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Abstract

Hypertension is the most prevalent cause of cardiovascular disease and kidney failure but only 

about 50% of patients achieve adequate blood pressure control, in part, due to inter-individual 

genetic variations in the response to antihypertensive medication. Significant strides have been 

made toward the understanding of the role of reactive oxygen species (ROS) in the regulation of 

the cardiovascular system. However, the role of ROS in human hypertension is still unclear. 

Polymorphisms of some genes involved in the regulation of ROS production are associated with 

hypertension, suggesting their potential influence on blood pressure control and response to 

antihypertensive medication. This review provides an update on the genes associated with the 

regulation of ROS production in hypertension and discusses the controversies on the use of 

antioxidants in the treatment of hypertension, including the antioxidant effects of antihypertensive 

drugs.
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Introduction

Hypertension is the most prevalent cause of cardiovascular disease and kidney failure1, but 

the prevention and treatment of hypertension are still a challenge2–4. According to the 2017 

High Blood Pressure Clinical Practice Guidelines, in adults (≥20 years of age), a “doctor’s 

office” reading of 120-129 mm Hg for systolic blood pressure (SBP) even with less than 80 

mm Hg for diastolic blood pressure (DBP), is considered as elevated BP2,3. An SBP of 
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130-139 mm Hg or a DBP of 80-89 is now considered as Stage 1 hypertension, while the 

previous definition of hypertension ≥140 SBP or ≥90 DBP is now considered as Stage 2 

hypertension. In the general population, only about 50% of treated patients achieve adequate 

blood pressure control2,4. The poor efficacy of hypertension treatment and the inter-

individual variations in the response to antihypertensive medications have many causes, 

including non-compliance, but genetic variations could be important contributory factors4,5.

Reactive oxygen species (ROS) are inevitable by-products of aerobic existence6. 

Disturbance in the normal redox state of cells, either due to the overproduction of ROS or 

low production of antioxidants, can lead to oxidative stress and specific types of oxygen 

radicals, such as superoxide anion, H2O2 and hydroxyl radical, may damage all components 

of the cell, including proteins, lipids, and DNA7,8.

The deleterious effects of ROS and their role in the pathogenesis of hypertension have been 

extensively demonstrated in experimental models8–10, but the benefits of antioxidant drug 

treatment in human hypertension are not clear8,10–12. This may be related to the fact that 

ROS are not always harmful; ROS are able to regulate the activity of cellular signaling 

pathways such as Ca2+ signaling13,14, and are involved in the regulation of several cells 

functions such as phenotypic modulation, migration and adhesion, vascular tone, apoptosis 

and sodium reabsorption between others13–18. The oxidative environment in the cell 

influences gene transcription, post-transcription, translation, and post-translation of proteins. 

Modifications of the oxidative status may eventually regulate the expression and activity of 

many proteins such as nuclear factor-kappaB, Nrf2, p38 mitogen-activated protein kinase, 

NH(2)-terminal Jun kinases/stress-activated protein kinases, hexosamines, and others13,19–27 

evidencing that ROS may be essential for the normal function of cells and biological 

systems.

Pharmacogenomics aims to individualize therapy based on the individual’s genetic profile. 

There are numerous endogenous oxidants and antioxidant proteins (Figure 1) in different 

organs, including the kidney, brain, and cardiovascular system, that keep a normal redox 

balance in the body. Genetic polymorphisms that affect the expression and activity of some 

of these pro-oxidant or antioxidant genes are associated with human hypertension (Table 1). 

These polymorphisms could influence the response to antihypertensive drugs, i.e., 

pharmacogenomics. This review provides an update on the genes associated with the 

regulation of ROS production in hypertension and discusses the controversies on the use of 

antioxidants in the treatment of hypertension, including the antioxidant effects of 

antihypertensive drugs.

1. Mechanisms by which ROS regulate blood pressure

The role of oxidative stress in hypertension has been extensively studied and several 

mechanisms have been described by which ROS regulate blood pressure (Figure 1).

1.1. Endothelial damage: ROS cause endothelial dysfunction in blood vessels, 

including renal afferent arterioles and enhance the renal arteriolar vasoconstrictor response 

to angiotensin II9,10,12,13,22. Some of the benefits of superoxide scavengers in hypertension 

are caused by enhancement of vasodilation and an increase in renal arterial perfusion23.
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1.2. Stiffening of vessels: Recent studies in humans have shown that aortic stiffening 

precedes the development of hypertension24. Mice with smooth muscle overexpression of 

p22phox, a component of NADPH oxidase, develop renal inflammation, fibrosis, and renal 

dysfunction, prior to the increase in blood pressure, supporting the notion that arterial 

stiffening induced by oxidative stress and inflammation causes hypertension25.

1.3 Glomerular damage: Glomerulonephritis without renal insufficiency can be 

associated with hypertension26. ROS can produce glomerular injury by damaging the 

podocytes, as has been described in Dahl salt-sensitive hypertensive rats27. The antioxidant 

tempol reduces glomerular sclerosis and proteinuria in these animals, supporting a role of 

ROS in the glomerular injury in Dahl salt-sensitive rats28.

1.4 Renin-angiotensin system: The development and progression of hypertension due 

to increased production of ROS have been related to renal vasoconstriction caused by an 

increase in renal afferent nerve activity and myogenic response and secretion of 

vasoconstrictor hormones, such as angiotensin II, endothelin-1, and thromboxane29. 

Angiotensin II increases ROS production, inflammation, and renal tubular ion and water 

transport, and decreases dopamine receptor expression and function, resulting in 

hypertension4,5,8,15–17,29–34 . Increasing oxidative stress is one mechanism by which 

angiotensin II causes renal dysfunction and tissue damage1,9,10,12,13,22,23,31–38.

1.5 NaCl retention: ROS can regulate ion transport16–18,23,35–64. Superoxide, produced 

by NADPH oxidase, enhances NaCl transport in the renal proximal tubule16,17,39,44,45,59, 

thick ascending limb of Henle41,46,48, and collecting duct18,47,48. The voltage-gated proton 

channel participates in the increased production of superoxide in the renal outer medulla of 

Dahl salt-sensitive rats46. It should be born in mind, however, that ROS can inhibit Na+/K+-

ATPase and NHE3 activity in the renal proximal tubule48,50–53.

1.6 Inflammation: ROS activate pro-inflammatory transcription factors, such as NFκB 

and activator protein-1 and increase the expression of pro-inflammatory proteins65. ROS 

cause the activation, adhesion, and infiltration of inflammatory cells in tissues and organs, 

including the adipose tissue8,10,66. Immune cells, such as macrophages and granulocytes, 

release ROS to destroy engulfed bacterial or fungal pathogens and this could trigger 

oxidative stress67,68. Vascular stretch is associated with hypertension that could be related to 

an increase in ROS production and inflammation8,10,25,69,70.

1.7 Sympathetic nervous system: Renal ROS induce sympathetic activation in 

renovascular hypertension71; chronic antioxidant treatment reduces blood pressure in 

hypertension characterized by sympathoexcitation and renal oxidative stress71. Oxidative 

stress in the brain, specifically in the cardiovascular regulating center, causes hypertension72.

2. Genes associated with oxidative stress and blood pressure regulation.

Table 1 lists the genes involved in redox balance that have been associated with 

hypertension. Table 1 also lists the single nucleotide polymorphisms (SNPs) that are 
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associated with human hypertension, as well as the genes associated with oxidative stress 

and hypertension in animal models73–252.

2.1 Effects of antihypertensive drugs on oxidative stress—Table 2 lists the 

antioxidant drugs shown to reduce blood pressure in humans and animal models of 

hypertension253–328. These antioxidants have different mechanisms of action and various 

combinations may have synergistic effects on the regulation of blood pressure. For example, 

the antihypertensive effect of the combination of zinc sulfate, ascorbic acid, α-tocopherol, 

and β-carotene may be due to an increase in the bioavailability of NO324. By contrast, 

antioxidant drugs such as vitamin E, under certain conditions, can also increase the blood 

pressure in mice325. Vitamin E at doses greater than 150 IU daily increases the risk of all-

cause mortality in humans326. The combination of vitamin C and polyphenols has also been 

reported to increase blood pressure variability229, and the antioxidant properties observed in 
vitro may not be observed in vivo328. The effect of chemicals on ROS production and blood 

pressure is complex and not easily predictable.

2.2 Pharmacogenomics of antioxidant drugs—Increased ROS production is 

involved in the pathogenesis of 

many
1,5,8–17,22,23,25,28–44,48,57,60,62–64,68,71,72,86,89,92,104,138,140–154,162,163,173,189,197,210,214,218,219,221–233,236–244,246–252,262,263.270–273,278–280,295,305.329–331

, but not all cases232–234 of hypertension. Deletion of the gene that encodes thioredoxin 

reductase 2 increases ROS production but blood pressure is actually decreased235. 

Nevertheless, genetic polymorphisms in pro-oxidant or antioxidant genes may affect the 

redox balance in the kidney, cardiovascular system, and brain (Figure 1), among others. 

Therefore, genetic polymorphisms may be involved in the inter-individual variability of the 

effects of antihypertensive medications. Many genes involved in ROS production and their 

polymorphisms associated with hypertension have been identified (Table 1).

2.2.1 Polymorphisms in Pro-oxidant Genes: Angiotensinogen (AGT) is converted to 

angiotensin I by renin and angiotensin 1 to angiotensin II by angiotensin converting enzyme 

(ACE); angiotensin II induces oxidative stress by stimulation of NADPH oxidase 

activity15,22,23,29–31,36,37,42,47,48,56,57. Polymorphisms in AGT are associated with 

hypertension in humans78–83; a haplotype of human AGT gene containing −217A or −6G 

increases blood pressure in transgenic mice76,77.

The NADPH oxidase (NOX) family has seven members which are classified into three 

groups: group 1 is comprised of NOX1, NOX2, NOX3, NOX4; group 2 has NOX5 as the 

only member, and group 3 is comprised of DOUX1 and DOUX248,332. Increased NOX 

activity is implicated in many disease states, including hypertension and renal 

disease5,10,15,23,25,29–32,36,47,48,56,57,125–147,332–344.

p22phox (CYBA, cytochrome B-245 alpha chain) is a membrane-associated protein that 

plays a crucial role in the activation of NOX1, NOX2, NOX448, and NOX5333. Mutations of 

CYBA lead to autosomal recessive forms of chronic granulomatous disease334. Germline 

deletion of CYBA in mice335 or silencing of CYBA in Sprague-Dawley rats does not affect 

basal blood pressure but ameliorates angiotensin II-induced hypertension125,126. However, 
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smooth muscle-specific overexpression of p22phox in mice increases blood pressure that is 

normalized in the offspring of dams crossed with Rag1−/− mice25. Polymorphisms in the 

CYBA promoter in the spontaneously hypertensive rat (SHR) increase the gene expression 

of CYBA336. Several polymorphisms of CYBA that could affect the production of ROS have 

also been reported in humans,334,. Some other CYBA gene variants are associated with 

decreased NOX2-dependent ROS generation but their association with blood pressure has 

not been studied128. Other CYBA gene variants are associated with increased ROS 

production and hypertension in several ethnic groups129,130,131,134–136,337. However, 

although CYBA 242C>T is associated with endothelial dysfunction, it is not associated with 

hypertension in an Asian-Indian population338. A meta-analysis found no association of 

CYBA 242C>T with hypertension134. CYBA 242C>T may be protective of coronary artery 

disease in an Asian population132 but increases the risk of diabetes mellitus133. In an Asian-

Indian population, the haplotypes rs8854A/rs9932581G/rs4873C and rs8854G/rs9932581G/

rs4873C are positively associated with increased blood pressure and oxidative stress while 

the haplotype rs8854G/rs9932581A/rs4873T is inversely correlated with blood pressure and 

oxidative stress339.

NOX5 gene, which is present in humans but not rodents, is expressed to a greater degree 

than the other isoforms in renal proximal tubule cells from hypertensive humans340. Certain 

NOX5 SNPs have been reported to be associated with decreased (NOX5 77M>K) activity 

and ROS production341. However, mice with podocyte-specific human NOX5 expression 

develop renal disease and high blood pressure342. Genes that interact with NOXs have 

polymorphisms that may also be associated with increased ROS production and 

hypertension. For example, a polymorphism in the 3’UTR (rs11169571 [T>C] of the 

activating transcription factor 1 [ATF]) may be involved in essential hypertension by 

induction of NOX1 and increase in ROS production343.

The minor T allele of rs6967221 in RAC1, one of the cytosolic components of NOX1, 
NOX2, and NOX3, is associated with a decreased systolic blood pressure response to high 

sodium intake152.

Endothelin-1 (ET-1) is a potent vasoconstrictor which can increase ROS production by 

stimulation of NADPH oxidase activity344. A polymorphism of type A endothelin-1 receptor 

(rs5335, 70C>G) is associated with increased night-time blood pressure105. Polymorphism 

at rs9349379 in PHACTR1, a distal regulator of EDN1, is associated with a lower risk of 

hypertension345.

Myeloperoxidase (MPO) produces hypochlorous acid (HOCl) and chloride anion (Cl−) (or 

equivalent) from H2O2 during the neutrophil’s respiratory burst. MPO released during 

chronic inflammation produces tissue damage and high MPO levels may exacerbate diseases 

associated with atherosclerosis. However, MPO-deficient mice unexpectedly have increased 

atherosclerosis, relative to their wild-type littermates346, indicating that the role of MPO in 

cardiovascular disease is still unclear or that this murine model may not reflect human 

disease. The −463G>A polymorphism located in the promoter region of the MPO gene has 

been associated with hypertensive nephrosclerosis in patients on dialysis120 and 

hypertension with or without carotid atherosclerosis in Chinese121,122. However, this 
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polymorphism has been associated with a decreased risk of hypertension in Russian 

females123.

Xanthine dehydrogenase (XDH), aka xanthine oxidoreductase (XOR) and xanthine oxidase 

(XO) are interconvertible single gene products. XDH is the primary form but is converted to 

XO irreversibly by proteolysis or reversibly by oxidation of Cys residues. XO catalyzes 

hypoxanthine or xanthine to form hydrogen peroxide and uric acid while XDH produces 

NADH347. In the blood, XDH exists mainly as XO242. XOD is extensively expressed in 

body organs, such as the liver, muscle, brain, and kidney348. XDH-mediated increase in ROS 

has been described in salt-sensitive hypertension and glucocorticoid induced 

hypertension242. In a Spanish cohort, −337G>A and 565+64T>C and their haplotypes were 

found to be associated with higher systolic and diastolic blood pressures and 

malondialdehyde242. The variation in uric acid production, as related to polymorphisms of 

XDH, increases the risk of hypertension240.

Lipoxygenases catalyze the dioxygenation of polyunsaturated fatty acids to their 

corresponding hydroperoxy derivatives. Arachidonate 15-lipoxygenase (ALOX15) gene 

rs2664593 has been reported to be associated with air pollution and increased left ventricular 

mass349. A nonsynonymous polymorphism in ALOX12, 261R>Q, has been reported to be 

associated with essential hypertension and urinary levels of 12-hydroxyeicosatetraenoic acid 

(12(S)-HETE)350. Mice lacking macrophage 12/15 lipoxygenase are resistant to L-NAME 

and DOCA-salt hypertension351.

Cyclooxygenase-2 (COX2, PTGS2) can produce ROS, which can increase cyclooxygenase 

expression and activity92. −765GC+CC genotypes of PTGS2 are inconsistently associated 

with chronic obstructive pulmonary disease that could be related to increased ROS 

production90,91. PTGS2 SNPs have been associated with increased high blood pressure in 

humans352. Germline deletion of Cox-2 in mice increases blood pressure353.

The mitochondrion, which is one of the most important sources of ROS, has been 

extensively associated with oxidative stress and hypertension8,12,13,145,228. ROS-induced 

hypertension could involve the mitochondria in the brain72 and in the kidney354,355,356. 

Cytochrome P450 genes are important sources of ROS in the mitochondria, endoplasmic 

reticulum, and plasma membrane. P450 proteins are a family of hemoproteins that catalyze 

the oxygenation of a wide variety of compounds and, in general, is the terminal oxidase 

enzyme in the electron transfer chain in the mitochondria95. The efficiency of electron 

transfer depends on many conditions. For example, SNPs in the gene encoding Cytochrome 

P450 affect the regulation of ROS production and the redox balance357,358. SNPs in the 

cytochrome P450 gene family have also been associated with high blood pressure in several 

different populations 96,98,360,361 but protective in a North Americans 97. CYP-epoxygenase 

decreases renal sodium transport, in part, by inhibition of ENaC activity in the cortical 

collecting duct362. CYP17A1 (rs11191548) is associated with increased left ventricular mass 

in patients with hypertension and preserved left ventricular ejection fraction363.

2.2.2 Polymorphisms of antioxidant genes: Oxidative stress can occur not only from an 

increase in pro-oxidant activity but also from impaired antioxidant activity. SNPs of genes 
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that decrease antioxidant gene function/expression could induce oxidative stress and 

increase blood pressure. Our group and others have provided evidence for the importance of 

the antioxidant properties of dopamine receptors in the kidney in the regulation of renal 

sodium transport and blood pressure, as well as dopamine receptor-mediated non-renal 

mechanisms in the regulation of blood 

pressure5,16,32,38–40,62,64,165,170,173,174,178–188,364–367. Germline deletion of the DRD2 
results in oxidative stress dependent-hypertension252. DJ-1 (Park7) and paraoxonase 2 

(PON2)146,163 are involved in the antioxidant properties of the D2R in the kidney. 

Polymorphisms associated with deficiency of DRD2 expression are associated with essential 

hypertension in different populations171,172,174. PON1 SNPs (e.g., −108C>T, 192Q>R) are 

risk factors for endothelial dysfunction and hypertension212,213. Genetic depletion of DJ-1, a 

mitochondrial antioxidant368, results in renal oxidative stress and high blood pressure in 

mice163. Dysfunction of mitochondrial proteins that decrease ROS production (e.g., SOD2, 

UCP2 [vide infra]) may be involved in the target-organ damage associated with 

hypertension369.

Polymorphisms in uncoupling protein 2 (UCP2), a mitochondrial gene with antioxidant 

properties, are associated with an increased risk for diabetic kidney disease370. In addition, a 

common human polymorphism of the UCP2 gene, −866 G>A, has been associated in 

hypertension239.

Glutathione (GSH) is another antioxidant enzyme that plays a role in blood pressure 

regulation371. Glutathione S-transferases (GSTs) catalyze the conjugation of the reduced 

form of GSH. The GST superfamily constitutes up to 10% of the cytosolic protein in some 

mammalian organs372. Low blood level of GST-π concentration is predictive of the time of 

the onset of stroke373. The GSTA1*B allele is considered as a genetic risk factor for 

hypertension in Japanese374. The association between the GSTT1 null and hypertension was 

reported in Italian women but not men198 and GSTM1 null genotype with hypertension in 

Korean men and women199. The GST P1b-1b genotype causes prolonged exposure to ROS 

and increased risk of pre-eclampsia375; GSTP1 313A>G with preeclampsia in Maya-

Mestizo women201. However, a meta-analysis showed no association of GSTM1 and GSTT1 
polymorphisms and the risk of hypertension376.

Glutathione peroxidases (GPXs) are important in the reduction of lipid hydroperoxides and 

H2O2 to water; GPX4 rs713041 (718T>C) may be a predictor of cerebral stroke in 

hypertensive Russians196. GPX3 s3828599 (T>C) is associated with hypertension in Han 

Chinese195.

Heme oxygenase catalyzes the degradation of heme, resulting in the formation of iron, 

carbon monoxide, and biliverdin, which is subsequently converted to bilirubin by biliverdin 

reductase188. HO-1 short repeats (<25) are associated with lower risk of cardiovascular 

disease; HO-1 short repeats are associated with increased HO-1 activity206.

Extracellular superoxide dismutase (EC-SOD, aka SOD3, Cu-Zn SOD) protects the tissues 

from oxidative stress by converting the toxic superoxide anion into less toxic hydrogen 

peroxide (H2O2)8–10,12,13,222,224,231–233,377. The T-A or T-A-C haplotype, rs13306703 and 
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rs2536512 with or without 17998895 in SOD3 gene increases the risk for essential 

hypertension in a Japanese population190. By contrast, 172G>A (rs2536512) polymorphism, 

by itself, is associated with a decreased risk for hypertension in Spaniards230 but is not 

associated with hypertension in other populations233. Germline global deletion of SOD3 in 

mice causes oxidative stress and hypertension189. However, an earlier and later study by 

others did not find SOD3 knockout mice to be hypertensive but found them to have 

increased hypertensinogenic response to NO inhibition or angiotensin II infusion231,232.

Catalase (CAT) catalyzes the conversion of H2O2 to water and oxygen. SNPs in the CAT 
gene promoter region, CAT-844 AA and CAT-262 CT or TT, have been associated with 

essential hypertension among Chinese157, smoking Russians154, Greeks155, but not African-

Americans and Caucasians156. However, CAT haplotype [−844G,−89A,−20T] relative to the 

CAT haplotype [−844A,−89T,−20C] was predictive of a decrease in diastolic blood pressure 

after bariatric surgery in a French population378. In individuals with low-level lead exposure, 

CAT rs769217, C>T, is associated with increased blood markers of oxidative stress and 

hypertension379. By contrast, CAT rs1049982, −20 C>T, is associated with lower blood 

pressure230. In individuals with a family history of hypertension, 20-35% of the variation of 

plasma hydrogen peroxide may be due to genetic factors380, 381.

The transcriptional coactivator peroxisome proliferator-activated receptor-gamma 

coactivator 1 alpha (PGC-1 α) is an important regulator of energy control382 and is a master 

regulator of manganese SOD2 and UCP-2, both of which are mitochondrial proteins with 

antioxidant properties383. Polymorphisms in PGC-1α gene have been associated with 

hypertension in several studies, in males with Gly482Ser+A1704G haplotype, but the 482SS 

is protective of hypertension in Caucasian males in two studies and females in one 

study215–217.

These aforementioned studies show that SNPs of genes involved in redox balance are 

involved in blood pressure regulation.

3. Treatment of oxidative stress in humans with hypertension

Despite the numerous studies demonstrating a role of oxidative stress in cardiovascular 

diseases and the beneficial effects of antioxidants in the treatment of hypertension in animal 

models (Table 2), it has been difficult to demonstrate a role of oxidative stress in the 

pathogenesis and treatment of hypertension in humans305,384. Indeed, oxidative stress may 

be the consequence and not the cause of hypertension in humans385.

Several antioxidant drugs, such as vitamin C, vitamin D, vitamin E, and bardoxolone alone 

or in combination302–307,310–312,314–317,319,320,324,384,386 with other antioxidants have been 

shown to prevent the deleterious effects of oxidative stress or hypoxia in different 

cardiovascular and renal diseases, including hypertension but some with undesirable side 

effects308,309,318,325,326,327,387,388. A meta-analysis in 135,967 participants in 19 clinical 

trials showed that high doses of vitamin E increased mortality387. The authors of a more 

recent meta-analysis concluded that supplements with vitamin E decreased cardiovascular 

mortality risk and folic acid decreased the risk for cardiovascular disease, while β-carotene, 

eicosapentanoic acid, magnesium, selenium, vitamins D and K, and zinc did not show 
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significant risk reduction of cause-specific death or cardiovascular disease388. Thiosulfate, a 

hydrogen sulfide donor, which can decrease oxidative stress, has been reported to improve 

vascular endothelial function in hypertensive humans389,390. Bardoxolone, a Nrf2 agonist 

that increases the expression of several antioxidants, was initially shown to improve renal 

function in humans with advanced chronic kidney disease and type 2 diabetes391,. However, 

it was withdrawn from further clinical trials because of serious adverse events, including 

heart failure and cardiovascular events, and mortality392,393.

Antioxidant treatment with ascorbic acid was initially shown to lower blood pressure in a 

limited number of patients with hypertension394,395. However, larger studies have not found 

a clear beneficial effect of antioxidant vitamins on the development or control of blood 

pressure396,397. The combination of ascorbic acid and polyphenols actually resulted in a 

higher blood pressure variation327. Therefore, there is insufficient evidence to support the 

use of dietary supplements in the primary prevention of cardiovascular diseases388. 

However, the period of treatment and doses398 could be crucial in the beneficial or 

deleterious effects of antioxidant therapy. What is evident from these published data is that 

the effect of the ROS on the cardiovascular system is more complex than expected and 

innovative approaches must be formulated to resolve these discrepant results.

3.1 Antioxidant effect of antihypertensive drugs—The ability of some angiotensin 

II type 1 receptor blockers305,399 and ACE inhibitors305,400 to reduce ROS production and 

oxidative stress is well known. The classical renin-angiotensin system increases ROS 

production22,23,31,34–37,56,57,64 and thus, the beneficial effects of some of the 

antihypertensive drugs may be due to their ability to inhibit NADPH activity. The 

sulfhydrylated ACE inhibitors (e.g., captopril, epicaptopril, and S-zofenopril but not 

enalaprilat, perindoprilat, or quinaprilat401,402) contain a thiol radical that per se has 

antioxidant properties and may prefer to scavenge general radicals rather than superoxide 

radicals400,401. Although, the antioxidant effect of sulfhydrylated ACE inhibitors has been 

ascribed to the thiol group, the vasodilatory effect of S-zofenopril may be due to hydrogen 

sulfide403. The antioxidant effects of other antihypertensive drugs, such as β adrenoceptor 

blockers305,404,405 and calcium channel blockers305,406 have been reported, as well. 

Hypertension and oxidative stress associated with chronic ethanol intake can be prevented 

by the β-adrenoceptor blocker, nebivolol407. Therefore, part of the beneficial effects of some 

antihypertensive drugs may due to their ability to decrease ROS production. However, a 

novel angiotensin II type 1 receptor blocker has been reported to induce oxidative stress in a 

hepatocellular cell line HepG2408.

These disparate effects of anti-hypertensive drugs on ROS production and blood pressure 

regulation may be related to the fact that, as aforementioned, ROS have beneficial effects on 

cell function10,13–21. Anti-oxidants at high concentrations may have pro-oxidant effects409 

and the excessive antioxidation could have deleterious consequences. For example, a small 

but continuous production of ROS expression during physical exercise enhances antioxidant 

defenses and induces the expression of antioxidant enzymes; vitamin C supplementation 

decreases the endurance capacity in humans and rats410 and diminishes some of the 

increased skeletal muscle adaptations following acute exercise411. While physiological doses 

of anti-oxidants may be beneficial, excessive antioxidation could have deleterious 
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consequences because the “remodeling” of skeletal muscles with exercise is dependent on 

reactive oxygen and nitrogen signaling412. The duration of the antioxidant effects may also 

be transient. For example, the biomarkers of oxidative DNA damage were attenuated by 

daily consumption of blueberries for 4 weeks in pre- and stage 1-hypertensive 

postmenopausal women, however, these effects were not found after 8 weeks413.

Increased production of mitochondrial ROS plays a role in the pathogenesis of diabetic 

nephropathy414 and hypertension355. However, ROS produced by NOX4 can induce 

endothelial angiogenesis and protect against chronic cardiac overload415. Moreover, diabetic 

complications are associated with a decrease in mitochondrial ROS production but may help 

in the preservation of renal glomerular function during hyperglycemia 416,417. Therefore, 

“normal” physiological levels of mitochondrial superoxide are important for healthy 

mitochondrial function418.

The amount of ROS formed, type of ROS formed, i.e., superoxide versus H2O2, source, 

duration, and their subcellular locations may be determinants on the consequences of ROS 

production on cell function. It is universally accepted that a redox imbalance induced by an 

excessive and uncontrolled ROS production could have deleterious consequences on blood 

pressure regulation. However, the excessive intake or expression of antioxidants could also 

have delirious consequences on the cardiovascular system.

4. Conclusion

Several genetic polymorphisms that affect pro-oxidant and antioxidant systems, directly or 

indirectly, are associated with hypertension. Antioxidants can reduce the blood pressure in 

humans and animal models of hypertension. Antihypertensive drugs can also have anti-

oxidant effects. However, an indiscriminate decrease in ROS production can have 

deleterious consequences. ROS are involved in the regulation of essential cellular processes. 

Thus, the long-term administration of drugs with antioxidant properties may impair vital 

cellular function, resulting in undesirable side effects. Studies are needed to elucidate the 

role of pharmacogenomics in redox balance in the treatment of hypertension.
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Figure 1. Genes associated with redox balance regulation and Hypertension.
The presence of the SNPs in pro-oxidant and antioxidant genes could increase the ROS 

production in the brain, cardiovascular system, heart, and kidney to induce hypertension.
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Table 1.

Genes associated with hypertension and oxidative stress in humans and/or animal models of hypertension.

Genes associated with oxidative stress

Associated 
with 

hypertension 
in animal 

models SNPs
Associated with 

hypertension in humans

Polymorphisms of pro-oxidant genes

Activating transcription factor 1 (ATF1) rs11169571 [73]

Aminopeptidase A (APA) Aminopeptidase-A (stop), rs2290105 [84, 85]

Angiotensinogen (AGT) [37,76,77] −6G>A, −20A>C, −152A>G, 
−217G>A, rs5050 M235T (rs699)

[78–83]

Angiotensin II type 1 receptor (AGTR1) [86, 87] rs5186 (1166A>C) [84]

Arachidonate 15-lipoxygenase (ALOX1){351] 261R>Q [350]

Cycloxygenase-2 (COX2, PTGS2) −765G>C, rs2143417 [88–90]

Cytochrome P450 [91–94] CYP2C8*3, CYP 450 2J2(−50G>T), 
CYP3A5*3 (rs776746) (Japanese), 

CYP3Ar5*1 (European- and African-
Americans), CYP4A11 (rs1126742), 

CYP17A (rs11191548)

[91,96–103,200,356–358]

DNA-Binding Factor NFkB [104]

Endothelin I rs5335 (70C>G), rs5370 (198G>T) [105,359]

Hemojuvelin (HJV) rs16827043, rs7536827 [106]

Interleukin-6 (IL-6) [107] rs1800795 (−174G>C), rs1800796 
(−572C>G)

[108–111]

Interleukin-17A (IL-17A) [112] rs2275913 (G>A) [113]

Iron regulatory protein (HFE) rs1799945 (63H>D) [114]

Leptin (LEP) [115,116] II/I tetra nucleotide repeat, 
rs799039(G2548A)

[117,118]

Leptin receptor (LEPR) rs1137101 (223Q>R), rs1137100 
(109K>R)

[117–119]

Myeloperoxidase (MPO) rs2333227(−463G>A) [120–124]

NADPH oxidase p22phox (CYBA) [25,125,126] rs9932581 (930A>G), rs78935588 
(640A>G) rs7195830 (49A>G), 

−675A>T rs4673 (242C>T), rs8854A, 
rs9932581G

[127–139]

NADPH oxidase 1 (NOX1) [140, 141]

NADPH oxidase 2 (NOX2) [142–145]

NADPH oxidase 4 (NOX4) [147]
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Genes associated with oxidative stress

Associated 
with 

hypertension 
in animal 

models SNPs
Associated with 

hypertension in humans

Neutrophil cytosol factor 2 (NCF2) rs12094228, rs16861188, and 
rs12066019

[148]

Nitric oxide synthase 3 (NOS3) [149] 894G>T (rs1799983) [150,151]

RAC1 rs6967221 [152]

Xanthine dehydrogenase/oxidase (XDH) rs11904439, rs148756340 [240]

Polymorphisms of antioxidant genes

Catalase (CAT) [153] rs769214 (−844G>A), rs1001179 
(−262C>T), −20C>T, rs769217

[154,155,157]
[230,279]

Cystathione γ-lyase (CSE) [158–160] rs482843 [161]

DJ-1 (PARK7) [162,163] [164]

Dopamine 1 receptor (DRD1) [32,165] (−48A>G, −94G>A rs1799914, 
rs4867798)

[166–170]

Dopamine 2 receptor (DRD2) [32,252] rs6276, rs6277, rs1800497 [171–176]

Dopamine 3 receptor (DRD3) [178–180] rs9880168 [169]

Dopamine 4 receptor (DRD4) −521C>T, DRD4 long allele [182–184]

Dopamine 5 receptor (DRD5) [185–188] No associations published

Fibroblast growth factor 5 (FGF5) rs16998073 [192,193,200]

Glutathione [197]

Glutathione peroxidase (GPX1, GPX3, GPX4)) [194] rs713041 (718C>T) rs3828599 [195,196]

Glutathione S-transferase Alpha 1 (GSTA1) GSTA1*B allele GSTA1*B allele 
+GSTM1 null

[374]

Glutathione S-transferase Mu 1 (GSTM1) GSTM1 null
GSTM1 + GSTT1 null

[198,199,202]
[374]

Glutathione S-transferase Mu 3 (GSTM3) −63A>C [203]

Glutathione S-transferase Pi 1 (GSTP1) A313 [201]

Glutathione S-transferase Theta 1 (GSTT1) GSTT1 null [198]

Heme oxygenase-1 (HO-1) [204,205] <27 GT repeats rs9607267 [206]

Heme oxygenase-2 (HO-2) [207]

Kidney androgen-regulated protein (KAP) [208–210]
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Genes associated with oxidative stress

Associated 
with 

hypertension 
in animal 

models SNPs
Associated with 

hypertension in humans

Methylenetetrahydrofolate reductase (MTHFR) 677C>T [201,211]

Nuclear factor (erythroid-derived 2)-like 2, also 
known as NFE2L2 (NRF2)

[163]

Paraoxonase 1 (PON1) 192Q>R, −108C>T [212,213]

Paraoxonase 2 (PON2) [146]

Peroxisome proliferator-activated receptor γ 
coactivator 1-α (PGC-α)

[214] 482G>S, 482G>S+1704A>G haplotype [215–217]

Sestrin 2 (SESN2) [218]

Superoxide dismutase 1 (Cu-Zn SOD) [220–226]

Superoxide dismutase 2 (Mn SOD) [219,227,228] [150]

Superoxide dismutase 3 (EC SOD) [189,231,232] rs13306703 + rs2536512 +/− rs1799895 [190,230]

Thioredoxin (TXN) rs2301241 (−793T>C) [230]

Thioredoxin interacting protein (TXNIP) [234]

Thioredoxin reductase (TXNRD2) [235]

Uncoupling protein 2 (UCP2) [236–238] −866 G/A [239]
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Table 2.

Antioxidant drugs that decrease blood pressure in humans with hypertension and animal models of 

hypertension.

Antioxidant Species Mechanism of action References

N-acetyl cysteine human, mouse, rat Direct antioxidant, precursor of cysteine reduced 
glutathione, breaks disulphides [243–247]

Apocynin mouse, rat Prevents NADPH oxidase assembly [248–252]

Allicin/Aliin/S-allylcysteine (garlic) human Reduces 8-hydroxy-2’deoxyguanosine, 
malondialdehyde, angiotensin II-generated ROS [253–256]

L-arginine human, mouse, rat Substrate for NO production [257–259]

Bardoxolone human, mouse, rat Nrf2 inducer [260,261]

L-carnitine human, mouse, rat Key compound in the transport of long-chain fatty 
acids into mitochondria for β-oxidation [262,264–266]

Catechins

Black tea (theaflavin-polyphenol) rat Stimulates NO and H2S production, Decreases 
endothelin-1 and angiotensin II [267]

Green tea (polyphenols) human Antioxidant, inhibits catechol-O-methyl transferase, 
NO release [267–269]

Coenzyme Q10 human, mouse, rat

Reduces mitochondrial superoxide production by 
increasing the efficiency of electron transfer from 
Complexes I and II down the mitochondrial electron 
transport chain

[270–273]

Curcurmin human, mouse, rat
A herbal supplement used as a food additive with 
antioxidant properties at low concentrations, induces 
HO-1

[274–277]

Hemin mouse, rat HO-1 inducer (can induce mitochondrial dysfunction) [278–280]

Hesperidin human, rat Free radical scavenger and enhancer of antioxidant 
pathways via ERK/Nrf2, inhibits RAS [281–283]

α-Lipoic acid human, mouse, rat Free radical scavenger and activator of anti-oxidant 
recycling [284–286]

Melatonin human, rat Free radical scavenger and up-regulator of antioxidant 
enzymes. [287–290]

Quercetin human, mouse, rat Free radical scavenger [291–294, 419, 420]

Resveratrol human, mouse, rat Activator of sirtuins and PGC-1α, involved in stress 
response, and Nrf2 [295, 296, 421]

Tempol human, mouse, rat Redox-cycling nitroxide and SOD mimetic [9,16,28,29,34,297,422]

Troxerutin mouse, rat Flavonoid (hydroxyethylrutoside) with antioxidant 
properties [298,299]

Vitamin C human, mouse, rat Free radical scavenger [11,300–306]

Vitamin D human, mouse, rat Inhibits iron-dependent liposomal lipid peroxidation [10,307–319]
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Antioxidant Species Mechanism of action References

Vitamin E human, mouse, rat Free radical scavenger, impairs ROS signaling 11,303,320–323]
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