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Abstract
Ventilation-induced lung injury results from mechanical stress and strain
that occur during tidal ventilation in the susceptible lung. Classical
descriptions of ventilation-induced lung injury have focused on harm from
positive pressure ventilation. However, injurious forces also can be
generated by patient effort and patient–ventilator interactions. While the role
of global mechanics has long been recognized, regional mechanical
heterogeneity within the lungs also appears to be an important factor
propagating clinically significant lung injury. The resulting clinical phenotype
includes worsening lung injury and a systemic inflammatory response that
drives extrapulmonary organ failures. Bedside recognition of
ventilation-induced lung injury requires a high degree of clinical acuity given
its indistinct presentation and lack of definitive diagnostics. Yet the clinical
importance of ventilation-induced lung injury is clear. Preventing such
biophysical injury remains the most effective management strategy to
decrease morbidity and mortality in patients with acute respiratory distress
syndrome and likely benefits others at risk.
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Introduction
Acute respiratory failure often requires mechanical ventilation 
as a potentially life-saving intervention. However, the develop-
ment of ventilation-induced lung injury (VILI) is a potentially  
life-threatening complication. The clinical importance of VILI 
is clear: limiting tidal volume has been shown definitively in  
two multicenter randomized trials to improve survival from 
acute respiratory distress syndrome (ARDS)1,2. Since then, lower 
tidal volumes have become standard of care for patients with  
ARDS3,4. Moreover, lower tidal volumes are used increasingly 
in patients without ARDS5, and clinical data suggest benefit 
in patients at risk of VILI regardless of whether all criteria for  
ARDS are met6–8.

Despite current standard-of-care low tidal volume ventilation, 
some patients still may experience VILI9–11. Limited bedside  
diagnostic tools impede reliable diagnosis of VILI, and consen-
sus is lacking regarding how best to individualize patient care  
for prevention and treatment.

The classic schema of VILI describes four central mecha-
nisms: barotrauma, volutrauma, atelectrauma, and biotrauma12. 
Recent preclinical studies and clinical trials have enhanced and 
refined our understanding of pathophysiology and may help  
prioritize when interventions offer competing effects on  
different mechanistic pathways.

This article will provide an updated view of VILI mechanisms, 
revisit strategies for bedside detection, and provide recom-
mendations for personalized ventilator management to reduce  
the incidence of VILI guided by available evidence.

Refining the classic schema of VILI mechanisms
Barotrauma
The risk of positive pressure ventilation causing gross  
barotrauma, pneumothorax, pneumomediastinum, or subcu-
taneous emphysema, for example, has been recognized for  
centuries13,14. However, most VILI occurs without clinically 
overt barotrauma. In the classic ARDS Network trial that  
demonstrated improved survival targeting tidal volumes of  
6 compared to 12 mL/kg predicted body weight (PBW)2, there 
was no appreciable difference in gross barotrauma (10% versus  
11%). For decades preceding ARDSNet, a more occult form 
of high-pressure injury also termed barotrauma has been  
recognized. In a classic experiment from Webb and Tierney15, 
anesthetized, tracheotomized rats were ventilated with inspira-
tory pressures of 14, 30, or 45 cmH

2
O for one hour and 

compared to a control group that did not undergo positive  
pressure ventilation. The control and low-pressure (14 cmH

2
O) 

groups had no evidence of lung injury, whereas those targeting 
30 or 45 cmH

2
O had increasingly severe histologic injury.  

Interstitial edema was evident at 30 cmH
2
O and both interstitial 

and alveolar edema at 45 cmH
2
O. Injury manifested during the 

experiment as hypoxemia, decreased respiratory compliance, 
and, in the highest-pressure group, death. Extrapolating these  
findings to the clinical setting, not only are alveolar edema,  
hypoxemia, and decreased respiratory compliance hallmarks 

of ARDS16,17 but they can also result directly from VILI. Thus,  
distinguishing between occult VILI, which may be preventable,  
and the sequelae of ARDS is exceedingly difficult.

Volutrauma
The concept of volutrauma, as a potentially distinct form of  
injury from barotrauma, gained popularity following the 
report of a classic experiment by Dreyfuss and colleagues18. 
In this study, rats were ventilated with one of three strate-
gies targeting combinations of tidal volume and airway pres-
sure: high-volume/high-pressure, high-volume/low-pressure, and  
low-volume/high-pressure. The high-volume/low-pressure strat-
egy was achieved with negative pressure ventilation via an iron  
lung. The low-volume/high-pressure strategy was achieved by 
placing rubber bands around the thoracoabdominal region to  
restrict chest wall movement. The study found either strat-
egy with high tidal volumes produced substantial lung injury, 
demonstrated by extravascular lung water, protein leak, and  
alveolar cell injury on electron microscopy. By contrast, the  
low-volume/high-pressure strategy experienced considerably  
less lung injury by all measures. The authors correctly con-
cluded that “an increase in airway pressure without concomitant 
increase in lung volume does not produce pulmonary edema”.  
However, this finding has been misinterpreted by many as 
volutrauma being something different from, and more important 
than, barotrauma.

Reconciling barotrauma and volutrauma
Barotrauma and volutrauma arguably describe related aspects 
of the same phenomenon and can be thought of as mechanical  
stress and strain, respectively19,20. For a deformation of lung  
shape (strain) to occur, a pressure must be applied (stress). Larger 
deformations may be injurious (volutrauma) and are generated  
by higher pressures (barotrauma).

Confusion often arises by misinterpreting airway pressure, which 
reflects respiratory system mechanics and does not differentiate 
lung from chest wall contribution21,22. Airway pressure is not 
a reliable indicator of lung parenchymal stress. The pertinent  
distending pressure of the lungs is the transpulmonary  
pressure (lung stress), the difference in pressure inside versus  
outside the lungs, equal to the airway minus pleural pressure23. 
During a breath hold, when airflow and thus flow-resistive  
pressure are zero, transpulmonary pressure reflects only the  
elastic recoil of the lungs, often referred to as lung parenchy-
mal stress24. In the Dreyfuss experiment18, the high-volume/
low-pressure strategy was achieved via negative pressure ven-
tilation, with an iron lung. Thus, while airway pressure was zero  
(atmospheric) at both end-expiration and end-inspiration,  
pleural pressure was more negative and transpulmonary  
pressure was greater at end-inspiration. Thus, the Drey-
fuss high-volume/low-airway-pressure strategy is actually a  
high-volume/high-transpulmonary-pressure strategy. Changes in 
transpulmonary pressure (but not airway pressure) are concordant: 
larger changes in volume are accompanied by larger changes in 
transpulmonary pressure.
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Atelectrauma
Atelectrauma refers to injury resulting from the cyclic opening 
and closing of recruitable lung units (small airways extending to 
alveolar ducts and alveoli) during tidal ventilation25–27. In small 
airways, cyclic opening and closure with each breath generates  
injurious stress/strain along the airway epithelium as the  
opening airway takes an “unzippering-like” shape with air bolus 
propagation (Figure 1)28,29. Similar locally high stress/strain 
may occur from cyclic recruitment/collapse of unstable alve-
oli that are predisposed to atelectasis because of surfactant  
inactivation30–32. Collapse is likeliest to occur at low end-expiratory 
lung volumes, when airway and transpulmonary pressures 
are comparatively lower. In preclinical models, the applica-
tion of positive end-expiratory pressure (PEEP) to mitigate 
collapse and maintain higher end-expiratory lung volumes  
appears to mitigate lung injury25,26,32.

However, whether atelectrauma leads to clinically significant 
lung injury in the modern era is unsettled. Most patients at 
risk of lung injury are managed with at least modest levels of  
PEEP in current practice33. Clinical trials evaluating more  
aggressive PEEP strategies have not found a compelling benefit 
to higher PEEP, when either applied empirically34,35 or driven  
by respiratory mechanics36,37.

Alveolar interdependence
Neighboring alveoli are mechanically interdependent and share  
an interalveolar septum. In the classic theoretical model 
proposed by Mead and colleagues23, deformation of one  
alveolus, such as from collapse or being liquid-filled, necessar-
ily causes deformation of the adjacent alveolus, generating high 
regional tensile forces. This theoretical model has been supported by  
several studies38–40. For example, Perlman and colleagues40 used 
confocal microscopy to visualize neighboring alveoli and then 

microinfused one alveolus with albumin solution while leaving 
the others aerated. The liquid-filled alveolus shrunk, taking on the 
curvature of the meniscus formed at the mouth of the air–liquid 
interface. This shrinkage of the liquid-filled alveolus caused 
the interalveolar septum to stretch, bulging into the liquid-filled  
alveolus and leaving neighboring aerated alveoli deformed and 
over-expanded (Figure 2). During lung inflation, the adjacent 
air-filled alveoli became more overdistended and deformed,  
predisposing to mechanical failure.

Clinical studies have observed greater inflammation in regions 
of radiographic heterogeneity41, thought to be corollary findings 
to these microscopic observations. This form of VILI, resulting 
from heterogeneous stress/strain distribution both within indi-
vidual alveoli and across neighboring alveoli, is described by 
several synonymous terms in the literature: stress raisers, stress 
concentration, and lung inhomogeneity, among others42,43. The 
concept, however, again speaks to deformation-induced lung  
injury. Much like high tidal volumes cause uniformly high 
stress and strain, mechanical heterogeneity from aerated 
alveoli adjacent to collapsed or liquid-filled alveoli leads to 
locally high stress and strain that gets magnified during tidal  
expansion41,42,44.

Patient self-inflicted lung injury
Re-thinking pressure changes during ventilation in terms of  
transpulmonary pressures makes it clear that biophysical lung 
injury may occur in the at-risk patient regardless of whether  
the ventilator or the patient is generating the pressure45. This 
has led some experts to advocate adopting the term ventilation- 
induced lung injury or patient self-inflicted lung injury  
(PSILI)46–48. Regardless of terminology, the same basic princi-
ples of stress and strain, barotrauma and volutrauma, apply. Two  
important insights follow when considering patient respiratory 

Figure 1. Local stress and strain of epithelial cells generated during recruitment of small airways. (A) Air bubble propagation 
down the atelectatic airway generates a dynamic wave of stress and strain at the interface of the air bubble and collapsed airway. As 
the air bubble approaches, the epithelial cell is pulled inward toward the bubble. As the air bubble passes, the cell is pushed outward.  
(B) The air bubble similarly generates stress and strain of epithelial cells during propagation along flooded airway. This figure was  
re-used from Ghadiali SN and Gaver DP, Biomechanics of liquid–epithelium interactions in pulmonary airways. Respir Physiol Neurobiol 
doi:10.1016/j.resp.2008.04.008 with permission28.
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Figure 2. Spatial heterogeneity increases stress and strain due 
to alveolar interdependence. In the isolated perfused rat lung, 
confocal microscopy with optical sections 2 µm thick permits direct 
visualization of alveoli. Top: adjacent alveoli share a common septum 
and are mechanically interdependent. In normal conformation, 
strain is minimized across neighboring air-filled alveoli. Bottom: in 
a single-alveolus model of pulmonary edema, the effects on local 
strain distribution of heterogeneous parenchymal consolidation and 
flooding can be appreciated. The liquid-filled alveolus shrinks owing 
to micromechanical effects of meniscus formation. As a result, the 
adjacent air-filled alveolus bulges and overdistends. This figure 
was reprinted with permission of the American Thoracic Society. 
Copyright © 2020 American Thoracic Society. Cite: Perlman CE, 
Lederer DJ, Bhattacharya J. 2011. Micromechanics of alveolar 
edema. Am J Respir Cell Mol Biol, 44(1), 34–9. The American Journal 
of Respiratory Cell and Molecular Biology is an official journal of the 
American Thoracic Society40.

effort. One, low airway pressures can be falsely reassuring 
if forceful inspiratory efforts are made in the mechanically  
ventilated, spontaneously breathing patient at risk of VILI49,50.  
Two, biophysical injury may occur even in the absence of positive 
pressure ventilation45.

Biotrauma: the final common pathway of VILI
Biotrauma refers to the biological response to mechanical injury. 
Regardless of the mechanism of VILI, mechanical cellular injury 
generates a regional and systemic inflammatory response that 

further propagates injury51–54. Release of damage-associated  
molecular patterns (DAMPs) in response to mechanical 
injury promotes the recruitment of immune cells that secrete  
pro-inflammatory cytokines55. Paired with overstretch-induced 
activation of alveolar epithelial and vascular endothelial cell sig-
naling cascades and dysregulation of the neuroinflammatory 
reflex56,57, a robust systemic inflammatory response results. The  
repeated cyclic exposure to injurious mechanical forces 
during tidal ventilation drives this inflammatory process  
further, which increases alveolar capillary barrier permeabil-
ity, thereby degrading lung mechanics further and predisposing  
to additional VILI in a positive feedback loop.

Biotrauma drives morbidity and mortality from VILI
Morbidity and mortality from VILI are driven primarily by 
the downstream effects of lung injury on other organs, that 
is, by biotrauma. In a classic mechanistic clinical trial from  
Ranieri and colleagues53,58, a lower tidal volume strategy attenu-
ated systemic inflammation, and the difference in attenuated 
inflammation predicted risk of extra-pulmonary organ fail-
ures within 72 hours. In the ARDS Network tidal volume trial, 
lower tidal volumes similarly attenuated systemic inflam-
mation and decreased duration of shock and renal failure, 
while no improvement in gas exchange over the first few days 
nor change in gross barotrauma was observed2,59. Therefore,  
protective ventilation against VILI is not only lung protective 
but also protective against biotrauma-mediated multiple organ  
failure. This multi-system effect appears to be central to its  
associated survival benefit.

Monitoring for VILI at bedside
There remains no strategy for the definitive diagnosis of VILI. 
Molecular markers of lung injury measured in the blood that 
are currently used in research, such as soluble receptor for  
advanced glycation end-products (sRAGE) and surfactant  
protein D (SP-D), hold potential for use in distinguishing 
lung injury from cardiogenic edema and prognosticating in  
ARDS60–62, but they may not distinguish mechanical injury 
(VILI) from other forms of lung injury or ARDS more  
broadly. Bedside lung and respiratory system mechanics have 
prognostic value, but their measures do not exhibit a threshold 
effect for VILI—i.e. no particular numerical cutoff value  
differentiates VILI risk63–65—likely because of the many sources 
of stress and strain at play simultaneously in the injured lung. 
Given the association of VILI with biotrauma and multi-organ  
failure2,53,58,59, the patient with concomitant respiratory and  
extrapulmonary organ failures, and especially distributive shock, 
should be considered at high risk of VILI. Patients with certain  
predisposing diagnoses, including pancreatitis, post-esophagec-
tomy, traumatic brain injury, and intracranial hemorrhage, are  
also classically at high risk8,66,67. Recommendations for assessing 
VILI risk at bedside are reviewed in detail elsewhere43.

Monitoring tidal distension
Classic measures of VILI risk remain central to bedside  
management, with tidal volume and plateau pressure as surro-
gates of strain and stress, respectively. However, neither meas-
ure offers a data-driven threshold for risk stratification and must  
be interpreted in the context of a broader clinical assessment.
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In ARDS, the volume of aerated lung is reduced relative to  
healthy lung size owing to atelectasis and edema, a phenom-
enon termed “baby lung”68,69. Because aerated lung volume is 
smaller in ARDS, smaller tidal volumes are needed1,2,53, but  
there is no widely accepted strategy for individualizing tidal  
volume to baby lung size19,64. Airway plateau pressure, measured 
during an end-inspiratory pause, similarly does not account for 
differences in chest wall mechanics and may reflect elevations 
in pleural pressure, such as from obesity or a tense abdomen,  
for example22,70,71.

Using esophageal manometry to infer pleural pressure and  
calculate transpulmonary pressure (as airway minus esophageal 
pressure) may help overcome these limitations (Figure 3)21,72. 
Esophageal pressure is measured by inserting a thin-walled  
balloon catheter into the mid-thoracic, retrocardiac esophagus,  
which positions the balloon approximately in the center of 
the thoracic cavity. Catheter insertion and interpretation of  
esophageal pressure are reviewed elsewhere72,73. Transpulmo-
nary pressure values, a measure of global lung stress, have  
intrinsic meaning. For example, a transpulmonary pressure of  

Figure 3. Transpulmonary pressure (Pairway – Ppleural) is the pertinent distending pressure of the lung. Measurements to ascertain 
lung distension at end-inspiration and end-expiration are taken during breath holds, at which time air flow is zero and airway pressure 
equilibrates throughout communicating airways. (A) Lean, non-intubated patient with normal spontaneous tidal breathing at end inspiration. 
Transpulmonary pressure of 5–10 cmH2O is typical at end inspiration in lean healthy individuals. (B) Lean, intubated patient during positive 
pressure ventilation at end inspiration while passive. (C) Lean, intubated patient with forceful inspiratory effort has produced very high 
transpulmonary pressure that would be unsafe in patients at risk of ventilation-induced lung injury (VILI) despite the relatively low airway 
pressure. The observed transpulmonary pressure of 25 cmH2O is typical at total lung capacity in lean healthy individuals. (D) Obese, 
intubated patient, with chest wall contributing high pleural pressure that results in lower transpulmonary pressure and lower lung volume at 
end inspiration despite higher airway pressure. Even though plateau airway pressure is relatively high, the risk of VILI is lower because lung 
volume and transpulmonary pressure are lower. Paw, airway pressure; Ppl, pleural pressure; Ptp, transpulmonary pressure. This figure was 
adapted from Beitler J, Malhotra A, and Thompson B, Ventilator-induced lung injury. Clin Chest Med doi:10.1016/j.ccm.2016.07.004 with 
permission74.
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20–25 cmH
2
O is the typical range observed at total lung capacity 

in healthy individuals75, and this value therefore can be thought  
of as the maximal stress the lungs experience in normal life. 
A transpulmonary pressure of 5–10 cmH

2
O is characteristic 

of end-inspiration during normal tidal ventilation, and a value 
of around 0 cmH

2
O (depending on body position) is typical 

in lean healthy individuals at relaxed end-exhalation3,73,76–79. 
While transpulmonary pressure is most often used for setting  
PEEP37,80, its potential role to guide tidal volume targets is an  
area of active investigation.

Airway driving pressure may be a more universally available  
surrogate to individualize tidal volume81. Airway driving  
pressure, calculated as plateau pressure minus PEEP, is math-
ematically equivalent to the tidal volume scaled to respiratory  
system compliance. In an individual patient meta-analysis of  
multiple clinical trials, higher driving pressure was associated  
with increased mortality in patients with ARDS65. Although 
there is no clear threshold effect, one might reasonably  
interpret values of 10 cmH

2
O or less as within the range of  

normal for healthy individuals based on data using esophageal  
manometry77–79, and thus a reasonable target range in ARDS, 
although heterogeneous stress distribution from alveolar  
interdependence may still predispose to VILI in injured lungs.

Monitoring regional mechanics
Recent technological advances may permit monitoring regional 
hyperinflation and atelectrauma at bedside. Lung electrical  
impedance tomography (EIT) is a potentially revolutionary  
tool that facilitates evaluating regional lung distension in real 
time. Current commercial lung EIT interfaces consist of a 
belt, containing multiple electrodes, that is placed around the  
mid-chest. Images qualitatively resemble a single cross-sectional 
slice from a computed tomography scan (although containing  
different information) and are acquired non-invasively and 
without radiation. Technical aspects of EIT are reviewed  
elsewhere82. EIT was used in the discovery that spontaneous  
effort can cause transient hyperinflation from Pendelluft83, and 
has been used to quantify tidal opening collapse, end-tidal  
hyperinflation, and regional mechanical heterogeneity84–86. Cur-
rent commercial devices are not without limitations87. The  
extent to which a single cross-sectional plane from EIT can 
be used to make inferences about the whole lung is debat-
able, and EIT’s spatial resolution within that cross-sectional 
slice is markedly less than that of computed tomography (CT).  
Strategies for EIT-guided ventilation must be developed and 
tested in clinical trials before widespread adoption. Still, as 
technology and the device interface continue to improve, there 
is considerable potential for EIT monitoring to provide new  
information at bedside regarding regional ventilation that may  
help guide lung-protective ventilation in the future.

Preventing VILI
Tidal volume targets
Maintaining a tidal volume of 4–8 mL/kg PBW and a plateau  
pressure of ≤30 cmH

2
O are reasonable initial ventilation  

targets, following the ARDS Network strategy2. However, 

recent mechanistic clinical trials suggest that lowering tidal  
volumes to 3–4 mL/kg PBW, using extracorporeal gas exchange  
as needed, further attenuates pulmonary and systemic inflamma-
tion (biotrauma) in patients with severe ARDS10,11.

Lending further weight to this possibility is the recently  
published, controversial EOLIA trial88. EOLIA compared a  
conventional tidal volume strategy of 6 mL/kg PBW tidal  
volume with a plateau pressure of 28–30 cmH

2
O versus an  

“ultra-low” tidal volume strategy targeting a plateau pressure 
of ≤24 cmH

2
O facilitated via extracorporeal membrane oxy-

genation (ECMO) in patients with very severe ARDS. Sixty-day  
mortality was 46% with the conventional strategy versus 35% 
with the ECMO-facilitated ultra-low tidal volume strategy, a  
clinically important difference that did not achieve statistical 
significance. Reframing EOLIA not as an ECMO trial per se  
but as a VILI prevention trial means that the interpretation that  
ultra-low tidal volumes near 3 mL/kg PBW may confer additional 
benefit in very severe ARDS has sound biological plausibility, 
though available data are not definitive.

Mitigating heterogeneous stress/strain distribution via 
prone positioning
At first glance, it might seem difficult to target heterogeneous 
lung insufflation with clinical management. Targeting lower  
tidal volume decreases the magnitude of deformation even with 
lung heterogeneity but does not alter the underlying heterogeneity.

Prone positioning is one strategy to facilitate more homogeneous 
lung aeration and more uniform strain distribution. Proning 
directs gravitational forces to offset forces from shape-matching 
of the lungs to the thoracic cavity89. Indeed, this decrease in  
heterogeneity is thought to be a principle mechanism by which 
proning affords benefit90. Early prone positioning was shown 
in a multicenter trial of moderate–severe ARDS to improve  
survival9, and it remains underutilized in clinical practice91.  
Discordant findings across trials of prone positioning may  
explain this practice inertia, but several factors explain why 
the latest trial may have differed from others: low tidal volumes 
were mandated per protocol unlike several older trials, patients  
were prone for at least 16 hours/day, proning was done early  
rather than as rescue, and proning was continued daily until  
patients demonstrated durable improvement in lung function92.

Atelectrauma and PEEP titration
There remains no convincing data to recommend a particular  
PEEP titration strategy in ARDS. Trials comparing an empiric  
high-PEEP strategy to a lower PEEP strategy have not dem-
onstrated benefit with either strategy but also have not shown  
greater risk of barotrauma with higher PEEP34,35. In contrast, the 
recent Alveolar Recruitment Trial36 found increased barotrauma 
and mortality with PEEP titrated to reduce driving pressure  
compared to an empiric low-PEEP strategy, but concomitant 
use of an unusually aggressive recruitment maneuver in the  
intervention arm (stepwise recruitment up to PEEP 45 cmH

2
O 

with driving pressure 15 cmH
2
O over several minutes) likely  

contributed to harm associated with the intervention.
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Esophageal pressure-guided PEEP to maintain a non-negative 
transpulmonary pressure was compared to a low-PEEP strategy 
in a small single-center trial and found improved survival after  
adjusting for overall illness severity80. However, a larger  
multicenter trial comparing esophageal pressure-guided PEEP to 
empiric high PEEP found no significant difference in mortality37. 
Differences in the comparator arm between trials may explain  
these seemingly discrepant outcomes91.

More broadly, uptitrating PEEP likely has tradeoffs for VILI. 
Any benefit of preventing atelectrauma may be offset by  
increasing end-tidal hyperinflation whenever end-inspiratory  
pressures also increase. Simultaneous lowering of tidal volume 
as PEEP is increased would negate exacerbating overdistension,  
but whether such an approach affords clinical benefit has not  
been tested in a clinical trial to date.

Spontaneous breathing
The potential importance of PSILI to clinical management is 
yet to be defined. For mechanically ventilated patients with  
ARDS at greatest risk of VILI, one recent multicenter trial  
suggested neuromuscular blockade for 48 hours improved  
survival in patients with moderate–severe ARDS compared to 
a deep sedation strategy without neuromuscular blockade93.  
However, a second recent trial demonstrated no discernable  
benefit with neuromuscular blockade when compared to a  
management strategy prioritizing light sedation94. Several  
differences between the trials might explain their discordant  
findings96, but some experts still believe there may be a role  
for suppressing respiratory drive in severe ARDS when forceful  
spontaneous respiratory efforts produce higher tidal volumes  
than intended3,97.

Sedation alone may not consistently eliminate patient effort97,98. 
Common ventilator modes, including pressure support and any  
form of assist-control, also are ineffective at limiting tidal 
volume. Even in volume-targeted modes, breath stacking  
dyssynchrony may yield higher volume changes than intended, 
generated from consecutive inspiratory cycles with incomplete 
exhalation between them97,98,100.

Spontaneous respiratory effort also may play a role in regional 
overdistension. Spontaneous inspiratory effort during invasive 
ventilation can produce transient regional hyperinflation via  
pendelluft (transient air movement between alveoli within 
the lung), which theoretically also could be injurious81. 
The extent to which this observation is clinically relevant is  
unknown.

Patient–ventilator interactions are often intermittent and effort  
variable over time. The dose response of such interactions 
with VILI remains unclear. Dyssynchronies such as double or 
reverse triggering that produce breath stacking may be injurious 
via repeated exposure to high tidal volumes, but intermittent  

exposure has unclear significance and could be beneficial to  
maintaining lung recruitment. As a result, the optimal man-
agement strategy also remains unclear. Whether to pursue 
deep sedation and/or introduce neuromuscular blockade to 
suppress respiratory drive and facilitate passive ventilation 
requires weighing several factors43: biological predisposition  
to VILI61,101,102, heterogeneity of regional lung mechanics41,42,103,104, 
delays in early patient mobilization with risk of ICU-acquired  
weakness105–107, and risk of diaphragm disuse atrophy that  
might prolong ventilator dependence and hospital stay108–110, 
among other factors. In high-risk patients with severe ARDS,  
frequent breath stacking in particular is likely to be injurious 
and warrant suppression. In cases of mild ARDS, less frequent  
breath stacking, or other patient–ventilator interactions, the  
risk/benefit of suppressing patient effort is less clear.

For the non-intubated patient with concern for PSILI, how to 
optimize management remains to be defined. High-flow nasal  
cannula exerts several physiologic effects that may be lung  
protective in the at-risk patient and warrant further study111,112. 
How best to optimize noninvasive positive pressure ventilation  
remains unclear and may depend on the device interface  
used113,114. In patients with ARDS or purely hypoxemic  
respiratory failure, high-flow nasal cannula appears to be the 
preferred noninvasive support strategy based on available  
evidence115. Given the many co-interventions that come with  
invasive ventilation, prophylactic intubation seems unlikely to 
be beneficial, although delayed intubation in patients failing  
noninvasive support also may be deleterious116.

Conclusions
Over two decades after the first landmark trial from Amato 
and colleagues1, protection against VILI remains the central  
treatment for ARDS. The extent to which patients without  
ARDS or who are not intubated experience ventilation-induced 
lung injury is unclear. Current best practice for lung protec-
tion involves weighing bedside assessment of individual  
patient-specific risk of VILI against tradeoffs of possible inter-
ventions. This risk/benefit analysis should be guided by expert 
clinical judgement with interpretation of respiratory mechan-
icsmeasures that do not exhibit a threshold effect. In the years  
ahead, technological and molecular diagnostic advances may 
help guide that risk assessment in a more precise manner. While  
there remains no consensus on the optimal strategy to person-
alize ventilatory support for VILI protection, there is universal  
agreement that protection against VILI improves morbidity and 
mortality in at-risk patients.

Abbreviations
ARDS, acute respiratory distress syndrome; ECMO, extra-
corporeal membrane oxygenation; EIT, electrical imped-
ance tomography; PEEP, positive end-expiratory pressure; 
PBW, predicted body weight; VILI, ventilation-induced lung  
injury.
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