenzweig–MacArthur‑Scheffer Model

The equilibrium density of both the resource and the consumer is dependent on the 
consumption rate of the top-consumer F (Fig. 6a, line A*) and the model shows a 
complex response to changing the top-consumer consumption rate. Namely, the 
RMS model shows alternative stable states with critical transitions at F = 0.2408 and 
F = 0.076 (Fig. 6b). In addition to these saddle node bifurcations, the system shows 
a supercritical Hopf bifurcation at F = 0.2404. As a result, the system shows limit 
cycles with increasing amplitude at lower values of F (Fig. 7a). When the amplitude 
becomes large enough, the system will shift to the other stable state via a homo-
clinic (global) bifurcation. More details on this aspect of the model are presented in 

Fig. 4  Equilibrium densities (a) 
and real part of the dominant 
eigenvalue (Re(λ)) (b) for the 
RM model (Rosenzweig–Mac-
Arthur), and its counterparts 
with linearized interaction 
terms, the  RM(LVV) and  RM(LV) 
models, along an environmental 
gradient. Also the dynamical 
behavior along the gradient is 
depicted, following Kot (2001)
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Fig. 5  Phase planes and nullclines of the RM model (Rosenzweig–MacArthur) for carrying capacity 
K = 0.8 (a) and K = 5 (b), and its counterparts with linear interaction terms, the  RM(LVV) model for K = 2 
(c) and K = 5 (d), and the  RM(LV) model for K = 2 (e) and K = 5 (f). While for each K the equilibrium 
solutions of the RM,  RM(LVV) and the  RM(LV) systems are the same, the dynamical behavior differs dis-
tinctly. RM shows a stable node (a) and a limit cycle (b), the  RM(LVV) only a stable node (c–d) while the 
 RM(LV) is neutrally stable (e–f)
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Online Resource 3 and in Scheffer et al. (2000). The results for enrichment (K) are 
discussed in Online Resource 2.

The fully linearized version of the RMS model (denoted as  RMS(LV)) shows a sta-
ble focus for any value of the top-consumer abundance (Figs. 6b, 7g, h). This different 
behavior of the  RMS(LV) model compared with the  LVV(LV) and the  MS(LV) model can 
be explained from the stabilizing chemostat dynamics that were built in the resource 
equation of the RMS model to prevent unrealistically strong oscillations (see Scheffer 
and De Boer 1995 for the rationale and detailed analysis). Importantly, the  RMS(LV) 
model does not show (saddle node) bifurcations. Nonetheless, the Re(λ) of  RMS(LV) 
appears to incrementally decrease in the direction of the bifurcation point at F = 0.2408 

Fig. 6  Equilibrium densities (a) for the RMS model (Rosenzweig–MacArthur) and its counterparts with 
linear interaction terms, the  RMS(lv) model, the  RMS(RM) model and the  RMS(LVV) model, and the real 
part of the dominant eigenvalue (Re(λ)) for (b) RMS and  RMS(lv), and (c) for  RMS(RM) and  RMS(LVV) 
along an environmental gradient. Also the dynamical behavior according to the local stability analysis of 
the equilibria along the gradient is depicted, following Kot (2001). Note that a global bifurcation (homo-
clinic connection) occurs between F = 0.0784 and F = 0.2401. The limit cycle collides with the saddle 
and the system settles in the alternative equilibrium (stable node). There are also two minor regions of 
alternative model behavior. Between F = 0.0758 and 0.0784, as well as between F = 0.2401 and 0.2404, 
there is coexistence of a stable equilibrium and a stable limit cycle, and between F = 0.2404 and 0.2408 
there is coexistence of two stable equilibria. We leave these aspects out of this figure but deal with them 
in Online Resource 3. The carrying capacity K = 10
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in the RMS model (Fig. 6b). For the bifurcation point in the opposite direction however 
there is no trace of such a pattern. The RMS model with RM dynamics (denoted as 
 RMS(RM)) first shows limit cycles, similar to the original RMS model (Figs. 6c, 7c). 
However, the limit cycles turn into a stable focus through a Hopf bifurcation and subse-
quently into a stable node (Figs. 6c, 7d). The saddle node bifurcation has disappeared, 
showing the importance of the cubic algebraic equation for producing a fold catastro-
phe (Ludwig et al 1978). The RMS model with LVV dynamics (denoted as  RMS(LVV)) 
shows no bifurcations (Fig. 6c). The equilibria are stable for all values of F, either as a 
stable focus (Fig. 7e) or stable node (Fig. 7f).

4  Discussion

When models are constructed to describe the dynamics of ecosystems, key 
choices have to be made about which processes to include and how these pro-
cesses are formulated. These choices are typically shaped by the goal of the mod-
elling project (IPBES 2016), but a complicating factor is that models with differ-
ent levels of detail and complexity can be developed to accurately describe the 
same empirical information such as biomass densities and feeding rates. A fun-
damental challenge for ecological modelers is to understand the consequences of 
using alternative model formulations for capturing the actual stability of ecosys-
tems, and how to translate between these formulations to create useful knowledge 
to understand and anticipate the impacts of ongoing global environmental change 
(Fulton et  al. 2003a, b; Aldebert et  al. 2016a, 2018). The classical sensitivity 
analysis quantifies how changes of environmental or physiological model param-
eters propagate into an uncertainty in model predictions. A fairly recent extension 
is structural sensitivity analysis in which the consequences of changes of whole 
building blocks of the model are studied (see Aldebert et  al. 2016b and refer-
ences therein). The approach we present in this study can also be classified as a 
structural sensitivity analysis of a number of classical consumer resource models. 
However, a key difference is that the equilibrium solutions of our models are kept 
identical, so that we can focus on how the analysis of the local stability of the 
equilibrium solutions depends on the use of alternative model formulations for 
describing the equilibria (Cordoleani et al. 2011; Adamson and Morozov 2013).

Our analysis makes clear how changing nonlinear terms in minimal dynamic 
models of consumer-resource interactions into linear ones, while maintaining 
the equilibrium densities and hence the flux of mass, has a strong impact on the 
stability properties of models, reducing the range of dynamics they can exhibit 

Fig. 7  Phase planes and nullclines of the RMS model (Rosenzweig–MacArthur-Scheffer) for carrying 
capacity F = 0.05 (a) and F = 0.25 (b), and its counterparts with linear interaction terms, the  RMS(RM) 
model for F = 0.05 (c) and F = 0.25 (d), the  RM(LVV) model for F = 0.05 (e) and F = 0.25 (f) and the 
 RM(LV) model for F = 0.05 (g) and F = 0.25 (h). While for each value of F the equilibrium solutions of 
the RMS,  RMS(RM),  RMS(LVV) and  RMS(LV) systems are identical, their dynamical behavior differs dis-
tinctly. RMS and  RMS(RM) show a limit cycle (a, c) and a stable node (b, d) while the  RMS(LVV) shows a 
stable focus and a stable node and the  RMS(LV) a stable focus (b–d)

▸
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and decreasing the number of variety of reorganizations they can experience 
(Abrams 2001; Adamson and Morozov 2013). The transcritical bifurcation in the 
RM model, that is, the transition from an equilibrium of a very small population 
size to extinction, is captured by the linearized  RM(LVV) model, and partly by the 
 RM(LV) model (Fig. 4b). However, linearized models fail to consistently capture 
the Hopf bifurcations, when the system becomes cyclic, or saddle-node bifurca-
tions, when the system undergoes a critical regime shift (Figs. 4b, 6b, c). Thus, 
the eigenvalues of the simpler model systems with only linear interaction terms 
do not provide an indication of the ecological resilience of the original non-linear 
model systems describing the same equilibrium solutions.

These results do not come as a complete surprise. The seminal papers that pre-
sented the minimal models that we used for our analysis, as well as elementary 
textbooks (e.g. Strogatz 1994; Kot 2001) already describe which type of equations 
must be present for particular bifurcations to emerge. Moreover, based on the direct 
comparison of the analytical expressions of the Jacobian elements of the original 
and linearized models (Eq. 15, 19, 23) we could already expect that the resulting 
matrices would show different and non-coupled equilibrium dynamics along the 
environmental gradient, despite their identical equilibrium solutions. As such, the 
findings as presented here may be considered somewhat trivial. We, however, argue 
that these results represent an important basis against which the scope, outcomes 
and limitations of local stability analyses of real-world ecosystems need to be dis-
cussed (Fig. 1). The theoretical experiments performed here, although limited by our 
focus on two species predator–prey models, may be compared with the situation in 
which empirical food web models with only linear interspecific interaction terms are 
used to analyze the stability of real-world ecosystems that are inherently complex 
and nonlinear (Fig. 1; Abrams 2001; Moore and de Ruiter 2012). Our key message 
is that we should be cautious when conferring the stability properties of empirical 
food web models that assume linear interaction terms to the actual ecosystem under 
study, given that the stability properties of the modelled equilibria appeared to be 
controlled by the assumptions on underlying dynamics rather than the observed 
equilibrium values (Gross et al. 2004). This notion is especially relevant in light of 
ecological resilience and environmental change, as our results suggest that insights 
from stability analyses of observed food webs cannot simply be extrapolated into the 
realm of regime shifts (Fig. 1).

The failure of linearized models to consistently signal regime shifts in our analy-
sis contrasts with the results found by Kuiper et al. (2015) who used the complex 
shallow lake ecosystem model PCLake (Janse 1997; Janse et al. 2010) as a virtual 
reality in which they sampled information to parameterize ‘empirical’ food web 
models consisting of only linear interaction terms. They found that the stability of 
the food web models decreased towards both the regime shift from clear- to tur-
bid-water during eutrophication and one from turbid- to clear-water during re-oli-
gotrophication. Importantly, however, PCLake contains a more realistic food web 
description compared to the minimal dynamical models used in this study. Apparent 
non-random patterns in network topology, such as connectence (Van Altena et  al. 
2016), feedback loops (Neutel et al. 2002) and the distribution of weak links (Emm-
erson and Yearsley 2004) are present in both PCLake and the linearized descriptions 
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of its food web. Apparently, the network structure of biomass and energy flows con-
tains enough information to reveal the actual stability properties of the system. This 
is consistent with the dominant view among food web ecologists that stability is 
woven by non-random structures in complex webs (Polis 1998; Moore and de Ruiter 
2012), and is the rationale for developing food web models in the first place. Yet, 
by showing here that for simpler two-species predator–prey models the type of the 
functional response is decisive, the question arises as to how many realistic food 
web patterns should be represented in food web models to ensure that the calculated 
stability metric is not an artifact. We see complementary paths forward to answer 
this question.

The first is to better validate ecological models at the level of the emergent sta-
bility properties, by comparing the stability properties of models with the stability 
properties of the real ecosystems that are portrayed. There has been great progress 
in the development of empirical techniques for identifying and quantifying trophic 
interactions for the development of empirical food web models (Heijboer et al. 2017; 
Rosenbaum and Rall 2018). Yet the emergent stability properties of empirical food 
web models, resulting from the interplay of all the interactions, and as calculated by 
the Jacobian matrix approach, have rarely been tested against real world dynamics. 
An obvious reason is that system-wide experimental perturbations and monitoring 
actions are costly and often unfeasible. Fortunately, there is increasing knowledge 
about how local experimental or natural perturbations may be used to reveal system-
wide ecological resilience, and which species serve best as indicators (Kuiper et al. 
2015; Van de Leemput et  al. 2017; Dakos 2018). For example, in shallow lakes, 
the regrowth rate of aquatic vegetation after harvesting a fraction of the biomass 
may indicate system-wide ecological resilience (Kuiper et al. 2017; Van de Leemput 
et  al. 2017). Furthermore, we see much potential in the continuation of the stud-
ies where a series of empirical food web models are established along environmen-
tal gradients in real ecosystems (Neutel et  al. 2007; Andres et  al. 2016; Schwarz 
et al. 2017). Such analyses could be repeated for ecosystems that are known to show 
abrupt regime shifts, like shallow lakes and peatland ecosystems (Rocha et al. 2015), 
for example by performing mesocosm experiments (Moss et al. 2004) or by making 
paleoecological reconstructions of food webs (Rawcliffe et al. 2010).

A complementary way forward may be to replace the linear functional response 
terms of empirical food web models into more realistic non-linear terms (Kalinkat et al. 
2013), thus creating models that are complex both in terms of the number of equations 
and the shape of the functional response used to characterize interactions. There are 
numerous forms of hybrid models presented in the literature, such as extended minimal 
models that represent highly simplified food webs (e.g. McCann and others 1998; Kooi 
2003; Rooney and others 2006) and theoretical models of large webs with non-linear 
interaction (e.g. Gross and others 2009). Pattern-oriented modelling may help deduce 
which patterns for model structure can be used to purposefully describe a number of 
empirical patterns and behaviors (Grimm and Railsback 2012). An important reason for 
the current use of linear terms is a lack of available information to parameterize more 
sophisticated functions (Neutel and Thorne 2016). Yet recent progress in development 
of methods for quantifying trophic interactions (Heijboer et al. 2017) and sharing of 
data (Culina et  al. 2018) will take away many of the existing limitations. Especially 
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Holling type II functional response terms are commonly used to describe consumer-
resource interactions and compelling examples exist where functional response terms 
have been accurately parameterized with experimental data (Sentis et al. 2012; Kalinkat 
et al. 2013). As an intermediate option, to provide maximum realism from minimum 
data, Yodzis and Innes (1992) used energetic reasoning and allometric empiricism to 
determine parameter values. Most of the parameters in their ‘plausible’ models are 
determined by the body sizes and metabolic categories. Neutel and Thorne (2016) con-
ducted a structural sensitivity analysis of an empirically derived food web model of an 
Antarctic dry tundra ecosystem, replacing type I functional response terms with type 
II and type III. They concluded that unless populations receive their main energy input 
from external sources, such as in lakes, it is implausible that saturation effects in preda-
tion play a significant role in multi-trophic equilibrium dynamics. However, the impli-
cations of solely using type I functional response terms for modelling and assessing 
the ecological resilience of terrestrial Antarctic ecosystems, that is, detecting decreas-
ing engineering resilience towards a regime shift in response to environmental change, 
remain mostly unexplained.

Arguably, the local stability analysis based on the Jacobian matrix approach does 
not provide a complete framework for studying ecosystem long-term dynamics anal-
ysis in the context of environmental change. Complementary approaches that focus 
on transients, for example, have been proposed (Neubert and Caswell 1997; Hastings 
2004). Alternatively, large simulation models may be extended to better connect eco-
system dynamics with food web theory. The food web structure in simulation models 
is often reduced to its bare essentials, to balance complexity and optimize performance 
(Fulton et al. 2003b). It is therefore the reason that Hannah et al (2010) call for a more 
comprehensive description of the structure of food webs in the designs of the next 
generation ecosystem models. An evident downside of increasing model complexity is 
that it goes at the costs of mathematical tractability, and hence, scientific understand-
ing (Scheffer and Beets 1994). Solutions may be found in increases of data availability, 
computational resources, and new approaches to modelling such as machine learning 
(Purves et al. 2013). At the same time, the combination of data-sparse regions, shifting 
conditions, and irreducible complexity suggests that the need for multiple modelling 
perspectives and their bridging will continue to increase.

Connecting modellers and other scientists who are seeking to understand how 
food webs shape and are reshaped by their interactions across time, space, abiotic 
processes, and human influences, requires bridging across knowledge systems. A 
strategy to overcome the limitations of a single modelling framework is to exploit 
the diversity of modelling approaches (cf. Janssen et al. 2015), for example by apply-
ing them side by side within one integrated environmental assessment (Logan 1994; 
Weijerman et al. 2015). Indeed, it has been postulated that better aligning, integrat-
ing and reconciling adjacent research fields is key to furthering science (e.g. Thomp-
son et al. 2012; Barnes et al. 2018; Kadowaki et al. 2018). Recently, there has been a 
new interest in techniques for bridging different knowledge, especially in the context 
of science and practice, but such techniques are also extremely relevant for bridg-
ing different communities of practice within science (Tengö et al. 2014, 2017). The 
multiple evidence base approach of Tengö et al. (2014, 2017) proposes that bridg-
ing knowledge systems requires: knowledge mobilization, translation, negotiation, 



1 3

Bridging Theories for Ecosystem Stability Through Structural… Page 25 of 29 18

application, and synthesis. The mobilization of multiple types of knowledge is 
required to share knowledge in forms that others can understand; translation between 
knowledge systems is often required to enable mutual comprehension of shared 
knowledge; negotiation enables a joint assessment of convergence, divergence, and 
conflicts across knowledge contributions; synthesis concerns the shaping of broadly 
accepted common knowledge bases for a particular purpose, respecting the integrity 
of each knowledge system, and the application of knowledge enables the creation of 
outputs that are designed to be useful for understanding different types of ecosys-
tems facing a variety different decision contexts (IPBES 2016). Our results high-
light that there is a great need for a multiple evidence base approach in ecology, to 
consolidate the insights and tools produced by different modelling approaches, and 
obtain a coherent understanding of how the biosphere responds to the human force.
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