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Abstract: In this paper we report the synthesis of a N, S co-doped metal free carbon cryogel obtained
from a marine biomass derived precursor using urea as nitrogen source. Natural carrageenan
intrinsically contains S and inorganic salt. The latter also serves as an activating agent during the
pyrolytic step. The overall 11.6 atomic % surface heteroatom concentration comprises 5% O, 4.6% N
and 1% S. The purified and annealed final carbon (CA) has a hierarchical pore structure of micro-,
meso- and macropores with an apparent surface area of 1070 m2/g. No further treatment was
applied. The gas adsorption potential of the samples was probed with H2, CO2 and CH4, while the
electrocatalytic properties were tested in an oxygen reduction reaction. The atmospheric CO2 and
CH4 storage capacity at 0 ◦C in the low pressure range is very similar to that of HKUST-1, with the
CO2/CH4 selectivity below 20 bar, even exceeding that of the MOF, indicating the potential of CA
in biogas separation. The electrocatalytic behavior was assessed in an aqueous KOH medium. The
observed specific gravimetric capacitance 377 F/g was exceeded only in B, N dual doped and/or
graphene doped carbons from among metal free electrode materials. The CA electrode displays
almost the same performance as a commercial 20 wt% Pt/C electrode. The oxygen reduction reaction
(ORR) exhibits the 4-electron mechanism. The 500-cycle preliminary stability test showed only a
slight increase of the surface charge.

Keywords: N, S co-doped carbon; gas storage; electrocatalysis; oxygen reduction reaction; ORR

1. Introduction

A sustainable answer to the continuously growing demand for new carbon sources in
energy storage or energy conversion applications lies in the exploitation of the potential
of renewable biomass. The estimated carbon content in the overall biomass composition
of the biosphere is ≈550 gigatonnes and is distributed among various segments of life [1].
While the lignocellulosic biomass of agricultural origin has been used as a carbon precursor
for a long time, the potential of the enormous quantity of marine biomass is far from being
fully explored [2]. Carrageenan is a natural polysaccharide extracted from a red seaweed
species (Rhodophyceae) with water or aqueous alkali. The global carrageenan industry was
valued at USD 762.35 million by 2013 [3]. Regarding its chemical structure, carrageenan
is a sulfated polygalactan with a content of 25–30% ester-sulfate groups; it is formed by
alternating units of D-galactose and 3,6-anhydro-galactose (3,6-AG) connected by α-1,3
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and β-1,4-glycosidic linkage [4]. Commercial carrageenans are sold in the form of stable
sodium, potassium, and calcium salts or as a mixture of them. Therefore, the sugar units
in the chemical structure and the associated cations jointly determine the properties of
the carrageenan [5]. Thus, the various species of carrageenans, like other natural carbon
precursors, have the advantage that they contain heteroatoms that are preserved as dopants
in the developing carbon matrix. Their inorganic salt content is beneficial during their
conversion to highly porous carbon, and plays similar roles as chemical activating agents,
e.g., KOH [6]. The catalytic role played by inorganic salts in pyrolysis has been recently
discussed by Zhao et al. [7]. Another marine biomass, green algae, was used recently as
a precursor for carbon materials with high electrocatalytic activity by Ilnicka et al. [8]. In
carbon manufacturing, polymer precursors are especially preferred when carbon with low
inorganic impurities is needed. Polyethyleneterephthalate (PET) might be a promising
precursor. For its wide commercial application, its conversion to activated carbon also
offers a way to reduce the volume of solid polymer waste [9].

The enhanced (electro)catalytic activity of metal free nanostructured carbons is at-
tributed to the presence of heteroatoms (e.g., B, N, O, P, S) and various induced defects. A
current review by Zhang et al. summarizes the recent advances in this field, particularly
emphasizing the synergistic effects of doping and defects [10]. Sulphur is naturally present
in carrageenan and is expected to be saved at least to some extent during its conversion to
carbon. Although it has almost the same electronegativity (2.58) as carbon (2.55) the electro-
catalytic activity of S-doped graphene was found to be superior to pristine graphene, owing
to the electronic spin density of carbon atoms, especially those located on the edges [11,12].
It was shown that in oxygen reduction reactions (ORR) thiophenic sulfur compounds
play an important role in withdrawing oxygen from electrolytes and fostering its physical
adsorption in small carbon pores. Larger sulfur groups (sulfoxide, sulfones, and sulfonic
acids) located in the surface of mesopores favoured access of the electrolyte with dissolved
oxygen into the pore system [13,14]. Recently we showed that nitrogen atoms incorporated
into carbon materials significantly increase the catalytic and electrocatalytic activity of high
surface area carbon materials [15–17]. The improved catalytic performance of N-doped
carbon materials results from the redistribution of the charge density of adjacent C atoms,
due to the electronegativity differences between nitrogen (3.04), and carbon atoms (2.55)
(Pauling scale) [18]. The role of nitrogen atoms with different bonding states in the en-
hanced ORR activity is most often attributed to the graphitic and/or pyridinic nitrogen
atoms [19]. N, S co-doped carbon materials have displayed promising electrochemical
performances due to the synergistic effect between N and S atoms. Such materials are
being investigated for their use in sodium-ion and lithium-ion batteries [20,21], electro-
catalysis [22], and supercapacitors [23,24]. Recent DFT calculations revealed that dual S
and N doping leads to the redistribution of spin and charge densities and thus to a large
number of carbon atom active sites [25].

Besides the advantages of heteroatom doping, de Falco et al. demonstrated the
additional benefit of the suitable pore structure in the ORR. The synergy of ultramicropores
and hydrophobic surface rich in ether groups and/or electrons enhances the electrocatalytic
efficiency of carbon materials and may result in an ORR performance similar to that
measured on Pt/C with a 4 electron transfer mechanism [26].

N or/and S doping also enhances the adsorption performance for H2, CH4, and
CO2 [27]. They concluded that hydrogen adsorption is mainly related to the specific
surface area, while the adsorption of CO2 is significantly influenced by sulfur doping.
N doping is particularly efficient in promoting the uptake of CO2 [28]. It was reported
recently that O, N, S doped carbon (7.19 at% O, 4.15 at% N and 1.01 at% S) may adsorb more
hydrogen gas at −196 ◦C than most reported porous carbons, covalent organic frameworks
(COFs) or metal organic frameworks (MOFs) [29]. The same authors also pointed out that
the sulfonyl group is the one with the highest potential to adsorb H2.

In this paper we report the synthesis of a N, S co-doped carbon aerogel obtained from
marine biomass. While S is intrinsic in carrageenan, urea was added as a nitrogen source.
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The application potential of this carbon was tested in electrocatalysis and in the adsorption
of environmentally relevant gases.

2. Materials and Methods
2.1. Synthesis

ι-carrageenan powder and urea beads (98%) were bought from Sigma-Aldrich (Bu-
dapest, Hungary). The commercial grade, Type II ι-carrageenan precursor contained 4–6%
potassium, 2–4% calcium, and 1–2% sodium. The cryogel samples were synthetized ac-
cording to the method of Li et al. [30]. Briefly, 4 g urea was dissolved in 200 mL of distilled
water and warmed to 80 ◦C. 4 g of ι-carrageenan was added to the solution and stirred
for 1 h. ι-carrageenan contains about 28 to 30% ester sulfate and its 3,6-anhydro-galactose
content is 25–30% (Figure 1). Due to its strongly anionic half-ester sulfate groups it readily
formed a hydrogel in the presence of the potassium and calcium ions. After freeze drying,
the dry polymer aerogel (PA) was obtained with a yield of 93%.
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PA was first carbonized in a rotary quartz reactor at 700 ◦C in a dry N2 atmosphere,
providing a raw carbon aerogel (CR) with a yield of 10%. After removing the inorganic
impurities with aqueous 1.0 M HCl (yield 53%), the washed sample (CW) was annealed in
argon flow at 1000 ◦C for 1 h, resulting in the annealed carbon sample (CA) with an overall
yield of 2.4%.

2.2. Characterization Methods

Low temperature (−196.15 ◦C) nitrogen adsorption measurements were performed
after 24 h degassing at 110 ◦C on a NOVA 2000e (Quantachrome, Boynton Beach, FL,
USA) automatic volumetric instrument. The apparent surface area SBET was determined
using the Brunauer–Emmett–Teller (BET) model [31]. A pore volume V0.98 was estimated
from the amount of vapor adsorbed at p/p0 = 0.98, assuming that the adsorbed gas was
present as liquid N2. The Dubinin–Radushkevich (DR) plot [32] was used to calculate the
micropore volume Vmicro. The pore size distribution in the micro and mesopore regions
was computed by Quenched Solid Density Functional Theory (QSDFT) [33]. Evaluation of
the primary adsorption data was performed with the Quantachrome ASiQwin software
(version 3.0). Scanning electron microscopic (SEM) images of the gold coated samples were
taken by a JEOL JSM 6380LA (Jeol Ltd., Tokyo, Japan). Elemental mapping was performed
by the energy dispersive X-ray spectroscopy (EDS) option of the same instrument.

Powder X-ray diffractograms (XRD) were obtained in the range 2θ = 10–130◦ with an
X’Pert Pro MPD (PANalytical Bv., Almelo, The Netherlands) X-ray diffractometer using
an X’celerator type detector and monochromatic Cu Kα radiation with a Ni filter foil
(λ = 1.5406 Å) at 40 keV and 30 mA.

Raman spectra were obtained using a LabRAM (Horiba Jobin Yvon) instrument. The
laser source was a λ = 532 nm Nd-YAG (laser power at the focal point was 15 mW). A
0.6 OD filter was used to reduce the power of the beam. Parameter optimization and
data analysis were performed with LabSpec 5 software. Fourier-transform infrared (FTIR)
spectra were collected on an attenuated total reflection Fourier-transform infrared Tensor
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37 spectrophotometer (ATR-FTIR, Bruker) with a Specac Golden Gate ATR unit, and are
shown here after background correction.

The surface chemical composition was studied by X-ray photoelectron spectra (XPS)
using a Thermo Fisher XR4 twin anode X-ray source (Thermo Scientific, Paisley, UK)
and a Specs Phoibos 150 hemispherical electron energy analyzer with an MCD9 detector
(SPECS Surface Nano Analysis GmbH, Berlin, Germany). The MgKα radiation employed
(1253.6 eV) was not monochromated. A Gaussian-Lorentzian function mixed set was
used to fit the peaks on each spectrum after subtracting Shirley-type backgrounds us-
ing CasaXPS.

The electrocatalytic tests were performed using a glassy carbon (GC) rotating disc
electrode (RDE, Pine Research Instrumentation, Durham, NC, USA) and a rotating ring-
disc electrode (RRDE) (GC disc and Pt ring). The ink for the working electrodes was
prepared by dispersing 2 mg powdered carbon (CA) in a mixture of 1.6 mL MilliQ water,
0.4 mL isopropyl alcohol and 8 µL 5% Nafion® solution. After 30 min sonication the
ink was pipetted onto the dry mirror-polished GC and dried at room temperature. The
loading was 100 µg/cm2. Measurements were implemented in 0.1 M KOH electrolyte
using three-electrode systems with a hydrogen electrode as reference and a Pt wire as
the counter electrode in a three-compartment PFTE cell (Figure S1). All potentials are
given in the Reversible Hydrogen Electrode (RHE) scale. A detailed description is given in
reference [16].

Carbon dioxide and methane isotherms were measured at 0 ◦C up to atmospheric
pressure with an AUTOSORB-1 (Quantachrome, Boynton Beach, FL, USA) computer-
controlled analyzer. An Autosorb 1C (Quantachrome, Boynton Beach, FL, USA) static
volumetric instrument was used to perform hydrogen sorption experiments with high
purity hydrogen (99.999%) at −196 ◦C.

3. Results and Discussion
3.1. Development of the Morphology during the Synthesis

Low temperature (−196 ◦C) nitrogen adsorption isotherms of the carbon samples at
different stages of the synthesis are presented in Figure 2a. According to the latest IUPAC
classification, the three isotherms are of composite Type IV +Type II with a H4 hysteresis
loop with the expected sharp step-down at p/p0 = 0.45 [34].
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Figure 2. (a) Low temperature N2 adsorption/desorption isotherms; (b) Pore size distribution functions were estimated by
quenched solid density functional theory (QSDFT) (Kernel: N2 at 77 K on carbon, slit/cylindrical pores, adsorption branch).
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The shape and the type of the hysteresis loop imply that the samples contain micro-,
meso- and macropores that form an interconnected network. As the macropores are
not completely filled with pore condensate, the total pore volume of the samples cannot
be deduced from the nitrogen adsorption isotherms, instead, we estimated the liquid
equivalent V0.98 of the gas adsorbed at p/p0 = 0.98. The development of the carbon texture
during the synthesis steps is simultaneously revealed by the upward shift of the three
isotherms, the pore size distribution curves (Figure 2b) and the XRD signals shown in the
Supplementary Material Figure S2. The enhancement between CR and CW is related to
the removal of inorganic minerals that survive the pyrolysis step, while the moderate shift
from CW to CA results from the consecutive thermal treatment. The data deduced from
the isotherms are shown in Table 1.

Table 1. Porous characteristics of carbon aerogel samples 1.

Sample SBET V0.98 Vmicro

m2/g cm3/g %

CR 272 0.23 0.10 42
CW 871 0.70 0.32 46
CA 1070 0.83 0.40 48

1 Apparent surface area from BET model, V0.98 is the liquid equivalent of the gas adsorbed at p/p0 = 0.98, and Vmicro
refers to the micropore volume. Vmicro [%] estimates the contribution of the adsorbed N2 filling the micropores.

The corresponding images in Figure 3 also confirm the changing morphology. The
elemental mapping and apparent bulk composition of the three carbon samples (Figure S3,
Table S1) indicate that K and Ca salts were removed during the acidic washing. The
removal of the inorganic impurities and the development of the final CA texture can also
be tracked from the Raman and FTIR spectra (Figure S4).
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The C1s, O1s, N1s and S2s regions of the XPS spectrum of the CA sample are shown
in Figure 4. (Figure S5 shows the corresponding regions of the intermediate samples.)
Although EDS is intrinsically less sensitive to low atomic number elements, the discrepancy
between the EDS and XPS data (Table 2) indicates an inhomogeneous distribution of the
nitrogen and sulfur. The concentrations of the metal impurities, Na, K and Ca, are below the
detection limit of XPS, thus confirming the observations of the above mentioned methods.
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Table 2. Surface compositions (atomic %) measured by XPS.

Sample C O N S K Ca Na

CR 67.2 20.5 5.9 0.5 2.1 3.2 0.6
CW 81.9 6.9 9.3 2.0 n.d. * n.d. * n.d. *
CA 89.4 4.6 5.0 1.0 n.d. * n.d. * n.d. *

* n.d.: not detected.

The total O + N + S heteroatom/carbon ratio on the surface of the purified sample is
close to 11%, with practically an equal share of the O and N species. The species revealed
by the deconvolution of the C1s, O1s, N1s and S2p regions were assigned according to
Table S2. Based on the C1s and O1s regions, the surface of the CA carbon is decorated
with carbonyl, epoxy, and carboxylic groups. Nitrogen in three different forms, namely
in pyridinic, pyrrolic and quaternary, was detected. The S2p peak is split into 2p3/2 and
2p1/2 with 2:1 intensity and a 1.2 eV binding energy gap. The double peak at around
163.8 eV, 165 eV shows the exclusive presence of thiophenic compounds in the final product.

The brief conclusion is that the purified CA carbon has a surface area of 1070 m2/g
and a total pore volume of 0.83 cm3/g. It contains O, N and S heteroatoms at 4.6, 5.0
and 1.0 atomic %, respectively. Based on these textural and surface chemical features
this carbon is a promising candidate for gas adsorption and electrocatalysis applications.
Without further optimization the gas storage performance was probed with CO2, H2 and
methane, while the electrocatalytic properties of the CA carbon were tested in an oxygen
reduction reaction.
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3.2. Gas Storage Application

H2 and CH4 were selected as they have considerably higher energy per unit mass
in fuel application. Nevertheless, their low density at ambient temperature results in a
poor energy per unit volume ratio. By enhancing the latter with adsorption-based gas
storage technology could however open an avenue to them in portable power applications.
At the same time, sorption related gas storage could offer a solution for reducing CO2
emission. The capture of CO2 produced in combustion processes and its storage could be an
alternative to the present amine absorption process, which is hampered by several technical
problems. Adsorption of CO2 by highly porous materials also could allow its large scale
separation by the well-known pressure or temperature swing adsorption technologies [35].
As metal organic frameworks (MOFs) are among the materials with the greatest potential
for sorption-based gas storage applications, copper benzene-1,3,5-tricarboxylate (HKUST-
1) synthesized in our laboratory was used as a comparison [36]. The 3D network of
HKUST-1 incorporates pores of three well defined sizes of 0.5, 1.1 and 1.35 nm [37,38].
The detailed characterization of the HKUST-1 used for comparison was presented in our
previous work [39]. The almost exclusively microporous MOF sample was obtained from a
solvothermal synthesis performed in an ethanol–water mixture. The apparent surface area
SBET and total pore volume are 1500 m2/g and 0.62 cm3/g, respectively [39]. The former
exceeds, while the latter remains below the corresponding values of CA (Table 1). As no
kernel files necessary for DFT-based calculations are available, the pore size distribution of
HKUST-1 was determined with the Barret–Joyner–Halenda (BJH) model [40]. However,
this method underestimates the pore size of mesopores narrower than ~10 nm by ca.
20–30% [34]. Nevertheless, the estimated distribution curve in Figure 5a clearly reflects the
dual size distribution of this MOF in the supermicropore range, while its smallest pore size
lies much beyond the limits of the method.
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Figure 5. Pore size distribution of samples tested for gas storage. (a) HKUST-1, calculated with Barret–Joyner–Halenda
(BJH) model [38]; (b) CA, derived from CO2 and N2 isotherms, calculated with QSDFT. Kernel: slit/cylindrical pores,
adsorption branch.

Figure 5b combines the pore size distribution curves of the CA sample obtained
from CO2 and N2 isotherms with the QSDFT calculations. The curve computed from
nitrogen data confirms the mesoporous character of CA, as anticipated from the shape
of the isotherm. In using CO2 as one of the test gases in this work, we take advantage
of the fact that CO2 is also a frequently used gas to probe the pore size distribution of
carbon materials. The higher kinetic energy of CO2 at the temperature of the isotherm
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measurements allows pores to be revealed that are inaccessible to nitrogen. Figure 5b
clearly shows that CA also possesses pores in the ultramicropore range.

Figure 6 shows the hydrogen, CH4 and CO2 adsorption isotherms of the CA samples
up to atmospheric pressure. A recent publication reporting a new synthesis route of
cellulose-based carbons has compared the atmospheric CO2 adsorption of several cellulose-
based materials at 0 ◦C, 1 bar. The 3.64 mmol/g capacity of the CA sample falls into the
3.40–6.75 mmol/g range reported [6].
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While all the adsorption isotherms are practically reversible in HKUST-1, only CH4
shows a reversible adsorption on the CA. All the test gases, i.e., hydrogen, CH4 and
CO2 exhibit a higher uptake on the MOF, but the deviation is more limited in case of the
isotherms measured at 0 ◦C. In high pressure applications the higher total pore volume of
CA can lead to an improved performance.

The CO2 uptake of both porous materials is about four times higher than that of
methane measured under the same conditions. This observation can be utilized in gas
separation. As in Kamran et al. [6] the ideal adsorbed solution theory (IAST) [41] was
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applied to estimate and compare the CO2/CH4 selectivity of the samples. The initial
sections of the isotherms were fitted to the linear Henry model. The full CO2 and CH4
adsorption isotherms of each material also gave a reasonable fit to the single-site Langmuir–
Freundlich model [42,43]

nads =
nsatKpm

1 + Kpm (1)

where nads is the quantity adsorbed at equilibrium pressure p, nsat is the saturation capacity,
K is the equilibrium constant of the Langmuir model and m (>1) is the Freundlich exponent.
The Henry constants KH for both gases and the calculated initial selectivity, as well as the
fitted Langmuir–Freundlich parameters, are listed in Table 3.

Table 3. Parameters derived from Henry and Langmuir–Freundlich fits.

Sample Gas

Henry Langmuir–Freundlich

KH R KH,CO2
KH, CH4

nsat K m R

mmol
g·mbar

mmol
g

1
mbar

CA
CO2 0.463 0.9974

10.5
12.5 0.00424 0.660 0.99987

CH4 0.044 0.9963 2.75 0.00088 0.963 0.99953

HKUST-1
CO2 0.232 0.9998

5.7
8.30 0.00485 0.799 0.99999

CH4 0.041 0.9984 7.01 0.00046 0.915 0.99997

The selectivity for the CO2/CH4 gas mixture, calculated as

S =
nCO2 · pCH4

nCH4 · pCO2

(2)

is shown in Figure 7. A semi-logarithmic pressure scale is used for clearer comparison.
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Figure 7. Comparison of the CO2/CH4 selectivity of CA and HKUST-1 from IAST using the
Langmuir–Freundlich fit of the isotherms.

The selectivity of HKUST-1 in this representation displays a linear decrease. Increasing
pressure also reduces the selectivity of CA monotonically, but in a more complex way.
Below ca 20 bar the estimated selectivity of the carbon significantly exceeds that of the
HKUST-1, then up to the upper limit of the pressure range investigated the MOF performs
slightly better. That is in good agreement with the ratio of the Henry constants. This
finding indicates that CA has potential applications in the separation of CO2 and methane
from biogas.
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3.3. Electrocatalytic Application

The potential of CA as an electrode in the ORR and its electrochemical characteristics
were investigated. The powdered electrode material was tested in a three-electrode cell
configuration in O2 saturated 0.1 M KOH electrolyte. Figure 8 compares the results of the
RDE measurements in the O2 saturated 0.1 M KOH on the 100 µg/cm2 CA and a 20 wt%
Pt/C commercial electrode (Quintech): the performance of the CA electrode is similar to
that of the Pt/C electrode.
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Figure 8. Linear potential sweep of CA sample (solid red line) and a 20 wt% Pt/C electrode (dashed
black line) measured in O2 saturated 0.1 M KOH solution with a rotating disk electrode (1225 rpm).
Loadings: 100 µg/cm2, Sweep rate: 5 mV/s.

According to the results of the cyclic voltammetric measurements the specific gravi-
metric capacitance Cg of the CA electrode in 0.1 M KOH was approximately 377 F/g. This
value was estimated from the anodic charge measured between 0.2 and 0.7 V (Figure 9).
The 3.77 mC corresponds to an electrode of geometrical surface area of 0.19625 mm2 loaded
with 20 µg catalyst, i.e., 100 µg/cm2 loading. These data indicate that the mass specific
capacitance is roughly 377 F/g. This value is higher than the specific capacitance of several
high performance electrode materials [44,45] as shown in Table 4. Comparison of the
gravimetric capacitances listed in Table 3 leads us to the conclusion that practically only
doped graphene and B containing carbons display a higher value than our biomass-based
CA carbon. Note that carbon dots with double metal doping may exhibit much higher
capacitance [46].
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Table 4. Gravimetric capacitance of dual doped metal free carbon materials in KOH electrolyte.

Electrode Material Cg Reference

F/g

P/N co-doped ordered mesoporous carbon 210 [47]
N, P co-doped graphene 219 [48]
B, N co-doped graphene 225 [49]
N, S co-doped graphene 264.3 [50]
N, P dual-doped hierarchically porous carbon 289 [51]
N, S co-doped flexible graphene paper 305 [52]
N, S co-doped graphene oxide 307 [53]
3D N, S co-doped graphene hydrogel 320 [54]
N, S co-doped carbon 322 [55]
N, S co-doped porous carbon from ionic liquid precursor 347 [56]
N, S co-doped templated porous carbon 367 [57]
N, S co-doped biomass-based carbon aerogel (CA) 377 This work
N,S co-doped porous graphitic carbon from lotus leaves 385 [58]
B, N co-doped porous carbon foam 402 [59]
N, S co-doped graphene-enhanced hierarchical porous carbon foam 405 [60]
N, P co-doped high performance 3D graphene 413 [61]
N, S co-doped carbon (based on polymer from N and S containing
aromatic precursors) 461.5 [62]

N, S co-doped graphene material 503 [63]
Vertically-aligned BC2N nanotube arrays 547 [64]
N, S co-doped graphene 566 [65]

A 500-cycle preliminary stability test was carried out by cyclic polarization of a freshly
prepared electrode in the potential range between 0.1 and 0.9 V relevant to ORR. After the
500 cycles only a slight increase of the surface (charge) was observed, as demonstrated in
Figure 10.
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The electrocatalytic properties were examined with a rotating disc electrode (RDE) in
0.1 M KOH electrolyte. The polarization curves at different potentials and rotation rates
(400–1225 rpm) are shown in Figure 11a. The Koutecky–Levich (KL) equation was used to
describe the correlation between the current densities and rotation rate
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1
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=
1
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2
3 ν−
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(3)

where j is the current density, jk is the kinetic current density, jlim is the limiting diffusion
current density, n is the number of electrons transferred in ORR per oxygen molecule, F
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is the Faraday constant, D is the diffusion coefficient of oxygen in the electrolyte, ν is the
kinematic viscosity of the electrolyte, C is the concentration of oxygen in the electrolyte,
and w is the rotation rate in rad/s [66].

Materials 2021, 14, x FOR PEER REVIEW 12 of 16 
 

 

 
Figure 10. Cyclic voltammogram of a freshly prepared electrode in 0.1 M KOH (1), and after 500 
cycles between potential limits 0.1 and 0.9 V (2). 

The electrocatalytic properties were examined with a rotating disc electrode (RDE) 
in 0.1 M KOH electrolyte. The polarization curves at different potentials and rotation rates 
(400–1225 rpm) are shown in Figure 11a. The Koutecky–Levich (KL) equation was used to 
describe the correlation between the current densities and rotation rate 

1
݆

=
1
݆

+
1

݆
=  

1
݆

+
1

ܦܥܨ0.62݊
ଶ
ଷିߥଵ

߱ଵ/ଶ
 (3)

where j is the current density, jk is the kinetic current density, jlim is the limiting diffusion 
current density, n is the number of electrons transferred in ORR per oxygen molecule, F 
is the Faraday constant, D is the diffusion coefficient of oxygen in the electrolyte, v is the 
kinematic viscosity of the electrolyte, C is the concentration of oxygen in the electrolyte, 
and w is the rotation rate in rad/s [66]. 

  
(a) (b) 

Figure 11. (a) Linear sweep voltammograms of CA sample (100 µg/cm2) measured in O2-saturated 0.1 M KOH solution 
with a rotating disk electrode (RDE). Rotation rates: 400 (black), 625 (red), 900 (green), 1225 rpm (blue). Sweep rate: 5 mV/s; 
(b) Koutecky–Levich plot from the linear sweep voltammetry responses at 0.30 V. The theoretical KL slopes of the 2e− and 
4e− routes are shown for comparison. 

The oxygen reduction reaction in aqueous media occurs mainly through two differ-
ent pathways. The four-electron reduction pathway transforms O2 directly to H2O. The 
other route is a two-electron pathway through peroxide formation [67]. In polymer elec-
trolyte membrane fuel cells (PEMFCs) the preferred ORR pathway is a four-electron trans-
fer. Depending on the pH of the reaction media the 4e− reduction route has different ther-
modynamic potentials ranging from 0.401 V in alkaline media (Equation (4)) to 1.230 V in 
acidic media (Equation (5)) [67,68]:  

Figure 11. (a) Linear sweep voltammograms of CA sample (100 µg/cm2) measured in O2-saturated 0.1 M KOH solution
with a rotating disk electrode (RDE). Rotation rates: 400 (black), 625 (red), 900 (green), 1225 rpm (blue). Sweep rate: 5 mV/s;
(b) Koutecky–Levich plot from the linear sweep voltammetry responses at 0.30 V. The theoretical KL slopes of the 2e− and
4e− routes are shown for comparison.

The oxygen reduction reaction in aqueous media occurs mainly through two different
pathways. The four-electron reduction pathway transforms O2 directly to H2O. The other
route is a two-electron pathway through peroxide formation [67]. In polymer electrolyte
membrane fuel cells (PEMFCs) the preferred ORR pathway is a four-electron transfer.
Depending on the pH of the reaction media the 4e− reduction route has different thermo-
dynamic potentials ranging from 0.401 V in alkaline media (Equation (4)) to 1.230 V in
acidic media (Equation (5)) [67,68]:

O2 + 2H2O + 4e− → 4OH− (0.401 V vs. standard hydrogen electrode, SHE) (4)

O2 + 4H+ + 4e− → 2H2O (1.229 V vs. SHE) (5)

The 2e− reduction follows a two-step mechanism. In basic media, the first step is
shown in Equation (6). There are two possible reactions for the second step: a two-electron
reduction of HO2

− (Equation (7)) or its chemical disproportionation (Equation (8)) [68]:

O2 + H2O + 2e− → HO−2 (−0.076 V vs. SHE) (6)

HO−2 + H2O + 2e− → 3HO− (0.878 V vs. SHE) (7)

2HO−2 → 2HO− + O2 (8)

In acidic media, the 2e− mechanism for ORR is shown by Equations (9) and (10):

O2 + 2H+ + 2e− → 2H2O2 (0.695 V vs. SHE) (9)

H2O2 + 2H+ + 2e− → 2H2O (1.776 V vs. SHE) (10)

The pore size distribution curves in Figure 5b reveal that CA also possesses pores in
the ultramicropore range. As has been recently pointed out, ultramicropores work as pseu-
docatalytic centers for ORR by promoting strong O2 adsorption. The thus facilitated O=O
bond splitting orientates the ORR through a 4e− reduction mechanism [26]. Figure 11b
implies that in case of CA the 4e− route is indeed the dominant pathway.
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4. Conclusions

A highly porous nanostructured carbon material was obtained from a marine biomass—
urea physical hydrogel. While S is intrinsically contained in the carrageenan, urea was
added as a nitrogen source during the synthesis process, yielding a N, S double doped
carbon material after pyrolysis. Aqueous 1.0 M HCl washing successfully removed the
inorganic minerals of the carrageenan precursor that served also as an activating agent
during the pyrolysis, thus giving access to fully or partially plugged voids. The final
porous texture developed after high temperature annealing. The resulting CA carbon
possesses a hierarchical pore system of micro-, meso- and macropores with an apparent
surface area of 1070 m2/g. XPS measurements showed that the total O, N and S content
of the final CA carbon was 4.6, 5.0 and 1.0 at%, respectively, i.e., the heteroatom/carbon
ratio was close to 11%. The metal content was below the detection limit. While the H2
adsorption performance tested at −196 ◦C was exceeded by HKUST-1, the atmospheric
CO2 and CH4 storage capacities at 0 ◦C in the low pressure range were very similar to those
of the MOF. The CO2/CH4 selectivity below 20 bar was even better in the CA, implying
potential applications in biogas separation. In aqueous KOH medium the CA electrode
exhibited almost the same performance as the commercial platinum loaded electrode used
for comparison. The electrode displayed the 4-electron ORR mechanism and a promising
stability in a 500-cycle preliminary test. On considering only metal free electrode materials,
the specific gravimetric capacitance 377 F/g of CA was exceeded only by B, N dual doped
and/or graphene doped carbons.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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