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A Commentary on

Peptide-Based Targeting of the L-Type Calcium Channel Corrects the Loss-of-Function

Phenotype of Two Novel Mutations of the CACNA1Gene AssociatedWith Brugada Syndrome

by Di Mauro, V., Ceriotti, P., Lodola, F., Salvarani, N., Modica, J., Bang, M.L., Mazzanti,
A., Napolitano, C., Priori, S.G., and Catalucci, D. (2020). Front. Physiol. 11:616819.
doi: 10.3389/fphys.2020.616819

We read with great interest a recently published article by Di Mauro et al. (2020) describing for
the first time the use of a mimetic peptide (R7W-MP) to restore impaired forward trafficking
and reduced half-life of L-type calcium channels (LTCC) caused by mutations in the CACNA1C
gene, restoring channel function in vitro. The two novel mutations in the CACNA1C gene
(Cavα1.2 T320M and Cavα1.2 Q428E) were found in patients with Brugada syndrome (BrS), one
asymptomatic (T320M), and one with a history of cardiac arrest, ICD placement, two episodes
of self-terminating polymorphic ventricular tachycardia, and runs of atrial fibrillation (Q428E).
The mutations in the CACNA1C gene, encoding for the pore-forming unit (Cavα1.2), studied in
HEK293 cells, exhibited reduced protein trafficking to, and half-life in, the membrane, resulting in
reduced calcium current.

Variants in more than 26 different genes have been implicated in BrS (Monasky et al., 2020),
the most accepted being the SCN5A gene, encoding for the sodium voltage-gated channel alpha
subunit 5, or the NaV1.5 protein. While some studies have suggested a role for the CACNA1C gene
in BrS (Fukuyama et al., 2014), the causative effect of the CACNA1C gene in BrS has been recently
challenged (Hosseini et al., 2018; London, 2019; Wilde et al., 2019), citing the lack of systematic,
evidence-based evaluations supporting the causality of this gene. Thus, systematic, evidence-based
evaluations are of utmost importance, after several studies suggested an important role for calcium
in BrS (Antzelevitch et al., 2007; Cordeiro et al., 2009; Burashnikov et al., 2010; Hoogendijk et al.,
2011; Betzenhauser et al., 2015; Monasky et al., 2018).

Calcium plays a pivotal role in cardiac contractility, and the control of intracellular Ca2+

cycling depends on the relationships between the various channels and pumps that are involved
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(Eisner et al., 2017). Phase 2 and 3 of the action potential
correspond to the ST segment and T wave, respectively. These
coincide with the rise and fall of intracellular calcium that
governs cardiac myocyte contractility (Monasky et al., 2018).
Much of the calcium enters the cell via L-type calcium channels,
while an additional amount of calcium enters the cell via sodium-
calcium exchange (NCX) channels. Calcium that enters the cell
through both of these mechanisms triggers release of calcium
from the sarco(endo)plasmic reticulum. Alterations in calcium
handling could result in mechanical abnormalities, since calcium
links the electrical and mechanical functions of the cell. An
increase in a risk for arrhythmic events has been observed
while patients with BrS were engaging in activities related
to parasympathetic stimulation (Monasky et al., 2018), which
results in an elevated ST segment, possibly through a reduction
in ICa−L (Litovsky and Antzelevitch, 1990; Meregalli et al., 2005;
Hoogendijk et al., 2011; Monasky et al., 2018). The reduced heart
rate during parasympathetic stimulation results in a decrease
in intracellular calcium amplitude (Hiranandani et al., 2006;
Varian and Janssen, 2007). CACNA1C mutations could lead to
a reduced intracellular concentration of calcium able to bind
to troponin C of the myofilaments, thus disrupting excitation-
contraction coupling (Monasky et al., 2018), the extent to which
is still unclear. In fact, the induction of the BrS pattern has been
associated with reduced contractility, particularly in the anterior
free wall of the outflow tract, and reduced right ventricular
ejection fraction (Pappone et al., 2019, 2020b). Therefore, further
investigation of the role of calcium channel genes in BrS
is warranted.

Antzelevitch et al. (2007) first described loss-of-function
mutations in the LTCC genes CACNB2b, CACNA2D1, and
CACNA1C in association with familial sudden cardiac death
syndrome, the phenotype combining BrS and shorter-than-
normal QT intervals. A role for CACNA2D1 as a contributing
factor in cardiac sudden death associated with a short QT interval
has been described by significantly decreasing the cell surface
protein expression of CaVα2δ (Bourdin et al., 2015). Importantly,
in that study, the most significant reduction in CaVα2δ cell
surface density was achieved by the combined effect of two
genetic variants with little individual impact, highlighting the
importance of polymorphisms. In fact, several other studies
have highlighted the importance of common polymorphisms as
genetic modulators of BrS (Lizotte et al., 2009), explaining the
variable expression of the BrS phenotype (Wijeyeratne et al.,
2020). Thus, in addition to rare mutations, also polymorphisms
in calcium channel genes should be considered in future
BrS research.

In their study, Di Mauro et al. (2020) state that CACNA1C
mutations are the second most common cause of BrS. However,
studies differ, likely due to differences in the gene panels used
to screen patients, as well as the size and characteristics of the
patient population. For example, in a recent report, variants in
the CACNA1C gene were identified in about 7% of BrS patients
who tested positive during genetic testing but who did not
harbor variants in the SCN5A gene, making CACNA1C the fifth
most popular gene screened after SCN5A, AKAP9, SCN10A, and
MYBPC3 (Pappone et al., 2020a). AKAP9 encodes for A-kinase

anchoring protein 9, a signaling protein that binds to the
regulatory subunit of protein kinase A and has been implicated
also as a genetic modifier of congenital long-QT syndrome type
1 (De Villiers et al., 2014). SCN10A encodes for the sodium
voltage-gated channel alpha subunit 10. MYBPC3 encodes for
themyosin-associated protein cardiac myosin-binding protein C,
which is involved in the regulation of force production and can be
regulated by protein kinase A (Yang et al., 2001). Another study
investigating the frequency of variants found in BrS patients
also reported a higher frequency in CACNA1C compared to
SCN10A, with variants in CACNA1C present in 2.6% of BrS
patients overall, and 3.3% of BrS patients negative for variants
in SCN5A (Di Resta et al., 2015). However, yet another study
specifically looking at mutations in the genes CACNA1C and
CACNB2b, encoding the α1- and β2b-subunits of the cardiac
L-type calcium channel, respectively, found that 8.5% of the
patients had mutations in at least one of these genes, although
it is unclear how many harbored mutations in CACNA1C vs.
how many harbored mutations in CACNB2b (Antzelevitch et al.,
2007). Also, it was unclear if patients harbored mutations in
other genes. However, regardless, it is clear by many studies that
calcium channel variants have been found across various studies,
by various authors, with various patient populations.

BrS is increasingly being recognized as an oligogenic disease
(Monasky et al., 2020), with mutations in the SCN5A gene being
more useful as a prognostic indicator, rather than a diagnostic
one (Ciconte et al., 2020). To date, there is much that remains to
be discovered about BrS genetics. Future studies need to identify
and test new candidate genes. The genetics of BrS likely varies
greatly from family to family, highlighting our need to move
toward personalized medicine in BrS. Physiological studies such
as the one by Di Mauro et al. (2020) are a good first step toward
confirming the pathological effects of particular variants and
treating patients with individual variants. However, much work
remains before new pharmaceuticals can be developed, tested,
and safely used in the clinic.

In conclusion, the study by Di Mauro et al. (2020) provides
strong evidence of a possible gene-specific treatment in the
future for BrS patients and is the first example of an LTCC-
targeting therapeutic molecule that can correct ICa defects
through modulation of channel density at the plasma membrane.
Although preliminary, this is a promising step toward the
development of pharmacological therapies to treat conductance
abnormalities of the heart.
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