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Abstract: Non-small cell lung cancer (NSCLC) is the number one cancer killer and its early detection
can reduce mortality. Accumulating evidences suggest an etiopathogenic role of microorganisms in
lung tumorigenesis. Certain bacteria are found to be associated with NSCLC. Herein we evaluated
the potential use of microbiome as biomarkers for the early detection of NSCLC. We used droplet
digital PCR to analyze 25 NSCLC-associated bacterial genera in 31 lung tumor and the paired
noncancerous lung tissues and sputum of 17 NSCLC patients and ten cancer-free smokers. Of the
bacterial genera, four had altered abundances in lung tumor tissues, while five were aberrantly
abundant in sputum of NSCLC patients compared with their normal counterparts (all p < 0.05).
Acidovorax and Veillonella were further developed as a panel of sputum biomarkers that could
diagnose lung squamous cell carcinoma (SCC) with 80% sensitivity and 89% specificity. The use of
Capnocytophaga as a sputum biomarker identified lung adenocarcinoma (AC) with 72% sensitivity
and 85% specificity. The use of Acidovorax as a sputum biomarker had 63% sensitivity and 96%
specificity for distinguishing between SCC and AC, the two major types of NSCLC. The sputum
biomarkers were further validated for the diagnostic values in a different cohort of 69 NSCLC cases
and 79 cancer-free controls. Sputum microbiome might provide noninvasive biomarkers for the early
detection and classification of NSCLC.

Keywords: microbiome; bacteria; biomarkers; lung cancer; sputum

1. Introduction

Lung cancer is the leading cause of cancer-related deaths in men and women [1].
Over 85% lung cancers are non-small cell lung cancer (NSCLC), which mainly consists of
squamous cell carcinoma (SCC) and adenocarcinoma (AC). The early detection of NSCLC by
low-dose CT (LDCT) followed by the effective treatments can reduce mortality [1]. However,
many positive LDCT scans are false alarms and result in multiple examinations and invasive
biopsies that carry their own morbidity [1]. The development of noninvasive biomarkers
that can accurately diagnose early stage lung cancer remains clinically imperative.

Microbiota is the group of a wide-ranging array of microorganisms, including bacteria,
archaea, fungi, and viruses that inhabit various body sites [2]. The microbiome, defined
as the collection of microbiota and their genes, plays an important role in health and dis-
ease [2]. Microbial agents could cause approximately 20% of the overall cancer burden [2].
For example, infection of Human Papilloma virus, Epstein–Barr virus, Helicobacter pylori (H.
pylori), Escherichia coli and Fusobacterium nucleatum lead to a variety of malignancies [2].
In the respiratory tract, there are more than 500 different species of bacteria [3]. Changes of
the airway microbiome are attributed to lung tumorigenesis through different mechanisms,
such as damage of the local immune barrier, production of bacterial toxins that alter host
genome stability, and release of cancer-promoting microbial metabolites [4]. Furthermore,
intratumoral microbes may directly affect the growth and metastatic spread of tumor
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cells [2]. Lung cancer patients have lower microbial diversity and altered abundances of
particular bacteria compared with cancer-free individuals [5]. 16S rRNA gene sequencing-
based studies [6–13] have identified a set of genera with either higher or lower abundances
in lung tumors vs. normal lung tissues. For example, Acidovorax was especially abun-
dant in patients with TP53 mutation-positive lung SCC specimens [8]. The abundances
of Streptococcus and Veillonella were associated with upregulation of the ERK and PI3K
signaling pathways in NSCLC cells [12]. In addition, saliva of lung cancer patients pos-
sessed an elevated abundance of Capnocytophaga, Selenomonas, Veillonella, Sphingomonas,
and Blastomonas [14,15]. Moreover, Granulicatella, Abiotrophia, and Streptococcus, Adiacens,
Intermedius, and Mycobacterium tuberculosis were enriched in the sputum of lung cancer
patients [16–18]. Importantly, since the microbiota of an individual is stable long-term, they
might provide biomarkers for lung cancer [2,3,11,17,19,20].

Two major types of specimens, lower (e.g., bronchoalveolar lavage (BAL and lung
tumor tissues)) and upper (saliva and buccal samples) respiratory tract samples, are used
for the development of lung cancer biomarkers. BAL and lung tumor tissues are invasively
collected via a bronchoscopy or surgery, and thus are not suitable for the development of
noninvasive biomarkers. Saliva and buccal samples are obtained less invasively. How-
ever, when used for diagnosis of lung cancer, the microbiome in the specimens will be
confounded by oral contamination. In contrast, sputum is readily available and can be self-
collected. Furthermore, since sputum is secreted from bronchi and bronchioles of the lower
respiratory tract, it is more objective and representative than saliva and buccal samples
in reflecting the microbial environment of the lungs. Thus, sputum is a viable option for
sampling of the lung microbiome without oral contamination. In addition, since molecular
changes detected in sputum could reflect those in low respiratory tract [21–40], sputum
can be substituted for the lower-airway fluids (e.g., BAL and surgical tissues), which are
more invasively collected, for sensitive detection of lung cancer. Therefore, sputum has
the advantages as surrogate material and overcomes the obstacles of the commonly used
specimens for diagnosis of lung cancer. Taking advantage of the lung cancer-associated
genera identified by previous studies [3,5–8,10–15,17,19,41,42], herein we aimed to evaluate
the potential of microbiome as sputum biomarkers for lung cancer.

2. Materials and Methods
2.1. Study Population

The study protocol was approved by the Institutional Review Board of the University
of Maryland Medical Center (IRB HP-00040666). From a tissue bank, we obtained 31 frozen
lung tumor and the matched noncancerous lung tissues of stage I NSCLC patients who had
either a lobectomy or a pneumonectomy. Tumor tissues were intraoperatively dissected
from the surrounding lung parenchyma. Paired normal lung tissues were obtained from
the same patients at an area distant from their tumors. Of the 31 cases, 16 cases were
diagnosed with SCC and 15 were AC of the lungs. We collected sputum samples from
participants between the ages of 55–79 at the point of their referral for suspected lung
cancer. A total of 27 subjects including 17 lung cancer patients and ten cancer-free smokers
were recruited. The 17 lung cancer patients were diagnosed with NSCLC consisting of five
stage I cases, five stage II cases, and seven stage III-IV cases. The NSCLC cases consisted of
ten AC and seven SCC of lungs (Table 1). The ten cancer-free patients were smokers who
had either granulomatous inflammation (n = 5), nonspecific inflammatory changes (n = 3)
or pulmonary infections (n = 2).

Sputum samples of 69 lung cancer patients and 79 cancer-free smokers were obtained
from Dr. Ruth L Katz’s laboratory of The University of Texas M.D. Anderson Cancer Center.
As shown in Table 2, the 69 NSCLC patients consisted of 22 stage I cases, 24 stage II cases,
and 23 stage III–IV cases. Thirty-six cases were AC and 33 were SCC of the lungs. The
79 cancer-free patients who were smokers and had either granulomatous inflammation
(n = 39), nonspecific inflammatory changes (n = 22) or lung infections (n = 18).
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Table 1. Cohort 1 of NSCLC patients and cancer-free smokers from whom sputum specimens were
collected.

NSCLC Cases (n = 17) Controls (n = 10) p-Value

Age 66.37 (SD 9.05) 61.27 (SD 9.46) 0.36
Sex 0.43

Female 7 4
Male 10 6
Race 0.39

African Americans 5 3
White American 12 7

Smoking pack-years (median) 32.17 28.38 0.26
Stage

Stage I 5
Stage II 5

Stage III-VI 7
Histological type
Adenocarcinoma 10

Squamous cell carcinoma 7
Location of primary lung tumors

Peripheral location 10
Central location 7

Abbreviations: NSCLC, non-small cell lung cancer; Central location: limited to the trachea, bronchi, or segmental
bronchi. Peripheral location: limited more to the periphery than the subsegmental bronchi.

Table 2. Cohort 2 of NSCLC patients and cancer-free smokers from whom sputum specimens were
collected.

NSCLC Cases (n = 69) Controls (n = 79) p-Value

Age 64.18 (SD 6.25) 63.29 (SD 6.24) 0.32
Sex 0.35

Female 26 30
Male 43 49

Smoking pack-years (median) 35.25 33.29 0.41
Stage

Stage I 22
Stage II 24

Stage III–VI 23
Histological type
Adenocarcinoma 36

Squamous cell carcinoma 33
Location of primary lung tumors

Peripheral location 36
Central location 33

Abbreviations: NSCLC, non-small cell lung cancer; Central location: limited to the trachea, bronchi, or segmental
bronchi. Peripheral location: limited more to the periphery than the subsegmental bronchi.

2.2. Collection and Preparation of Sputum

Sputum was collected from the participants before they received any treatment as
described in our previous studies [29–38,43–45]. To reduce the percentage of oral epithelial
cells in sputum, the participants were asked to blow their nose, rinse their mouth, and
swallow water to minimize contamination of squamous cells from postnasal drip and saliva.
Sputum samples were then coughed into a sterile container and processed within 2 h. To
further minimize oral squamous cell contamination, opaque or dense portions that looked
different from saliva under the inverted microscope were selected using blunt forceps from
expectorate. The samples were processed on ice in four volumes of 0.1% dithiothreitol
(Sigma-Aldrich, St. Louis, Mo) followed by four volumes of phosphate-buffered saline
(Sigma-Aldrich). We centrifuged the samples at 1500× g for 15 min and removed the
supernatant. The remaining cell pellets were collected and stored at −80 ◦C until use.
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2.3. Genomic DNA Isolation

We used QIAGEN-DNeasy Blood & Tissue Kit (QIAGEN, Germantown, MD, USA)
to isolate DNA from the cell pellets or tissue specimens according to manufacturer’s
instructions [23,46,47]. We determined the purity by taking the optical density (OD) of the
sample at 280 nm for protein concentration and at 260 nm for DNA concentration. The ratio
OD260 /OD280 was calculated and DNA sample within the range of 1.6–2 was considered
as pure.

2.4. Detection and Quantification of Bacterial Abundances Using Droplet Digital PCR (Ddpcr)

We preformed ddPCR to detect DNA of 25 bacterial genera (Table 3) by using a QX100
Droplet Digital PCR System and 2× ddPCR Supermix (Bio-Rad, California, CA, USA) with
a protocol developed in our previous studies with modification [23,30,40,46,48–52]. The
25 bacterial genera were suggested to be associated with lung cancer by previous studies
(references in Table 3) and thus tested in this study. To design genus-specific primers of
PCR test for determining their bacterial abundances, we first aligned 16S rRNA sequences
for the maximum number of species for the specific genus to identify consensus regions at
genus level. We then use the Primer3 primer design program to design specific primers
as previous described [53,54]. Sequences of PCR primers to amplify DNA of the bacterial
genera are shown in Table 3. To generate the droplets, we inserted 20 µL of PCR reaction
and 70 µL of Droplet Generation oil for Probes (Bio-Rad) in an eight-well cartridge using a
QX100 droplet generator (Bio-Rad). We then transferred 40 µL of the generated droplet
emulsion in a 96-well PCR plate (Eppendorf, Hamburg, Germany). Amplification reaction
was conducted in a T100™ thermal cycler (Bio-Rad) with the following conditions: initial
denaturation at 95 ◦C for 5 min followed by 35 cycles of 15 s at 95.0 ◦C, 30 s at 55.3 ◦C,
5 min at 4 ◦C, and, finally, 5 min at 90 ◦C for signal stabilization. After thermal cycling,
we transferred plates to a droplet reader (Bio-Rad). We used the software provided with
the ddPCR system for data acquisition to calculate the concentration of target DNA in
copies/µL from the fraction of positive reactions using Poisson distribution analyses.

2.5. Statistical Analysis

We used statistical system software version 6.12 (SAS Institute, Cary, NC) and Graph-
Pad Prism version 7 (GraphPad Software, La Jolla, CA) for data analysis. The results were
graphed and plotted by GraphPad Prism version 7. Mann–Whitney U test was used to
determine whether bacterial abundances were significantly different between lung can-
cer patients and healthy controls. Furthermore, Pearson’s correlation coefficient test was
used to determine the associations of bacterial abundances with clinicopathologic and
demographic characteristics of the participants. Spearman correlation test was carried out
to analyze the correlation between abundances of bacterial genera. Logistic regression
was used to generate prediction models. To evaluate diagnostic significance of potential
biomarkers, we used receiver-operator characteristic (ROC) curve analysis and computed
the area under ROC (AUC) value by numerical integration of the ROC curve.
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Table 3. Twenty-five bacterial genera tested by ddPCR and their primers.

Name Target Region (Accession #) Forward (5′-3′) Reward (5′-3′) References

Acidovorax NZ_LJGO01000014.1 GTCATCCTCCACCAACCAATAC GTCTATACCGGACCAACAACAA [8]

Akkermansia NZ_AP021898.1 CAGCACGTGAAGGTGGGGAC CCTTGCGGTTGGCTTCAGAT [55]

Bacteroides NZ_VKLY01000054.1 GACCGCATGGTCTTGTTATT CGTAGGAGTTTGGACCGTGT [56]

Bifidobacterium NZ_AKCA01000001.1 CCACATGATCGCATGTGATTG CCGAAGGCTTGCTCCCAAA [56]

Bilophila NZ_KE150238.1 CGTGTGAATAATGCGAGGG TCTCCGGTACTCAAGCGTG [57]

Blautia NZ_NQOF01000001.1 GTGAAGGAAGAAGTATCTCGG TTGGTAAGGTTCTTCGCGTT [58]

Bradyrhizobium NZ_VSSR01000023.1 ATCGACGTGCTGCCAATAA GCCGATAACAAGACGGAAATAAC [13]

Capnocytophaga NZ_BLBC01000010.1 TGGWCAATGGTCGGAAGACTG CCGCTACACTACACATTCCA [9]

Curvibacter NZ_CP022389.1 GAGCCTTTACCTCACCAACTAC CGTAGCGAAAGCTACGCTAATA [59]

Enterococcus NZ_CP023011.2 GGCATATTTATCCAGCACTAG TAGCGTACGAAAAGGCATCC [17]

Escherichia NC_000913.3 CATGCCGCGTGTATGAAGAA CGGGTAACGTCAATGAGCAAA [17]

Faecalibacterium NZ_CP030777.1 GGAGGAAGAAGGTCTTCGG AATTCCGCCTACCTCTGCACT [60]

Fusobacterium NZ_LT608325.1 AAGCGCGTCTAGGTGGTTATGT TGTAGTTCCGCTTACCTCTCCAG [61]

Haemophilus NZ_LS483458.1 AGCGGCTTGTAGTTCCTCTAACA CAACAGAGTATCCGCCAAAAGTT [62]

Helicobacter NC_017379.1 GCGCATGTCTTCGGTTAAAAA TTCCATAGGCTATAATGTGATCCAAA [63]

Klebsiella NZ_CP023478.1 CGGGCGTAGCGCGTAA GATACCCGCATTCACATTAAACAG [64]

Lactobacillus NZ_MWIK01000038.1 CGCCACTGGTGTTCYTCCATATA AGCAGTAGGGAATCTTCCA [65]

Mycobacterium NZ_UATA01000019.1 CAAGCGGTGGAGCATGTG CTAAGATGTCAAACGCTGGTAAGG [66]

Neisseria NZ_UGRT01000005.1 CTGTTGGGCARCWTGAYTGC GATCGGTTTTRTGAGATTGG [7]

Prevotella NZ_BAKG01000039.1 CCTACGATGGATAGGGGTT CACGCTACTTGGCTGGTTCAG [5]

Pseudomonas NZ_BMDE01000022.1 CAGCCATGCCGCGTGTGTGA GTTGGTAACGTCAAAACAGCAAGG [67]

Ruminococcus NZ_QRIH01000002.1 GCTTAGATTCTTCGGATGAAGAGGA AGTTTTTACCCCCGCACCA [68]

Selenomonas NZ_JH376859.1 ACRCGTAGRCAACCTGCCG CGATCCGAAGACCTTCTTCAC [15]

Streptococcus NZ_UYIP01000002.1 ACGCAATCTAGCAGATGAAGCA TCGTGCGTTTTAATTCCAGC [7,16]

Veillonella NZ_AUAN01000022.1 CGGGTGAGTAACGCGTAATCA CCAACTAGCTGATGGGACGC [15]
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3. Results
3.1. Bacterial Genera Displayed Different Abundances between Lung Tumor and Noncancerous
Lung Tissues

We have proven that ddPCR is a direct method for absolutely and quantitatively
measuring nuclear acids without requiring internal control genes and calculating standard
curves, which simplifies experimentation and data comparability [23,30,40,46,48,51]. Fur-
thermore, ddPCR had a higher sensitivity compared with conventional PCR for detection
and quantification of nuclear acids [23,30,40,46,48,51]. Therefore, in this study, we used
ddPCR to determine DNA abundances of 25 bacterial genera (Table 2), whose changes
were suggested to be associated with lung cancer [3,5–8,10–15,17,19,41,42]. All the bac-
terial genera tested by ddPCR generated at least 10,000 droplets in each well of reaction
and, therefore, were successfully “read” by ddPCR for the absolute quantification in the
tissue specimens.

As shown in Figure 1, Acidovorax was overrepresented in SCC tissues compared
with noncancerous lung tissues and AC tissues (p = 0.0051). Capnocytophaga DNA
was enriched in AC tissues compared with noncancerous lung tissues and SCC tissues
(p = 0.0049) (Figure 1). However, the abundances of Haemophilus and Fusobacterium were
lower in AC tissues compared with noncancerous lung tissues and SCC tissues (p = 0.049
and 0.039), respectively (Figure 1).
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3.2. Bacterial Genera Displayed Different Abundances in Sputum of Lung Cancer Patients vs.
Cancer-Free Smokers

All the 25 bacteria produced more than 10,000 droplets in each reaction, and thus
were also readily detected in the sputum specimens by ddPCR. Of the bacteria, Acidovorax,
Streptococus, and Veillonella were overrepresented in sputum of lung SCC patients compared
with lung AC patients and cancer-free smokers (pall p < 0.05) (Figure 2). The abundance of
Helicobacter was underrepresented in sputum of lung SCC patients compared with lung
AC patients and cancer-free smokers (p= 0.018 (Figure 2). Capnocytophaga was enriched in
sputum of lung AC patients compared with lung SCC patients and cancer-free smokers
(p = 0.046) (Figure 2).
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of abundance (copies of bacterial DNA/µL) of each genera in the specimens. *, p < 0.05 determined
by a Mann–Whitney U test).

Furthermore, both Acidovorax and Capnocytophaga displayed significantly different
abundances in sputum of lung AC vs. SCC patients (all p < 0.05). In addition, abundances
of the five sputum bacteria were not associated with the age, gender, ethnic group, tumor
stage, and smoking status of the patients (all p > 0.05), except histology and location of
primary lung tumors (all p > 0.05).

Comparison of abundances of bacteria in tumor tissues of lung cancer patients and
sputum of lung cancer patients and cancer-free smokers.

The change of Acidovorax abundance had a similar trend in SCC tissues as in sputum
of lung SCC patients (Figure 3) (Spearman correlation test, p = 0.023). Furthermore, Capno-
cytophaga had a similar trend in AC tissues as in sputum of lung AC patients. (Spearman
correlation test, p = 0.017). The altered abundances of the two bacterial genera (Acidovorax
and Capnocytophaga) in sputum might directly reflect those in lung tumor tissues. However,
the reduced abundances of Haemophilus and Fusobacterium were only observed in lung
AC tissue specimens compared with their normal counterparts (Figure 3A). The increased
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abundances of the Streptococcus and Veillonella were solely discovered in sputum of lung
SCC patients and decreased abundances of Helicobacter were found in sputum of lung AC
patients, as compared with their normal counterparts (Figure 3B).
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3.3. Development of Sputum Bacteria Biomarkers for NSCLC

Sputum is noninvasively obtained body fluid. It contains bronchial epithelial cells
from the lungs and lower respiratory tract and, thus, has the advantages as surrogate mate-
rial for specifically diagnosing lung cancer. We evaluated if the five bacteria, which were
readily detected in sputum and associated with lung cancer, could be used as noninvasive
biomarkers for NSCLC. In the cohort 1 of sputum specimens, the five bacteria exhibited
AUC values of 0.56–0.88 in distinguishing NSCLC patients from controls (Table 4).

Table 4. The five bacterial genera display different levels in sputum samples of NSCLC patients vs. cancer-free controls of
cohort 1.

Genera
p Value of

Ac Patients
vs. Controls

p Value of
Scc Patients
vs. Controls

AUC of
AC Patients
vs. Controls

AUC of
SCC Patients
vs. Controls

Acidovorax 0.7090 0.0015 0.5636 0.8814
Capnocytophaga 0.0455 0.3194 0.8502 0.6833

Helicobacter 0.0705 0.0175 0.7273 0.8070
Streptococcus 0.2775 0.0042 0.6753 0.8117

Veillonella 0.1086 0.0098 0.7062 0.8286

Abbreviations: NSCLC, non-small cell lung cancer; AC, adenocarcinoma; SCC, squamous cell carcinoma; AUC, the area under receiver-
operator characteristic curve.

We used a stepwise logistic regression analysis to select the optimal panels of biomark-
ers. Two bacteria consisting of Acidovorax and Veillonella were selected as the best biomark-
ers for lung SCC. The two bacterial biomarkers used in combination produced 0.91 AUC
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(Figure 4A) in diagnosis of lung SCC with 80.00% sensitivity and 89.26% specificity (Table 4).
The estimated correlations among levels of the two bacteria were very low (Spearman
correlation test, p = 0.53), implying that the integration of the two biomarkers has com-
plementary classification. Furthermore, the use of Capnocytophaga as a sputum biomarker
could detect lung AC with 0.85 AUC (Figure 4B), 72.73% sensitivity and 85.19% specificity
(Table 4).
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In addition, the use of Acidovorax as a sputum biomarker had 0.86 AUC (Figure 4C)
with 63.64% sensitivity and 96.30% specificity for distinguishing between SCC and AC
of the lungs (Table 5). The bacterial biomarkers had no association with age, gender,
and smoking status of the participants, and stages of lung tumors (Pearson’s correla-
tion coefficient test, all p > 0.05), except location and histology of primary lung tumors
(Supplementary Table S1).

Table 5. The diagnostic values of the sputum bacterial biomarkers in contorts 1 and 2.

Cohort 1 of 17 NSCLC Patients and
10 Cancer-Free Controls

Cohort 2 of 69 NSCLC Patients and
79 Cancer-Free Controls

Sensitivity Specificity Sensitivity Specificity

Combined Acidovorax and
Veillonella for SCC 80.79% 89.08% 75.76% 88.61%

Capnocytophaga for AC 72.70% 85.28% 69.44% 84.42%

Acidovorax for distinguishing
SCC from AC 63.64% 96.30% 66.67% 89.86%

3.4. Validating the Bacterial Biomarkers in an Independent Set of Lung Cancer Patients and Controls

The sputum bacterial biomarkers developed from the cohort 1 were tested using the
same procedures to diagnose lung cancer in cohort 2 consisting of 69 NSCLC patients and
79 controls. Consistent with findings in the cohort 1, abundances of Acidovorax, Streptococus,
and Veillonella were higher in sputum of lung SCC patients compared with lung AC patients
and cancer-free smokers (all p < 0.05). The abundance of Helicobacter was lower in sputum
of lung SCC patients compared with lung AC patients and cancer-free smokers (p = 0.018).
Capnocytophaga was overrepresented in sputum of lung AC patients compared with lung
SCC patients and cancer-free smokers (p = 0.046).

Furthermore, the bacterial biomarkers displayed similar diagnostic values in the co-
hort 2 as did in the cohort 1 (Figure 5). Particularly, Acidovorax and Veillonella used in
combination could diagnose lung SCC with 0.89 AUC, producing 75.76% sensitivity and
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88.61% specificity (Table 5). In addition, sputum Capnocytophaga biomarker could detect
lung AC with 0.83 AUC, yielding 69.44% sensitivity and 84.42% specificity (Table 5). More-
over, the use of Acidovorax as a sputum biomarker had 0.83 AUC with 66.67% sensitivity
and 89.86% specificity for distinguishing between SCC and AC of the lungs. There was
no association of sputum bacterial genera with age, gender, and smoking status of the
participants, and stages of lung tumors (all p > 0.05), except location and histology of
primary lung tumors (Supplementary Table S2). There was no statistical difference of
sensitivity and specificity of combined use of Acidovorax and Veillonella for diagnosis of
SCC and using Capnocytophaga for detection of AC (all p > 0.05) in the cohort 1 and cohort 2.
There was also no statistical difference of sensitivity and specificity of using Capnocytophaga
for detection of AC (all p > 0.05) in the cohort 1 and cohort 2. However, the use of sputum
Acidovorax had a lower specificity in cohort 2 compared with cohort 1 for distinguishing
between SCC and AC of the lungs (89% vs. 96%, p = 0.02), while maintaining a similar
sensitivity (63% vs. 66%) (Table 5).
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4. Discussion

Our present study confirms that certain microbes, at genus level, are differentially
abundant in lung tumor vs. normal lung tissues. Furthermore, we demonstrate the
abundances of genera could be quantitatively measured in sputum by using ddPCR and
the altered abundances of some sputum bacteria are associated with lung cancer. We
further develop Acidovorax and Veillonella as a sputum biomarker panel for lung SCC,
regardless of the stages. In addition, a single sputum bacterial biomarker, Capnocytophaga,
could be used for detection of lung AC. Moreover, the use of Acidovorax as a sputum
biomarker could distinguish between SCC and AC, the two major histological types of
NSCLC. Therefore, the sputum microbiota might have the potential use as noninvasive
biomarkers for diagnosis and classification of lung cancer at the early stage.

Previous studies have shown that diverse airway microbial profiles exist at differ-
ent airway sites of lung cancer patients [42,68,69]. However, the comparison of bacterial
profiles in primary tumor tissues and sputum of lung cancer patients has not been per-
formed. Our findings in comparison of bacterial abundances in tumor tissues and sputum
of lung cancer patients suggest that the altered bacterial genera could be classified into
three categories. (1) Lung tumor microbes, which comprise Capnocytophaga and Haemophile.
Aberrant abundances of the bacterial genera were exclusively found within lung tumors.
The intratumoral microbes of lung cancer might be directly involved in the development
and progressions of NSCLC, however, the imbalance in their abundance is not detectable in
sputum. (2) Sputum microbes of lung cancer patients, such as Streptococcus, Veillonella, and
H. pylori, whose aberrations were solely observed in sputum of NSCLC patients. Changes
of these microbes in sputum might not simply mirror those in primary lung tumors. The
discovery is in line with the previous observation [70]. The analysis of bladder tumors and
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the paired urine samples showed that aberrations of certain bacteria existed in urine rather
than the tumor tissues, however, they had diagnostic significance for malignancy [70]. This
category of microbiota might indirectly prompt tumor susceptibility and development via
altering respiratory bacterial environment and modulating inflammation, inducing DNA
damage, and producing metabolites involved in oncogenesis or tumor suppression [2]. (3)
Bacterial genera whose changes in sputum were consistent with those in tumor tissues in
the same direction, including Acidovorax and Capnocytophaga. The aberrant bacterial abun-
dances in sputum could directly reflect those in primary lung tumors. We have also found
that altered abundances of the bacterial genera in sputum are histologically dependent.
Particularly, the abundances of sputum Acidovorax, Streptococcus, H. pylori, and Veillonella
in sputum are related with lung SCC, whereas increased Capnocytophaga abundance in
sputum is related to lung AC. Nevertheless, an extensive and deep investigation of the
microbiota is needed to have a better understanding of the pathogenesis of NSCLC and
provide new diagnostic and therapeutic targets for the disease.

Overall, the potential sputum bacterial biomarkers have a higher sensitivity for lung
SCC compared with lung AC (80.00% vs. 72.73% p = 0.032). The findings are in good
agreement with our previous studies [6,23,27,30,32,34,40,46,50,52]. We have shown that
sputum-based molecular biomarkers have a higher sensitivity in identifying central SCC
compared with peripheral AC of the lungs. The possible reason might be that sputum is
secreted from large airways or main bronchi where SCC more commonly exists. Conversely,
lung AC tumors often arise in peripheral lung tissue and originate from the smaller airways
of the lungs. Future integration of the sputum-based assay with LDCT could overcome
the weakness of the imaging analysis by improving accuracy for the early detection of
lung SCC.

Among the bacterial genera analyzed, Acidovorax was found by Greathouse et al. to
have an elevated abundance in lung SCC tissues with TP53 mutation [8]. Furthermore,
there was a significant increase in lung tumor volume in mice inoculated with Acidovorax
temperans. Acidovorax temperans could contribute to lung carcinogenesis in the presence
of activated Kras and mutant p53 and, thus, act as a promoter in the development and
progression of the disease [8]. Our current study supports this early report [8], and more
importantly, suggests that Acidovorax might provide a sputum biomarker for lung SCC.
Capnocytophaga species were proposed to be involved in lung carcinogenesis and lower
respiratory tract infections [15]. Furthermore, Capnocytophaga might induce long-term
immune response/infection to the organ or cancer growth environment, which favors the
growth of these bacteria in the airways [68]. Our study also suggests that Capnocytophaga
abundance is significantly higher in NSCLC vs. normal lung tissues. Tsay et al. found
an increased abundance of Streptococcus and Veillonella in the lower respiratory tract of
NSCLC patients, which was associated with upregulation of the ERK and PI3K signaling
pathways [12]. It has been well accepted that H. pylori is a risk factor for gastric and several
other cancers [2]. Our present study demonstrates a close association of H. pylori with
lung SCC. However, rigorous investigations regarding the H. pylori-lung cancer association
remain to be performed.

Smoking causes most lung cancers, but lung cancer can be found in never smokers [1].
Interestingly, the abundances of the genera tested in this present study were not associated
with the smoking status of the patients. The result suggests that the microbiota aberrations
might play an important role in lung tumorigenesis of nonsmokers. The observation is in
line with previous studies [16,17], in which lung cancer patients who were never smokers
had a long history of bacterial respiratory tract infection. Dysregulation of the genera could
be involved in the development and progression of NSCLC via a specific manner that is
beyond tobacco-smoking-related carcinogenesis.

The sputum biomarkers were further tested in an independent (validation) cohort of
cases and controls. The diagnostic significance of the bacterial biomarkers for diagnosis of
SCC and AC of the lungs was confirmed. However, although the use of sputum Acidovorax
for distinguishing between SCC and AC had a similar sensitivity, its specificity was reduced



Diagnostics 2021, 11, 407 12 of 15

in the validation cohort. Possible explanation for the difference might be that the sputum
specimens of the validation cohort were collected five years ago, whereas sputum samples
in cohort 1 were fresh and collected within six months. DNA quality might significantly
decline with long storage duration, leading to a lower specificity of the sputum biomarker
for distinguishing between SCC and AC of the lungs.

This study may suffer some limitations. (1), the sample size is small. We will prospec-
tively validate the sputum biomarkers in a large cohort. (2), we only assessed 25 bacterial
genera whose changes were previously suggested to be associated with lung cancer. Al-
though the results show promise, the sensitivity and specificity of the biomarkers are
not enough in routine laboratory settings. We will evaluate more lung tumor-bacteria to
identify additional bacterial biomarkers that can be added to the current ones so that the
diagnostic efficacy of the sputum tests could be improved.

5. Conclusions

We show that aberrant microbial composition, at genus level, is present in lung tumor
and sputum of lung cancer patients. We have for the first time developed sputum bacterial
biomarkers that could be potentially used for the early detection and classification of lung
cancer, though a larger sample study is needed to validate the findings.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-4
418/11/3/407/s1, Table S1. The association of abundances of bacterial genera in sputum of cohort
1 with the age, gender, ethnic group, tumor stageand location, and smoking status of the patients
determined by Pearson’s correlation coefficient test. A p-value < 0.05 is statistically significant;
Table S2. The association of abundances of bacterial genera in sputum of cohort 2 with the age,
gender, ethnic group, tumorstageand location, and smoking status of the patients determined by
Pearson’s correlation coefficient test. A p-value < 0.05 is statistically significant.
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