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ABSTRACT
This study monitored symbiont communities bi-monthly in native coral cores used in
a reciprocal transplantation of the coral Platygyra verweyi over two years (2014–2016)
and samples of mother colonies from three locations with variable thermal regimes;
our results show that associating with multiple Symbiodiniaceae genera (Cladocopium
spp. and Durusdinium spp.) is not a prerequisite for symbiont shuffling. Platygyra
verweyi associates with certain Symbiodiniaceae genera based on location. Results of
quantitative real-time PCR indicated small-scale temporal changes in Symbiodiniaceae
genera compositions from 2014 to 2016; however, these changes were not enough to
invoke shuffling or switching, despite degree heating weeks exceeding 6 ◦C-weeks in
2014 and 4 ◦C-weeks in 2015, which usually resulted in substantial coral bleaching.
Microsatellite analysis of the P. verweyi host showed no genetic differences among the
study locations. Our results suggest thatP. verweyi undergoes long-term acclimatization
and/or adaptation based on microgeographic and local environmental conditionsby
altering its combinations of associated Symbiodiniaceae. Results also suggest that
shuffling might not be as common a phenomenon as it has been given credit for;
corals thrive through specific associations, and many corals could still be vulnerable
to climate change-induced stress, despite being promiscuous or able to associate with
rare and background Symbiodiniaceae genera.

Subjects Ecology, Marine Biology
Keywords Reciprocal transplantation, Thermal histories, Degree heating weeks, Symbiodiniaceae
genra shuffling, Nuclear power plant

BACKGROUND
Corals in reefs around the world have been facing rapid declines in health over the past
several decades due to increased and prolonged occurrences of climate change-induced
seawater temperature anomalies, which often pass their threshold limits (IPCC, 2018;
Hughes et al., 2017; Hughes et al., 2018). A common manifestation of this stress is coral
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bleaching due to the breakdown of coral-Symbiodiniaceae associations (Brown, 1997).
Moreover, corals have the potential to acclimate to climate change-induced stressors—over
a short period of time (single generation)—through phenotypic plasticity or associating
with specific combinations of stress resistant Symbiodiniaceae genera through natural
selection; this may be the overriding determinant of their survival (Marshall & Baird,
2000). However, a beneficial association between a coral host and Symbiodiniaceae
is a complex and holistic process that depends on whether the relationship that the
coral host has with the Symbiodiniaceae genera is specific or flexible (Baker, 2003;
Lajeunesse et al., 2010; Silverstein, Correa & Baker, 2012). Corals are known to associate
with a wide range of Symbiodiniaceae genera. There are nine genera of Symbiodiniaceae,
and each has its own characteristic traits that help its coral host survive in a wide range
of environmental niches (Lajeunesse et al., 2018). Studies have shown that symbiosis
between coral hosts and different Symbiodiniaceae genera contributes to the divergence
in coral thermal tolerance under different environmental conditions (Lajeunesse et al.,
2010; Weber & Medina, 2012). For instance, species of Durusdinium are considered to
be heat tolerant (Baker, 2003; Jones et al., 2008; Sampayo et al., 2008; Ulstrup & Oppen,
2003); most species Cladocopium are stress sensitive but several are relatively stress tolerant
(e.g., in-hospite Cladocopium C15, Cladocopium thermophilum) (Fisher, Malme & Dove,
2012; Hume et al., 2015). Durusdinium-associated corals are also known to inhabit reef
environments that experience large fluctuations in surface seawater temperature (Lajeunesse
et al., 2010; Lien et al., 2007; Ghavam Mostafavi et al., 2007) and be more resilient to heat-
treatment experiments (Oliver & Palumbi, 2011).

One widely-known mechanism that helps some corals acclimate to stressful
environments is shuffling and/or switching their associated Symbiodiniaceae genera (Baker
et al., 2004; Berkelmans & Van Oppen, 2006; Sampayo et al., 2008; Jones & Berkelmans,
2008; Silverstein, Cunning & Baker, 2015; Cunning, Silverstein & Baker, 2015; Boulotte et al.,
2016). It has been proposed that coral hosts adjust to increasing seawater temperatures using
switching—which involves existing Symbiodinium being expelled and replaced by novel
Symbiodinium from the environment—and shuffling between stress-sensitive (generally
Cladocopium sp.) and stress-resistant types (generally Durusdinium sp.) in the existing
symbiont communities (Baker et al., 2004; Berkelmans & Van Oppen, 2006; Buddemeier,
Fautin & Ware, 1997; Baker, 2001). Shuffling between Symbiodiniaceae genera has been
found to benefit some coral species (Jones et al., 2008; Sampayo et al., 2008) because
increasing the abundance of stress-tolerant Symbiodiniaceae genera in a multi-symbiont
association helps corals withstand above-threshold seawater temperature anomalies (Lien
et al., 2007; Ghavam Mostafavi et al., 2007; Oliver & Palumbi, 2011). A transition from
thermally sensitive to tolerant dominant symbionts can increase the likelihood that corals
survive thermally-induced bleaching (Bay et al., 2016). However, a later study (Goulet,
2006) argued that not all corals can change their symbionts, because the mechanism of
shuffling requires that a coral species hosts multiple Symbiodiniaceae genera (at least one
stress tolerant and one stress resistant). Some coral species have the ability to fluctuate
between Symbiodiniaceae genera on a temporal scale (e.g.,Hsu et al., 2012). The occurrence
of multiple Symbiodiniaceae genera at low densities might lead to either shuffling or
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switching to beneficial Symbiodiniaceae genera over time (Hsu et al., 2012). In some cases,
the coral host may revert back to its original composition of either a single dominant
Symbiodiniaceae species or multiple species/genera (see Thornhill et al., 2006). However,
there are also many cases in which the host maintains stable symbiosis with a particular
Symbiodiniaceae genus, irrespective of environmental perturbations (see Thornhill et al.,
2006; Thornhill, Fitt & Schmidt, 2006). This acclimatization mechanism, although limited,
may help corals survive the effects of ocean warming in the near future (Berkelmans & Van
Oppen, 2006; Palumbi et al., 2014).

In order to assess whether associating with multiple Symbiodiniaceae is in itself enough
for shuffling to happen, we analysed coral samples collected over time from locations with
different thermal regimes to determine how location influences corals’ abilities to shuffle
and subsequently survive. Nanwan, Kenting National Park, Taiwan is a reef site located
southwest of the third Nuclear Power Plant Outlet (NPP-OL) that has been affected by the
continuous discharge of thermal effluent flowing directly into the existing coral community
as a result of the near-shore current (Chiou, Cheng & Ou, 1993) since the power plant
opened in 1984. NPP-OL has seawater temperatures similar to those predicted for oceans
around the world by 2050 (IPCC, 2018), making it an ideal location to conduct studies
related to the effects of climate change. NPP-OL has significantly different community
compositions and settlement patterns compared to other sites such as the Nuclear Power
Plant Inlet (NPP-IL) (Chou et al., 2004), suggesting that the thermal effluent has had a great
impact on its benthic invertebrate and fish communities. Corals present at NPP-OL have
also experienced several bleaching events over time (see Fan, 1991; Hung & Huang, 1998).
The coral communities in the shallow water (3 m) are dominated by thermally tolerant
symbiont types (Hsu et al., 2012; Keshavmurthy et al., 2012; Keshavmurthy et al., 2014).
The increasing prevalence of stress-tolerant Durusdinium sp. at reef sites closer to NPP-OL
reflects the consequences of long-term thermal effects; this prevalence also makes NPP-OL
an ideal site to study holobiont dynamics under thermal stress, although other physical
differences (temperature fluctuations, upwelling, and internal waves; see Keshavmurthy
et al., 2019) between NPP-OL and other sites could also be involved (Hsu et al., 2012;
Keshavmurthy et al., 2012; Keshavmurthy et al., 2014; Lee et al., 1997; Lee, Chao & Fan,
1999).

In this study, we collected data from in situ reciprocal transplant experiments (RTE) on
nubbins of P. verweyi collected from NPP-OL, NPP-IL, and Wanlitung (WLT) in Kenting
National Park (KNP) between 2014 and 2016 (see Kao et al., 2018). Using the samples from
each location of origin (tagged mother colonies and native cores used in the transplant
experiment), we tested whether corals in their native environments will undergo shuffling
over time and associate with favourable Symbiodiniaceae genera.

METHODS
Samples used in the experiment were collected with permission from the Kenting National
Park headquarters (permit numbers 1040008112 and 1040002080).
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Study area and coral species
All experiments and sampling were carried out at three locations: Nuclear Power Plant
Outlet (NPP-OL), Nuclear Power Plant Inlet (NPP-IL), and Wanlitung (WLT) in
Nanwan, southern Taiwan (Fig. 1). NPP-OL (21◦55′54.4′′N, 120◦44′42.7′′E) and NPP-IL
(21◦57′20.3′′N, 120◦45′14.2′′E) are located within Nanwan in the Kenting National Park
(KNP), Taiwan, and WLT (21◦59′41.0′′N 120◦42′19.6′′E) is located on the west coast
of KNP, approximately 12 km from the nuclear power plant area. Due to the tidally-
induced upwelling in Nanwan (Lee et al., 1997), the maximum daily seawater temperature
fluctuation at NPP-OL and NPP-IL can exceed 8 ◦C in the summer season. In this study,
NPP-IL and WLT were both included to assess the potential role of thermal variability on
P. verweyi facing prolonged thermal stress. The massive coral species P. verweyi generally
occurs in shallow water (2–4 m) and was found to associate with the Symbiodiniaceae
genera Cladocopium sp. and/or Durusdinium sp. in KNP (Keshavmurthy et al., 2012).

Coral samples
Two types of samples were used in the experiment: the ‘‘mother colonies’’ were the original
colonies (from the 2014–2016 transplantation experiment), and the ‘‘native cores’’ were
samples cut from a mother colony and kept at the same location.

Tagged mother colonies at each location (five from NPP-IL in 2014, eight each from
NPP-OL and WLT from 2014 to 2016) were sampled approximately every two months
throughout the experimental period. During each sampling, a piece (2 cm diameter core)
of coral was cut and fixed in 95% Ethanol for DNA extraction and qPCR analysis.

Samples were taken from the coral cores in the racks used in the transplantation
experiment (seeKao et al., 2018 for detailed explanation of the transplantation experiment).
All samples were taken from the set of control racks installed at each location from the
reciprocal transplant experiment, and hence referred to as ‘‘native cores’’. Five native cores
(one from each colony) from each rack in 2014 (at all three sites) and one piece (2 cm in
diameter) from each of the 30 cores in 2015 (from the racks at NPP-OL and WLT) were
sampled at each location. Sampling for the 2014 set was carried out in April and September
of 2014 and January, March, May, July, September, and November of 2015. Sampling
for the 2015 set was carried out in April, September, and November of 2015 and January
and April of 2016. All samples were fixed in 95% Ethanol for DNA extraction and qPCR
analysis.

Seawater temperature
The seawater temperature was recorded in situ at 30-minute intervals using data loggers
(HOBO; PendantTM, USA) deployed underwater near the transplant racks (1–2 m) at
each study site. The raw temperature data were transformed into Degree Heating Weeks
(DHW) (Wellington et al., 2006; Liu, Strong & Skirving, 2003) to assess both the intensity
and duration of the thermal stress for each experiment group. Although this indicator is
typically used tomonitor large-scale bleaching, it was also used in another study to assess the
cumulative thermal stress on heat-treated corals, but daily (Schoepf et al., 2015). DHW was
calculated as follows. First, the weekly mean temperature for each study site was calculated
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Figure 1 Map showing the reciprocal transplant experiment locations in the Kenting National Park,
Taiwan.NPP-OL, Nuclear Power Plant Outlet; NPP-IL, Nuclear Power Plant Inlet and WLT-Wanlitung.
Source credit: Keshavmurthy et al. (2012).

Full-size DOI: 10.7717/peerj.8791/fig-1

from raw temperature data. Second, the maximum of the monthly mean temperatures
(MMM; NPP-OL = 29.63 ◦C; WLT = 29.28 ◦C; NPP-IL = 28.37 ◦C) was obtained from
data loggers (HOBO; PendantTM, USA) deployed at each study location. Finally, the weekly
mean temperature was subtracted from MMM to determine temperature anomalies; only
temperatures at least 1.0 ◦C above the MMMwithin the previous 12 weeks were considered
anomalies and summed to obtain the DHW. The conceptual calculation equation is listed
below

Keshavmurthy et al. (2020), PeerJ, DOI 10.7717/peerj.8791 5/21

https://peerj.com
https://doi.org/10.7717/peerj.8791/fig-1
http://dx.doi.org/10.7717/peerj.8791


DHWTWO=
∑
[(TNPP-OL−MMMWLT)≥ 1◦C]

where TNPP-OL is the weekly mean temperature at NPP-OL, MMMWLT is the MMM of
WLT, etc.

The projections of DHW in Nanwan were obtained from Palumbi et al. (2014) using a
1◦ × 1◦ resolution grid of reef cells located in southern Taiwan.

DNA extraction
DNA extraction was carried out using a salting-out method modified from Ferrara et al.
(2006). Coral tissue was lysed overnight in a 2-mL Eppendorf tube with 200 µL of lysis
buffer [0.25 M Tris, 0.05 M EDTA at pH 8.0, 2% sodium dodecylsulfate (SDS) and 0.1
M NaCl] and 10 µL of 10 mg/mL proteinase E at 55 ◦C in a water bath. NaCl (210 µL
at 7 M) was added to the lysed tissue in the tube, and the sample was mixed by carefully
inverting the tube. The solution was then transferred to a 2-mL collection tube containing
a DNA spin column (Viogene, USA) and centrifuged at 8000 rpm for 1 min. The lysate
was washed twice with 500 µL of ethanol (70%) by centrifuging at 8,000 rpm for 1 min
at each step, with an additional centrifugation step at 8000 rpm for 3 min to dry the spin
column. The column was dried further at 37 ◦C for 15 min, then the DNA was eluted with
50 µL of preheated (65 ◦C) 1X TE buffer, with a final centrifugation at 15000 g for 3 min.
The quality of genomic DNA was checked using a 1% agarose gel. The concentrations of
genomic DNA were determined using NanoDrop 2000 (Thermal Scientific, USA).

Real-time quantitative PCR
The copy numbers of Cladocopium sp. and Durusdinium sp. in P. verweyi samples
were determined under a LightCycler R© 480 Instrument II (Roche, Switzerland) using
a protocol modified from Mieog et al. (2007). Each 10 µL qPCR reaction consisted
of 5 µL 1x SYBR Fast Master Mix, 0.5 µL UF primer (2 nM/µL), 0.5 µL CR or DR
primer (2 nM/µL), 7.5 µL ddH2O, and 2.5 µL DNA templates (equal to 1 ng of
genomic DNA). The following primer sets were used: ITS1 clade C-specific reverse
primer (CR) 5-AAGCATCCCTCACAGCCAAA-3, clade D-specific reverse primer (DR)
5-CACCGTAGTGGTTCACGTGTAATAG-3, and universal forward primer (UF) 5-
AAGGAGAAGTCGTAACAAGGTTTCC-3 (Sampayo et al., 2008). Each sample was run
in triplicate (technical replicates), as was a no-template control (NTC) with ddH2O.
Plasmid standard curves were run in duplicate with P. verweyi samples to quantify the copy
numbers of each symbiont. Plasmid standard curves were generated using PCR products
from Cladocopium sp. and Durusdinium sp., which were ligated into pGem R©-T Easy
vectors (Promega, USA), transformed, and amplified using E. coli. Copy numbers of final
products were calculated by first quantifying the concentration of plasmid DNA through
NanoDrop 2000 (Thermal Scientific, USA), then dividing by the mass of the plasmid [mass
of each plasmid copy= 3015 bp (vector)+ 100 bp (inserted PCRproduct)× 1.096e−21g/bp
= 3.4× 10−18 g], and finally multiplying by the plasmid DNA template volume (2.5 µL) in
each reaction. Serial dilutions of 1:10 from 3 × 106 and 30 copies of the plasmid standard
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containing Cladocopium sp. and Durusdinium sp. sequences, respectively, were generated
in the end. The qPCR cycling settings were: 40 two-step cycles of 15 s at 95 ◦C and 1 min at
60 ◦C. Melting curves were generated by starting at 60 ◦C and increasing the temperature
with a ramp speed of 0.11 ◦C/s until it reached 95 ◦C. Fluorescence data were collected after
each annealing step, and five readings were collected every second during the melting curve
analysis. Crossing points (Cp) were determined by Light Cycler 480 software version 1.5
(Roche, Switzerland) using the second derivative method, which represents the cycles with
the maximum number of fluorescence signals in each sample (Rasmussen, 2001). Samples
with Cp values that varied from the other two technical replicates by 1 were excluded
from analysis. Samples were re-run if all Cp values of technical replicates varied from
one another by 1. Since high variation occurred in Cp values (varied more than 1) within
technical replicates of each sample when Cp > 34, the cut-off cycle was set to 34 to avoid
false positives caused by the formation of non-specific fluorescence. Average copy numbers
of symbiont clades C and D were obtained individually, and the formula for determining
relative symbiont abundance in this study is listed below, following a correction suggested
by Mieog et al. (2007): (Clade D copy numbers/3)/[(Clade D copy numbers/3) + Clade C
copy numbers].

Population genetics analysis of P. verweyi
To demonstrate the presence of a genetic structure in P. verweyi at NPP-OL andWLT, eight
polymorphic microsatellite loci were used to examine 30 P. verweyi colonies (including
transplanted colonies) found within two transplanted sites. Three published microsatellite
tetramer markers developed from P. sinensis (Tay et al., 2014) and P. daedalea (Miller &
Howard, 2004) were used. Another five microsatellite dimer markers specific to P. verweyi
were developed by Next Generation Sequencing approaches (Yang et al., 2018). Eight
microsatellite markers were amplified following the effective universal fluorescent labeling
method (Schuelke, 2000). Amplifications performed using 25 µL reactions contained 10
ng of DNA template, 1X of VeraSeq Buffer II (Qiagen Beverly, USA), 0.5U of VeraSeq 2.0
high-fidelity DNA polymerase (Qiagen Beverly, USA), 0.2 mM of dNTP mix, 0.08 µM of
specific forward primer-attachedM13 (-21) tail (5′-TGTAAAACGACGGCCAGT- 3′) (18
bp), 0.2 µM of specific reverse primer, and 0.2 µM TAMRA-labelled universal M13 (-21)
primer (5′-TGTAAAACGACGGCCAGT- 3′) (Schuelke, 2000). The PCR conditions were:
1 cycle at 98 ◦C for 30 s; 25 cycles of 98 ◦C for 10 s, specific primer annealing temperature
(Table 1) for 30 s, and 72 ◦C for 30 s; followed by 10 cycles of fluorescent-labelled M13
amplification: 98 ◦C for 10 s, 53 ◦C for 30 s, 72 ◦C for 30 s; and a final elongation of
10 min at 72 ◦C. For microsatellite genotyping, samples were electrophoresed on 5%
urea denaturing polyacrylamide gels using the Gel-Scan 3000TM real-time DNA fragment
analysis gel Electrophoresis System (Corbett Robotics, Australia). Allele size was detected
by the software Gene Profiler 4.05 (Scanalytics) with the internal lane size standard
(GeneScanTM-350 TAMRATM, Applied Biosystems). Characteristics of microsatellite
loci—such as number of alleles and mean observed and expected heterozygosities—were
calculated using GenAlEx v.6.502 (Peakall & Smouse, 2012). Genepop was used on the
web to test for linkage disequilibrium and significant departure from Hardy-Weinberg
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Table 1 Characteristics of eight microsatellite loci for 60 colonies of P. verweyi collected at NPP-OL andWanlitung.

Locus Primers sequences Repeats Size of
alleles

Tm
(◦C)

No.
alleles

HE

F:aCAACTTAAATGGTATCATCGTG
PV9

R: GTGCCCTATTTTATGTGACAA
(AG)26 140–168 50 9 0.85

F:aTAGTCAGTGGCATCTGAGAGT
PV19

R: CTCATTTCCTCCTAAGCTTTC
(TG)30 161–197 53 16 0.83

F:aTCACTTGCTATAACCTTCTCCT
PV22

R:TCCACCTCTCCAACTAGTTATC
(TG)12 140–164 50 10 0.86

F:aTTGACTCGTCAATCACCTATC
PV56

R: GCTAGCACTGATCAAACGAT
(TC)14 144–166 50 6 0.75

F:aACAGACAGAGACAGACAGAACA
PV57

R: CAGTTCACCTGTCCATTTG
(TC)14 103–119 50 6 0.60

F:aACAATTCGGATATGTAGC
Plsi4.02

R:GTTTCTTTGGTTTGGTTTGTTCTC
(AAAC)11 136–170 50 14 0.85

F:aTTATCTTGGTTCAGACAGACAG
Plsi4.24

R:GTTTGACAACTCTAATGAAGGTCAG
(ACAG)10 126–158 59 9 0.77

F:aGACAAGTAATGTGTAAATCGTTGTCC
PD31

R:aCTGTTAGAGTATCATGTCCTGAAGC
(CCAT)7 156 56 7 0.54

Notes.
aprimer attached with M13 (-21) tail (5′-TGT AAA ACG ACG GCC AGT-3′) (18 bp).

equilibrium (HWE). None of the loci showed HWE deviation or linkage disequilibrium
after Bonferroni correction (Rice, 1989). Population differentiation was inferred using
ARLEQUIN v3.5 (Excoffier & Resources, 2010). Inference population genetic structure
was estimated using a Bayesian clustering approach implemented in STRUCTURE
v.2.3.4 (Pritchard, Stephens & Donnelly, 2000). The admixture model and allele frequency
correlation were used. Values of number of genetic clusters (K) from 1 to 2 were tested
by running three replicate simulations per K with 1,000,000 Markov chain Monte Carlo
repetitions and 100,000 burn-in iterations.

Statistical analysis
All statistical analyses in this study were performed in R version 3.1.1. (R Core Team,
2014). Differences in daily mean seawater temperatures and daily seawater temperature
fluctuations between sites were tested using Kruskal-Wallis test followed by Dunn’s post
hoc test with Bonferroni adjusted p-values.

RESULTS
Seawater temperature
Weekly average seawater temperatures were plotted from the data collected by data loggers
from 2014 and 2106. Both monthly and daily average seawater temperatures at NPP-OL
were significantly higher (2.0–3.0 ◦C) than at adjacent locations (Fig. 2A). In 2014, the
average summer (June to August) daily seawater temperature at NPP-OL (30.11 ± 1.07
SD ◦C) was different from those at WLT (29.59 ± 0.67 SD ◦C; Dunn’s post hoc test,
p< 0.001) and NPP-IL (28.61± 0.96 SD ◦C; p< 0.001). In 2015, the average summer daily
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seawater temperature at NPP-OL (29.77 ± 1.12 SD ◦C) was different from that at WLT
(29.52 ± 0.52 SD ◦C; Wilcoxon rank sum test, W = 5097, p< 0.05). The daily seawater
temperature fluctuation at NPP-OL (2.38 ± 1.04 SD ◦C) was different from that at WLT
(1.57 ± 0.70 SD ◦C) (Wilcoxon rank sum test,W = 655557, p< 0.001). The heating event
(≥ 30 ◦C) at NPP-OL occurred for a longer time each day than at WLT.

The daily seawater temperature fluctuation at NPP-OL (2.23± 1.00 SD ◦C) was different
from those at WLT (1.53 ± 0.58 SD ◦C; p< 0.001) and NPP-IL (1.80 ± 1.30 SD ◦C;
p< 0.001), while the fluctuations did not vary between WLT and NPP-IL (p= 1.000).
During the summer, however, the daily seawater temperature fluctuation at both NPP-OL
and NPP-IL was more than 7 ◦C (maximum 9.12 ◦C at NPP-OL and 7.19 ◦C at NPP-IL).
The daily heating event (≥30 ◦C) occurred for the longest time at NPP-OL.

In 2014, repeated seawater temperature anomalies (the weekly mean seawater
temperature exceeding the bleaching threshold) occurring at NPP-OL during the summer,
resulting in a DHW of 6.4 ◦C-weeks, while those at NPP-IL and WLT were 2.4 and
1.0 ◦C-weeks respectively (Fig. 2B). DHW greater than 4.0 ◦C-weeks results in a NOAA
Alert Level 1, meaning that bleaching is likely. The DHWs started to decrease gradually in
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Figure 3 Symbiodiniaceae genera trends (A) in five native cores of P. verweyi during the 2014 trans-
plantation experiment and (B) in 30 native cores of P. verweyi during the 2015 transplantation experi-
ment. Each colour block represents one core sampled from one individual colony. In the case of NPP-IL,
no samples were collected after July 2015. X= the cores were dead.
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the fall. In 2015, the DHWs for both NPP-OL and WLT were below the threshold limit of
4.0 ◦C-weeks—3.8 and 1.0 for NPP-OL and WLT, respectively.

Temporal variation in Symbiodiniaceae genera associated with
P. verweyi at NPP-OL
The results of the real-time qPCR analysis of the samples from the 2014 experiment
(Fig. 3A) indicated that, until January 2015, the symbiont communities in the native cores
of NPP-OL were dominated by Durusdinium spp. In March 2015, the relative proportions
of symbionts changed: Cladocopium spp. were present at various percentages (range:
1–21%; mean: 6%; Fig. 3A), and Durusdinium spp. accounted for the rest. Symbiont
dynamics in the core with 21% Cladocopium spp. did continue to fluctuate (13% in May;
18% in July and September; Fig. 4). However, this core was dead by November 2015. All
remaining cores survived, fluctuating between 1–5% (mean: 2%) Cladocopium spp. for the
entire experiment.

In the 2015 experiment (Fig. 3B), the symbiont community in the native core samples
from NPP-OL were dominated by Durusdinium spp. However, qPCR suggested that the
cores in the samples from April 2016 were associated with Cladocopium spp. in addition
to the already present Durusdinium spp. Previously undetected levels of Cladocopium spp.
increased enough to be detected by qPCR. Cores were found to contain 3–61% (mean:
22.6%) Cladocopium spp. in April 2016.

Bimonthly sampling of the mother colonies revealed that P. verweyi was specific with
respect to which Symbiodiniaceae genera it associated with (Fig. 4). Colonies sampled
from NPP-OL showed changes in associated Symbiodiniaceae, meaning that none of the
30 colonies analysed were associated with 100% Durusdinium spp. throughout the entire
study period. However, the fluctuation between Durusdinium spp. and Cladocopium spp.
was not large. Colonies were found to host 91–100% Durusdinium spp. (seven of the nine
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colonies)—one colony hosted 50 and 80% at two sampling times—with the exception
of one colony, which associated with 72 and 99% Durusdinium spp. in November 2014
and January 2015, respectively. However, this colony changed its relative proportion
of symbionts to 100% Cladocopium spp. in March 2015, and then reverted to 97%
Durusdinium spp. in May 2015. This was the only colony that had a large fluctuation in
associated Symbiodiniaceae between the two Symbiodiniaceae genera.
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Temporal variation in Symbiodiniaceae genera associated with
P. verweyi at WLT
In the 2014 experiment samples from WLT, a predominance of Cladocopium spp. was
observed in the majority of the cores (Fig. 3A), with the exceptions of two cores found
dead from March 2015 onwards and one colony that reverted to Durusdinium spp. (83%).

In 2015, cores from WLT were mainly associated with Cladocopium spp., ranging from
5–99% (mean: 31%) (Fig. 3B). Five of the 30 cores were associated with Durusdinium spp.
throughout the experimental period. However, in November 2015, 12 of the 30 cores were
associated with Durusdinium spp. (range: 1–87%; mean: 32%). Three cores at WLT that
were mainly associated with Cladocopium spp. were dead by the end of the sampling period
in April 2016 (Fig. 3B).

In the case of the WLT bimonthly analysis of the samples from the mother colonies,
seven of the eight colonies analysed were associated only with Cladocopium spp., except for
one colony, which also associated with Durusdinium spp. (2% in November, 2014; 1% in
July, 2015; and 2% in April, 2016) in addition to Cladocopium spp. (Fig. 4).

Temporal variation in Symbiodiniaceae genera associated with
P. verweyi at NPP-IL
In 2014, all the cores at NPP-IL were found to be predominantly associated with
Cladocopium spp. throughout the experimental period. None of the cores were associated
with Durusdinium spp. (Fig. 3A).

With respect to the bimonthly analysis of the samples collected from themother colonies,
again all the samples were predominantly associated with Cladocopium spp. throughout
the sampling period. However, some colonies did show the presence of Durusdinium spp.
(1% in March, May, and November; 29% in October, 2015; Fig. 4).

Microsatellite analysis of host samples from NPP-OL and WLT
Microsatellite analysis revealed that a total 60 P. verweyi colonies (30 each from NPP-OL
and WLT) exhibited six to 16 alleles per locus for all eight microsatellite loci, with a mean
expected heterozygosity of 0.756 ± 0.122 (Table 1). Average gene diversity of P. verweyi
at NPP-OL across eight loci was 0.608 ± 0.393; the average for populations at WLT was
0.657 ± 0.460. The pairwise genetic differentiation Fst value between the two sites was
-0.00814, and the p-value showed no significant difference. The genetic structure analysis
by Bayesian clustering between NPP-OL and WLT also showed no significant differences
and no genetic isolation between the two locations (Fig. 5).

DISCUSSION
The present study shows spatial variation but specificity in the dominant Symbiodiniaceae
genera in the coral P. verweyi, and this may be related to local thermal histories. What
was seen in P. verweyi is an almost stable association with a dominant Symbiodiniaceae
genus at each sampling time from 2014 to 2016. A fluctuation was observed between
Symbiodiniaceae in native cores and/or mother colonies, but this was not a general
phenomenon. There was a certain level of temporal and spatial fluctuation in the native
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Figure 5 Bar plot of STRUCTURE. Bayesian clustering analysis for eight loci genotypes among the NPP-
OL and WLT P. verweyi populations. This bar plot assumed the number of population K = 2. 1,000,000
times MCMC runs.

Full-size DOI: 10.7717/peerj.8791/fig-5

coral cores and taggedmother colonies. For example, in the 2014 experiment, some cores at
NPP-OL (nubbins here are associated with Durusdinium spp.) did acquire low percentages
of Cladocopium spp. (in March 2015) relative to the already present Durusdinium spp.
(Fig. 3A). A similar fluctuation was seen in one core from WLT, which was found to have
acquired up to 83% Durusdinium spp. However, none of the cores at NPP-IL showed any
fluctuation (Fig. 3A). A similar pattern was observed in the tagged mother colonies, with
low levels of fluctuation and Symbiodiniaceae genera acquisition (Fig. 4).

Considering the differences in seawater temperature regimes among the three locations
(Fig. 2A), this study assumed that native cores and mother colonies would show different
levels of Symbiodiniaceae genera shuffling through time. However, the results showed
that one Symbiodiniaceae genus was always dominant in each sample (Figs. 3 and 4). For
example, samples at NPP-OL were always dominated byDurusdinium spp. Such preference
could be because corals at NPP-OL are exposed to long-term seawater temperature stress
at shallow depths (1–5 m) and hence are naturally acclimatized to an association with
Durusdinium spp.

Association with a particular dominant symbiont could help P. verweyi dominate
shallows at various locations in KNP. During the experiment and sampling periods (2014–
2016), there was onemajor bleaching event (2014) and several typhoons (2015). Irrespective
of the type of symbiont P. verweyi associated with, none of the corals experienced any clear
bleaching—although some degree of paling of the tissue was observed. Increased seawater
temperatures in 2014 resulted in DHWs of 6, 2.5, and 1 ◦C-weeks at NPP-OL, WLT, and
NPP-IL, respectively (Kao et al., 2018). DHW in 2015, however, was below 4 ◦C-weeks in
both NPP-OL and WLT (Fig. 2B). The lower DHW values in 2015 could be attributed
to the typhoons that occurred that year: the southern coast of Taiwan was hit by three
typhoons in the summer, July–September 2015, resulting in the seawater temperature
cooling. Such intense changes in seawater temperature conditions might have resulted in
corresponding fluctuations in associated Symbiodiniaceae genera in some cores or tagged
mother colonies (Figs. 3 and 4). Temperature anomalies found in 2014, with high DHWs,
were not enough to yield any pronounced shuffling or switching in this coral.

Our observations beg the following questions: how common is shuffling in corals that
can associate with two different symbionts, and does flexibility in symbiont associations via
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shuffling aid corals under stress? Studies have pointed out that corals often associate with
two or more symbionts, with one being dominant and others present at low proportions
(<5%, background symbiont) (Silverstein, Correa & Baker, 2012). Therefore, corals have
potential to shuffle by regulating their proportions of background symbionts when faced
with unfavourable conditions. In this study, we detected symbionts at abundances as low
<1%; however, such low concentrations might not be a prerequisite for shuffling or even
switching. Also, the recent use of NGS amplicon sequencing has uncovered a rare biosphere
with the potential to shuffle and/or switch between different Symbiodiniaceae genera. For
example, Thornhill et al. (2006) investigated the Symbiodiniaceae rare biosphere in two
Pocilloporid species from Lord Howe Island in the Great Barrier Reef over two years. Their
results showed that, following two consecutive bleaching events, the species shuffled and
became associated with new Symbiodiniaceae genera (most <1% of the relative abundance,
with one resistant type reaching 33% of the relative abundance).

On the other hand, Bay et al. (2016) suggested that a pre-stress Symbiodiniaceae (D:C)
ratio of <0.003 limits the ability of corals to survive bleaching after shuffling. And another
study (Lee et al., 2016) showed that variation in the presence and abundances of background
or low percentages of symbionts in corals is not necessarily related to shuffling, and may
have little or no importance in coral physiology. Future studies need to examine the
physiological role of those rare biospheres in terms of supporting corals’ responses to
stress.

It may be argued that specificity to a particular Symbiodiniaceae genus depends on the
host. We performed genetic analyses on the host using mitochondrial and nuclear markers
in a previous study (Keshavmurthy et al., 2012) and microsatellite markers in this study.
The results showed no genetic difference in the host between locations. This suggests that
other factors influence the type of association we see in this coral, including possible local
and microgeographic adaptations to seawater temperature. It may be that using more
advanced techniques would help uncover prevalent genetic differences between hosts
from two locations in KNP, as was shown in a recent study— (Howells et al., 2016), which
showed a clear genetic difference in P. daedalea- associated Symbiodiniaceae between
Oman and Abu Dhabi in the Persian Gulf, and hence demonstrated a difference in their
eco-physiological behaviour.

Both macro- and micro-environmental differences between locations could dictate
Symbiodiniaceae genera associations in P. verweyi. For example, typhoons and upwelling
or fluctuating temperatures in shallow reef areas could raise the thermal tolerance of
coral, as could the influence of fluctuating environmental factors such as tidal exposure
(Obura, 2005). Although we demonstrated that Symbiodiniaceae mediate P. verweyi
acclimatization, we cannot rule out the possibility that mutations to the host itself and
natural selection lie behind this species’ ability to adapt to a particular condition. The
effect of micro-environment might also explain the difference seen in the Symbiodiniaceae
genera association between the native cores and mother colonies. Specificity towards a
particular Symbiodiniaceae genus was more apparent in the mother colonies (Fig. 4).
Native cores, due to their small size and hence propensity toward stress, showed more
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flexibility in their associated Symbiodiniaceae genera (Figs. 3A and 3B) (also see the results
in Kao et al., 2018).

We hypothesize that combinations of P. verveyi and Symbiodiniaceae genera tend to
be specific due to the differences in thermal histories, temperature variations, and hosts
favouring one dominant symbiont rather than shuffling. This could have a negative impact
on coral exposed to above-threshold thermal anomalies. For example, Kao et al. (2018)
observed that, when P. verveyi nubbins were reciprocally transplanted between NPP-OL
and WLT, those from WLT that were associated with Cladocopium spp. did not tolerate
long-term changes in temperature levels or daily fluctuations. The transplanted nubbins
did not survive, even after shuffling. In contrast, nubbins at NPP-OL survived and actually
fared well in the more stable and lower-temperature environment ofWLT. In fact, they also
showed an increase in growth over time, all the while associating with Durusdinium spp.,
and did not shuffle to Cladocopium spp. even though they could have. Results from this
study and symbiont association data and host population genetics at a micro-geographic
scale (see Keshavmurthy et al., 2012) hint towards local adaptation in P. verweyi.

CONCLUSIONS
Shuffling is not a simple and straightforward way for corals to cope with the effects of
climate change, but is in fact a complex process governed by host-symbiont specificity
as well as local macro- and micro-environmental conditions. Being flexible (Silverstein,
Correa & Baker, 2012) is a good strategy, but specificity is also a norm. In other words, a
mere increase in temperature above the threshold limit is not enough to invoke shuffling,
even if a coral host has the capacity to associate with multiple symbiont partners (see Kao
et al., 2018). While it is popular to be optimistic that shuffling or switching between
Symbiodiniaceae genera is a way for corals to survive frequent above-threshold seawater
anomalies, we should be cautious, as not all coral species appear to be able to shuffle or
switch their associated Symbiodiniaceae genera (e.g., Coffroth et al., 2010), especially corals
that have obligate relationships with a particular Symbiodiniaceae genus. We want to
reiterate here that, irrespective of corals’ temperature tolerance thresholds in the future,
and given the fact that we are facing continuous changes in the global climate through
carbon emissions, symbiont shuffling might not be sufficient to withstand frequent and
prolonged seawater temperature anomalies as it is not a common trait in all coral species.
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