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Objective:We aimed to evaluate the causal effect of type 2 diabetes mellitus (T2DM) and
glycemic traits on the risk of a wide range of cardiovascular diseases (CVDs) and lipid traits
using Mendelian randomization (MR).

Methods: Genetic variants associated with T2DM, fasting glucose, fasting insulin, and
hemoglobin A1c were selected as instrumental variables to perform both univariable and
multivariable MR analyses.

Results: In univariable MR, genetically predicted T2DMwas associated with higher odds of
peripheral artery disease (pooled odds ratio (OR) =1.207, 95%CI: 1.162-1.254), myocardial
infarction (OR =1.132, 95% CI: 1.104-1.160), ischemic heart disease (OR =1.129, 95% CI:
1.105-1.154), heart failure (OR =1.050, 95% CI: 1.029-1.072), stroke (OR =1.087, 95% CI:
1.068-1.107), ischemic stroke (OR =1.080, 95% CI: 1.059-1.102), essential hypertension
(OR =1.013, 95% CI: 1.010-1.015), coronary atherosclerosis (OR =1.005, 95% CI: 1.004-
1.007), and major coronary heart disease event (OR =1.003, 95% CI: 1.002-1.004).
Additionally, T2DM was causally related to lower levels of high-density lipoprotein
cholesterol (OR =0.965, 95% CI: 0.958-0.973) and apolipoprotein A (OR =0.982, 95%
CI: 0.977-0.987) but a higher level of triglycerides (OR =1.060, 95% CI: 1.036-1.084).
Moreover, causal effect of glycemic traits on CVDs and lipid traits were also observed.
Finally, most results of univariable MR were supported by multivariable MR.

Conclusion:We provided evidence for the causal effects of T2DM and glycemic traits on
the risk of CVDs and dyslipidemia. Further investigations to elucidate the underlying
mechanisms are warranted.
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INTRODUCTION

Evidence from mounting prospective cohort studies has shown
that type 2 diabetes mellitus (T2DM) is an independent risk
factor of various cardiovascular diseases (CVDs) including
coronary heart disease, heart failure (HF), stroke, peripheral
artery disease (PAD) and so on (1–3). However, the causal
effect of T2DM on CVDs could be confused by body mass
index, age, sex, ethnicity, etc. in observational studies. Abnormal
glycemic traits in the non-diabetic range, including fasting
glucose (FG), fasting insulin (FI), and hemoglobin A1c
(HbA1c), were reported to be associated with CVDs (2–5).
However, there are still conflict findings (6–11). Thus, the
association remains uncertain. Patients with T2DM or
abnormal glycemic traits were observed to predispose to the
development of dyslipidemia such as increased low-density
lipoprotein cholesterol (LDL-C), increased triglyceride, and
decreased high-density lipoprotein cholesterol (HDL-C) (12).
However, whether T2DM or abnormal glycemic trait is a cause
or consequence of dyslipidemia is uncertain.

Mendelian randomization (MR) is an approach that relies on
genetic variants that are considered to be allocated randomly at
birth and is less subject to many confounders than observational
studies (13). A previous MR study has investigated the
relationship between T2DM and CVDs in a single cohort and
revealed causal effects of T2DM on a range of CVDs (14). In our
MR study, we pooled the estimates from two independent
cohorts to ensure the robustness of the causal effects of T2DM
on CVDs. Besides, we took three glycemic traits (FG, FI and
HbA1c) closely related to T2DM into consideration and
conducted multivariable analyses to avoid bias of confounders
brought by these traits. We further explored whether the causal
effect of T2DM on CVDs was mediated by dyslipidemia using
mediation analysis. Additionally, we evaluated whether
genetically predicted T2DM or abnormal glycemic traits are
causally associated with lipid traits.
MATERIALS AND METHODS

MR and Genome-Wide Association
Studies (GWAS) Summary Data
MR is a genetic instrumental variable (IV)-based approach that
utilizes single nucleotide polymorphisms (SNPs) as IVs to clarify
the causal association between exposure and outcome. In this
study, two-sample MR was used. Our MR analysis was based on
Abbreviations: T2DM, type 2 diabetes mellitus; CVD, cardiovascular disease; FG,
fasting glucose; FI, fasting insulin; HbA1c, hemoglobin A1c; MR, Mendelian
randomization; GWAS, genome-wide association study; IV, instrumental
variable; SNP, single nucleotide polymorphism; MI, myocardial infarction; IHD,
ischemic heart disease; CA, coronary atherosclerosis; MCHDE, major coronary
heart disease event; HT, essential hypertension; CM, cardiovascular mortality; IS,
ischemic stroke; HF, heart failure; PAD, peripheral artery disease; AF, atrial
fibrillation and fluttering; HDL-C, high-density lipoprotein cholesterol; LDL-C,
low-density lipoprotein cholesterol; ApoA, apolipoprotein A; ApoB,
apolipoprotein B; Lp(a), lipoprotein(a); IVW, inverse variance-weighted;
MVMR, multivariable MR.
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three basic assumptions: (1) the IVs were robustly associated
with the exposures (T2DM and glycemic traits); (2) the IVs
affected the outcomes (CVDs and lipid traits) merely by their
effect on exposures without any other causal pathways, which is
also called no pleiotropic effect from the exposures; and (3) the
IVs were not associated with any confounders which are present
in the relation between the exposures and outcomes. To assure
the reliability of the causal link between the exposures and
outcomes obtained by MR, none of these assumptions should
be violated (Figure 1).

The summary-level data were obtained from the OpenGWAS
database developed by the MRC Integrative Epidemiology Unit
(IEU) (https://gwasmrcieu.ac.uk/). Most of the datasets were
publicly available and could be obtained by accessing
application programming interfaces through convenient
packages in R and Python (15, 16). Details on the phenotypes
and consortiums are available in Supplementary Table 1.

IVs for Exposures
We obtained the genetic instruments for T2DM from a meta-
analysis of GWASs that included 74124 cases and 824006
controls from the DIAbetes Genetics Replication And Meta-
analysis (DIAGRAM) consortium, which was derived from 32
GWASs conducted in populations of European ancestry (17). For
the glycemic traits, the IVs for FG and FI were constructed from a
meta-analysis of GWASs, which included 52 studies comprising
up to approximately 133010 nondiabetic individuals from
MAGIC (Meta-Analysis of Glucose and Insulin related traits
Consortium) (18). The IVs for HbA1c were obtained from a
meta-analysis of 82 cohorts that included up to 88355 European
participants (19). All SNPs with a p value < 5 × 10-8 were
considered significant variants associated with phenotypes and
included. We excluded SNPs with r2 < 0.001 using linkage
disequilibrium analysis. To avoid “weak instrument” bias, the
F-statistic was calculated according to the formula F = R2(n−k−1)

k(1−R2) ,
where n, k, and R2 represent the sample size, the number of SNPs,
and the proportion of variance explained by the instrumental
variants, respectively (20, 21). An F-statistic value > 10 was
regarded as strong enough to avoid weak instrument bias (22).
Finally, 286, 35, 18, and 38 SNPs served as IVs for T2DM, FG, FI,
and HbA1c, respectively (Supplementary Table 2).

GWAS Summary Data for CVDs
A broad spectrum of CVDs were included in our study.
Summary statistics were extracted from the Coronary Artery
Disease Genome-wide Replication and Meta-analysis
(CARDIoGRAM) plus the Coronary Artery Disease (C4D)
Genetics (CARDIoGRAMplusC4D) for myocardial infarction
(MI) and ischemic heart disease (IHD) (23); from the UKB for
coronary atherosclerosis (CA), major coronary heart disease
event (MCHDE), essential hypertension (HT), intracerebral
hemorrhage and cardiovascular mortality (CM) (24); from the
MEGASTROKE Consortium for stroke and ischemic stroke (IS)
(25); from the Heart failure Events reduction with Remote
Monitoring and eHealth Support (HERMeS) for HF (26); from
the BioBank Japan (BBJ) for PAD (27); and from a meta-analysis
including 6 studies (The Nord-Trøndelag Health Study (HUNT),
April 2022 | Volume 13 | Article 840579
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deCODE, the Michigan Genomics Initiative (MGI), DiscovEHR,
UKB, and the AFGen Consortium) for atrial fibrillation and
fluttering (AF) (28).

To ensure the homogeneity of the study population and the
reliabilities of the results, each CVD was derived from two
independent large-scale cohorts. Therefore, summary-level data
of each CVD were also extracted from the FinnGen consortium
(study page: https://www.finngen.fi/en/; release 5: https://r5.
finngen.fi/). According to the first occurrence, all CVDs were
defined by the International Classification of Diseases (ICD)-10.
The definition of each CVD is shown in Supplementary Table 3.

GWAS Summary Data for Lipid Traits
We explored the following lipid traits measured in the UKB (20):
HDL-C, LDL-C, triglycerides, apolipoprotein A (apoA),
apolipoprotein B (apoB), and lipoprotein(a) [Lp(a)]. In
addition, HDL-C, LDL-C, and triglycerides were explored
again, utilizing the data from the Global Lipids Genetics
Consortium (GLGC) to strengthen the credibility of the causal
effects (29). We failed to reconduct analyses for the remaining
three lipid traits due to the lack of data.

Statistical Analyses
For the primary analyses, the univariable inverse variance-
weighted (IVW) method was used to investigate the effects of
different exposures on outcomes (30). Using the Wald ratio
estimates of each SNP, the IVWmethod combines them into one
cumulative causal estimate. Since the results of the IVW method
could be affected by undetectable invalid IV bias or potentially
unbalanced pleiotropy, different sensitivity analyses were
performed to detect the robustness and validity of the MR
results. First, the MR–Egger method was used to confirm the
consistency of MR results and explore the horizontal pleiotropy
effect through the intercept (31). Second, the heterogeneity of
IVW and MR–Egger was calculated (32). A fixed-effects model
was adopted to assess the IVW estimates when there was no
Frontiers in Endocrinology | www.frontiersin.org 3
significant heterogeneity; otherwise, a random-effects model was
used. Third, we applied the MR Pleiotropy Residual Sum and
Outlier (MR-PRESSO) method to recognize outlying SNPs,
which might cause horizontal pleiotropy effects, and examine
whether the causal effect would change after removing these
outliers (33). Fourth, the weighted median, simple mode, and
weighted mode were also employed to test the potential
horizontal pleiotropy (34). Except for the analyses of apoA,
apoB, and Lp(a), estimates of the causal effect from two
independent cohorts were pooled using fixed-effects meta-
analysis. It is also important to further evaluate whether the
risk of CVDs in T2DMwas mediated by dyslipidemia. Therefore,
two-step MR was conducted to calculate the mediation effects of
lipid traits in the relationship between T2DM and risk of
CVDs (35).

For the complementary analyses, multivariable MR (MVMR)
analysis was conducted using the IVW method, which
incorporates different phenotypes as a single exposure into the
MR analysis. In this study, since the relationship between T2DM
and three glycemic traits was considered, we fitted a model with
T2DM, FG, FI, and HbA1c to detect which phenotypes appeared
to be significantly associated with the risk of CVDs or abnormal
lipid traits.

All MR analyses were performed using R (version 4.1.1). In
the univariable MR step, estimates were obtained with the
“TwoSampleMR” package, recognizing outliers with the “MR-
PRESSO” package. The MVMR was conducted with the
“MendelianRandomization” package. MR results were reported
as odd ratios (ORs) with 95% confidence intervals (CIs) per
standard deviation or odds of objectively measured continuous
or dichotomous variables. For the primary analyses, since we
included analyses of 18 outcomes, a Bonferroni-corrected p value
less than 0.05 divided by 18 (that is, 0.0028) was regarded as a
significant causal association to adjust for multiple testing. A p
value between 0.05 and 0.0028 was considered suggestive of a
potential association.
FIGURE 1 | Mendelian randomization model.
April 2022 | Volume 13 | Article 840579
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RESULTS

Primary Analyses
Univariable MR was conducted and 286, 35, 18, and 38 SNPs
associated with T2DM, FG, FI, and HbA1c, respectively, were
selected as IVs. A flow chart of the study was presented in
Supplementary Figure 1. An overview of the main results of the
primary analyses was shown in Figure 2.

Causal Association of T2DM With CVDs
and Lipid Traits
Genetically predicted T2DM was significantly associated with
(ordered from largest estimate decreasing): PAD (OR = 1.207,
95% CI: 1.162-1.254, p = 4.01 × 10-22), MI (OR=1.132, 95% CI:
1.104-1.160, p = 3.87 × 10-22), IHD (OR = 1.129, 95% CI: 1.105-
1.154, p = 1.51 × 10-28), stroke (OR = 1.087, 95%CI: 1.068-1.107, p =
1.27 × 10-19), IS (OR = 1.080, 95% CI: 1.059-1.102, p = 1.40 × 10-3),
HF (OR = 1.050, 95% CI: 1.029-1.072, p = 4.05 × 10-6), HT (OR =
1.013, 95% CI: 1.010-1.015, p = 6.28 × 10-25), CA (OR = 1.005, 95%
CI: 1.004-1.007, p = 3.28 × 10-16), MCHDE (OR = 1.003, 95% CI:
1.002-1.004, p = 2.74 × 10-11), and CM (OR = 1.001, 95% CI: 1.000-
1.001, p = 9.83 × 10-6). We also found T2DMwas causally related to
lower levels of HDL-C (OR = 0.965, 95% CI: 0.958-0.973, p = 2.13 ×
10-18) and apoA (OR = 0.982, 95% CI: 0.977-0.987, p = 1.63 × 10-11)
but a higher level of triglycerides (OR = 1.060, 95% CI: 1.036-1.084,
p = 6.76 × 10-7) (Figure 3).

Causal Association of Glycemic Traits With CVDs
and Lipid Traits
Genetically predicted FG was significantly associated with PAD
(OR = 1.911, 95% CI: 1.309-2.790, p = 7.89 × 10-4) and CA (OR =
1.014, 95% CI: 1.005-1.023, p = 2.64 × 10-3). Additionally, a
potential increased risk was observed for IHD (OR =1.187, 95%
Frontiers in Endocrinology | www.frontiersin.org 4
CI: 1.031-1.365, p value = 0.017), MCHDE (OR =1.008, 95% CI:
1.001-1.015, p value = 0.017), and CM (OR = 1.003, 95% CI:
1.001-1.005, p = 3.61 × 10-3) (Figure 4).

Genetically predicted FI was suggested to be positively corelated
with PAD (OR = 2.804, 95% CI: 1.604-4.902, p = 2.97 × 10-4), IHD
(OR = 2.020, 95% CI: 1.374-2.972, p = 3.53 × 10-4), MI (OR = 2.009,
95% CI: 1.317-3.064, p = 1.20 × 10-3) and HT (OR = 1.098, 95% CI:
1.054-1.144, p = 8.31 × 10-6) but negatively associated with HDL-C
(OR = 0.644, 95% CI: 0.549-0.755, p = 6.56 × 10-8) and apoA (OR =
0.790, 95%CI: 0.713-0.874, p = 5.37 × 10-6). An indistinct relation to
HF (OR = 1.442, 95% CI: 1.052-1.978, p = 0.023), stroke (OR =
1.421, 95% CI: 1.060-1.905, p = 0.019), IS (OR =1.480, 95% CI:
1.111-1.970, p = 0.007), CA (OR = 1.034, 95% CI: 1.006-1.064, p =
0.019), MCHDE (OR = 1.021, 95% CI: 1.001-1.042, p = 0.036) and
lower level of Lp(a) (OR = 0.873, 95% CI: 0.780-0.978, p = 0.019)
was also found (Figure 5).

Genetically predicted HbA1c was significantly associated with
CA (OR = 1.019, 95% CI: 1.008-1.031, p = 6.58 × 10-4) and an
increased level of LDL-C (OR =1.205, 95% CI: 1.157-1.256, p =
2.81 × 10-19). A suggestive causal effect was also observed for
IHD (OR =1.277, 95% CI: 1.075-1.516, p = 0.005) and MI
(OR =1.220, 95% CI: 1.002-1.484, p = 0.047), and increased
level of apoB (OR =1.056, 95% CI: 1.011-1.104, p =
0.015) (Figure 6).

Robustness of the Primary Analyses
In the univariable MR analysis, we observed significant
heterogeneities in some estimates. We adopted a random-effects
model to adjust the IVW estimates, as mentioned in the Methods
section. The MR–Egger intercepts were mostly insignificantly
larger or less than zero, eliminating part of the horizontal
pleiotropy. Using the MR-PRESSO method, several outliers were
identified during the analysis, and in most cases, the results
FIGURE 2 | Overview of the main results of Univariable MR.
April 2022 | Volume 13 | Article 840579
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remained consistent with the original ones after removing these
outliers. In addition, estimates using MR–Egger, weighted median,
simple mode, and weighted mode were also calculated, and the
results suggested relatively high robustness (Supplementary
Tables 4–7).

Mediation Analyses
We performed mediation analyses using two-step MR to clarify
whether the causal effect of T2DM on the risk of CVDs was
Frontiers in Endocrinology | www.frontiersin.org 5
mediated by dyslipidemia. HDL-C, triglycerides and apoA were
chosen as potential mediators since they showed a significant
association with T2DM in the primary analyses. We found HDL-
C explained a small part of the casual effects of T2DM on the risk
of MI, CA, PAD, and HT, and the mediation proportions were
7.4%, 12.8%, 10.6%, and 5.9%, respectively (Supplementary
Table 8). Triglycerides and apoA were also mediators of the
causal association between T2DM and several types of CVDs
(Supplementary Tables 9, 10).
FIGURE 3 | The association between type 2 diabetes mellitus and outcomes.
April 2022 | Volume 13 | Article 840579
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Complementary Analyses
MVMR was conducted for outcomes with significant estimates
in primary analyses. Most results of univariable MR were
supported by MVMR. However, the causal effects of T2DM on
HF, FI on IHD, FG on PAD, FG on CA, and HbA1c on CA were
not found following adjustment for the other three exposures. An
inverse association between T2DM and level of LDL-C was
observed using multivariable analysis. Detailed results of
MVMR were presented in Supplementary Table 11.
Frontiers in Endocrinology | www.frontiersin.org 6
DISCUSSION

In this study, a two-sample MR method utilizing GWAS
summary-level data was applied to explore the causal
association of T2DM and glycemic traits (FG, FI, and HbA1c)
with a wide range of CVDs as well as lipid traits [HDL-C, LDL-C,
triglycerides, apoA, apoB, and Lp(a)]. The primary analyses
found evidence that genetically predicted T2DM was associated
with various types of CVDs including MI, HF, IHD, CA,
FIGURE 4 | The association between fasting glucose (mmol/mol) and outcomes.
April 2022 | Volume 13 | Article 840579
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MCHDE, PAD, HT, stroke, IS, and CM. Additionally, T2DM
was associated with a higher level of triglycerides but lower levels
of HDL-C and apoA. Moreover, causal effect of glycemic traits
on CVDs and lipid traits were also observed. FI was associated
with higher levels of HDL-C and triglycerides, and HbA1c was
associated with a higher level of LDL-C. Sensitivity analyses
suggested the robustness of the causal effects. As a
Frontiers in Endocrinology | www.frontiersin.org 7
complementary analysis, MVMR was conducted which
incorporated the four exposures into a model. Most results of
univariable MR were supported by multivariable MR.

T2DM and CVDs
Our findings are in line with the previous MR studies supporting
casual effects of T2DM on various CVDs (14). We here provide
FIGURE 5 | The association between fasting insulin (mmol/mol) and outcomes.
April 2022 | Volume 13 | Article 840579
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evidence supporting additional effects of T2DM on HT, CA, and
CM. However, in our MR study, the causal association between
T2DM and HF disappeared after adjusting for multiple variables,
which was inconsistent with the results of Liu et al. Moreover,
multiple epidemiological studies had consistent results with ours
(36–38). However, Wei et al. investigated the association
Frontiers in Endocrinology | www.frontiersin.org 8
between T2DM and several CVDs using phenotype and
genetic predisposition data from the China Kadoorie Biobank.
At the observational level, a significantly positive correlation was
observed for all CVD outcomes but not for major coronary
events, cardiovascular mortality, or total stroke at the genetic
level (39). This discrepancy between observational and genetic
FIGURE 6 | The association between HbA1c (mmol/mol) and outcomes.
April 2022 | Volume 13 | Article 840579
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results suggests that the causal link between T2DM and CVDs
remains largely to be determined. Fortunately, we found the
causal effect of T2DM on these diseases.

Unfortunately, we failed to obtain a causal effect of T2DM on
AF and IH. No association of T2DM with AF was also found by
Hadi et al. using the MR approach (40). However, the
Framingham Heart Study observed a 1.4- to 1.6-fold greater
risk of AF in diabetic individuals after adjusting for age and other
risk factors (41). One hypothesis about this inconsistency was
that hypertension and obesity are the common comorbidities of
T2DM, which could result in confounder bias in the
observational studies, but not in the MR studies (40). In
another MR study focusing on T2DM and cerebral disease, the
researcher also found the null association between T2DM and IH
even subdividing IH into lobar IH and deep IH (42).

Glycemic Traits and CVDs
Previous MR results showed that HbA1c has a causal role in
coronary artery disease but FG does not (43). However, in our
study, FG was also shown to have a causal effect on several types
of coronary artery diseases. Notably, with regard to glycemic
traits, some epidemiological evidence did not support our
findings of their causal effects on CVDs. The results derived
from the Jackson Heart Study (JHS) revealed that dysglycemia,
including higher levels of FG and HbA1c, was associated with an
increased risk of HF (44), which failed to reappear in our MR
study. We inferred that ethnic variation may have led to the
difference in results since the JHS recruited mainly Black
participants from Mississippi. Justin et al. found that even
stratifying the HF into HF with preserved ejection fraction and
reduced ejection fraction, the causal chain was still there (45).

T2DM-Related Traits and Lipid Traits
As suggested by our data, T2DM negatively affected HDL-C.
Accordingly, a causal effect of T2DM on the decreased level of
apoA (a main component of HDL-C) was also observed.
Decreased HDL-C levels in T2DM patients was observed in a
previous observational study (46). One explanation was that
insulin resistance in T2DM patients might be responsible for the
low level of HDL-C (47). As far as we know, our study is the first
to provide evidence on the causal association between T2DM
and a lower level of HDL-C from the genetic level. In our study,
T2DMwas also found to be causally associated with triglycerides,
which is consistent with a previous MR study (48).

In our study, HbA1c was causally associated with an increased
level of LDL-C. A transversal observational study found that
oxidized LDL-C, rather than total LDL-C, was associated with
HbA1c in the non-diabetic range (49). However, we could not
obtain data to stratify LDL-C into subgroups to explore this
relation further. In our study, FI was found to negatively affected
on Lp(a), and it showed a potentially negative effect. Conversely,
Buchmann et al. found no evidence of a causal effect of FI on Lp
(a) using rs780094 and rs10195252 (SNPs associated with FI) as
IVs through the MR method (50). The possible mechanism by
which insulin modulates Lp(a) synthesis may be that increased
insulin levels promote the progression of insulin resistance and,
under these circumstances, reduce the synthesis of Lp(a) (51).
Frontiers in Endocrinology | www.frontiersin.org 9
This study had several strengths. As we known, our study is the
first to demonstrate a causal association of T2DM and the related
glycemic traits with a broad spectrum of CVDs and dyslipidaemia
using MR and employing large GWASs data. Two-sample MR
method was utilized, which eliminated residual confounding as
much as possible. For the outcomes of CVDs, we utilized two
highly representative and independent cohorts to stabilize the
results of our causal inference. Moreover, the F-statistics of the
genetic variants were mostly more than 10, which indicated that
the genetic variants were strong enough to be IVs for exposure.
Since T2DM and glycemic traits may interact mutually from the
pathogenesis of diseases, multivariable MR was applied to adjust
the estimate for these exposures. Ultimately, in order to evaluate
the robustness of MR results, different MR methods and tests of
heterogeneity and pleiotropy were conducted as additional means
of sensitivity analyses.

Some limitations could not be ignored. First, most participants
included in the GWASs were of European ancestry. Consequently,
whether our findings are generalizable to other populations and
regions remains to be determined. Second, it is scarcely possible to
remove all pleiotropy in MR studies, and some undetected
pathways may play a role as confounders between exposures
and outcomes, biasing our results. Third, we could obtain only
summary-level GWAS data, failing to conduct further
investigation on the sex-, age-, and specific type of exposure-
related effect on the outcomes. Moreover, the results of MVMR
were possibly biased by overfitting from the multivariable model
and attenuated or amplified the estimates of effect, which was also
observed in this study as compared to the univariable MR. Last,
since the glycemic and lipid traits were predisposed as continuous
variables, we assumed that the relationship between T2DM or
CVDs was linear, which could be inconsistent with the
actual situation.

In conclusion, our MR study provides further evidence that
T2DM and its related glycemic traits play a causal role in the
increased risk of various CVDs and dyslipidemia. The findings
should be interpreted to strengthen the awareness of early
detection of T2DM and its related glycemic traits. Further
work using individual-level data or basic science approaches to
investigate the mechanisms mediating these causal associations
is warranted.
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