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Introduction. Idiopathic pulmonary arterial hypertension (IPAH) is a severe cardiopulmonary disease with a relatively low survival
rate. Moreover, the pathogenesis of IPAH has not been fully recognized. Thus, comprehensive analyses of miRNA-mRNA network
and potential drugs in IPAH are urgent requirements.Methods. Microarray datasets of mRNA and microRNA (miRNA) in IPAH
were searched and downloaded from Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) and differentially
expressed miRNAs (DEMIs) were identified. Then, the DEMI-DEG network was conducted with associated comprehensive
analyses including Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analysis, and protein-protein interaction (PPI) network analysis, while potential drugs targeting hub genes were investigated
using L1000 platform. Results. 30 DEGs and 6 DEMIs were identified in the lung tissue of IPAH. GO and KEGG pathway
analyses revealed that these DEGs were mostly enriched in antimicrobial humoral response and African trypanosomiasis,
respectively. The DEMI-DEG network was conducted subsequently with 4 DEMIs (hsa-miR-34b-5p, hsa-miR-26b-5p, hsa-miR-
205-5p, and hsa-miR-199a-3p) and 16 DEGs, among which 5 DEGs (AQP9, SPP1, END1, VCAM1, and SAA1) were included
in the top 10 hub genes of the PPI network. Nimodipine was identified with the highest CMap connectivity score in L1000
platform. Conclusion. Our study conducted a miRNA-mRNA network and identified 4 miRNAs as well as 5 mRNAs which may
play important roles in the pathogenesis of IPAH. Moreover, we provided a new insight for future therapies by predicting
potential drugs targeting hub genes.

1. Introduction

Idiopathic pulmonary arterial hypertension (IPAH), a rare
but life-threatening cardiopulmonary disease without any
known associated disease or genetic cause, is characterized
by progressively increased pulmonary artery pressure
(PAP) and pulmonary vascular resistance (PVR) [1, 2].
New therapies such as calcium channel antagonists, endothe-
lin receptor antagonists, and phosphodiesterase type 5
(PDE5) inhibitors have been applied to IPAH patients in
the last two decades and have improved the survival rate of
patients who are specifically sensitive to the drugs [3, 4].
For patients who failed to respond adequately to medical
therapies, lung transplantation remained the last option.
For now, IPAH is still supposed to be an incurable disease

resulting in progressive loss of quality of life with a total 5-
year survival rate of 51% and a 5-year survival rate of 47%
despite receiving lung transplantation [5, 6]. Thus, compre-
hensive analyses of potential mechanisms and searching for
more possible therapies in IPAH are urgently needed.

microRNA (miRNA) is a type of small, noncoding RNA,
which negatively regulates the expression of targeted genes
via posttranscriptional regulation [7]. Previous studies have
uncovered that dysregulation of miRNAs such as miR-204
and miR-21 was associated with the pathobiology of IPAH
[8–10], suggesting miRNAs maybe novel therapeutic targets.
However, few studies explore the gene targets and molecular-
regulated network of IPAH-relevant miRNAs, which are nec-
essary for the development of miRNA-based treatments [11].
In this regard, systematic analyses combining transcriptomic
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data with miRNA data are demanded to identify essential
pathways and potential drugs in IPAH.

Bioinformatic analysis has been widely used to investi-
gate potential mechanisms in the pathology of disease since
it was developed [12–14]. Recently, a few diagnostic bio-
markers for IPAH have been found by application of bioin-
formatic analysis [15], but the miRNA expression in IPAH
and their functional roles as well as mRNA targets are poorly
studied.

In this study, microarray datasets of IPAH were searched
and downloaded from Gene Expression Omnibus (GEO).
miRNA-mRNA network was established accompanied with
associated comprehensive analyses in order to better under-
stand the mechanisms of IPAH. Additionally, potential drugs
targeting hub genes were investigated to contribute to future
therapies of IPAH.

2. Methods

2.1. Data Resources. The mRNA and miRNA expression pro-
files of IPAH patients from Gene Expression Omnibus
(https://www.ncbi.nlm.nih.gov/geoprofiles/) and ArrayEx-
press (https://www.ebi.ac.uk/arrayexpress/) were searched.
GSE113439 and GSE117261 with mRNA expression profile
and GSE67597 with miRNA expression profile were identi-
fied in GEO, while no related profile was found in ArrayEx-
press. Subsequently, secondary PAH patients with other
diseases were excluded. Finally, GSE113439 with 6 IPAH
and 11 controls, GSE117261 with 32 IPAH and 25 controls,
and GSE67597 with 7 IPAH and 8 controls were included
in this study. Additional approval by an ethics committee
was not necessary because the datasets included in the cur-
rent study were downloaded from public databases.

2.2. Identification of DEGs and DEMIs. R-platform (http://R-
project.org) and limma package [16] were used to screen the
differentially expressed genes (DEGs) and differentially
expressed miRNAs (DEMIs) between IPAH and healthy
controls. ∣log2FC ∣ >1was considered the threshold for differ-
ent expressions, and statistical difference was defined as
adjusted P value < 0.05. Those with log2FC < 0 were consid-
ered as downregulated genes, while those with log2FC > 0
were considered as upregulated genes. The visualization of
DEGs and DEMIs was realized in the volcano plot and heat
map by pheatmap package in R platform. Two series
(GSE113439 and GSE117261) containing mRNA expression
profile were from the same platform ([HuGene-1_0-st]
Affymetrix Human Gene 1.0 ST Array [transcript (gene)

version]) and merged into one for analyses after batch
normalization realized by sva package in R platform.

2.3. Functional Enrichment Analyses. R package clusterProfi-
ler [17] was applied to conduct Gene Ontology (GO) analysis
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis to identify the potential biolog-
ical function of DEGs and analyze the enriched pathway of
the key DEGs. Adjusted P value < 0.05 was considered statis-
tically significant.

2.4. PPI Network Analysis. The online tool, STRING (http://
string-db.org/) [18], was employed to establish protein-
protein interaction (PPI) network of DEG-encoded proteins
with a confidence score > 0:40. Subsequently, hub genes
and core modules were selected and visualized by Cytoscape
software (V3.5.1; http://cytoscape.org/) [19].

2.5. Prediction of miRNA-Targeted Gene and DEMI-DEG
Network. To better understand the function of DEMI,
miRDB (http://www.mirdb.org/), TargetScan (http://www
.targetscan.org/vert_72/), TargetMiner (https://www.isical
.ac.in/∼bioinfo_miu), and miRWalk (http://zmf.umm.uni-
heidelberg.de/apps/zmf/mirwalk) were used to predict target
genes. Predicted genes in these four databases were pooled
into a solitary database, and the intersection of DEGs and
the database were regarded as significantly differentially
expressed target genes. Furthermore, the DEMI-DEG net-
work was constructed by Cytoscape software.

2.6. Prediction of Potential Drugs for IPAH. L1000 platform
(https://clue.io/) was used to explore potential drugs toward
IPAH for pharmaceutical development [20]. Upregulated
DEGs involved in the DEMI-DEG network were submitted
to the L1000 platform for prediction of potential drugs for
IPAH. Drugs with the CMap connectivity score of +90 or
higher, and of -90 or lower, were considered to be potential
effective drugs.

3. Results

3.1. Identification of DEGs and DEMIs. The basic informa-
tion of the datasets related to IPAH is shown in Table 1.
The expression of different genes was calculated according
to mapped probes, and average value was applied if multiple
probes matched the same gene. Overall, 20146 genes were
analyzed in GSE113439 and GSE117261. 30 DEGs were
found between IPAH patients and the control group, among
which 14 were upregulated and 16 were downregulated
(Figure 1(a)). Furthermore, 2006 miRNAs were analyzed

Table 1: Details of datasets related to IPAH patients.

GEO ID Platform Organism Experiment type Samples (case vs. control) Country Year

mRNA
GSE117261 GPL6244 Homo sapiens Expression profiling by array 32 vs. 25

United States
of America

2018

GSE113439 GPL6244 Homo sapiens Expression profiling by array 6 vs. 11 Canada 2018

miRNA GSE67597 GPL18402 Homo sapiens Noncoding RNA profiling by array 7 vs. 8
United States
of America

2015

IPAH: idiopathic pulmonary arterial hypertension; GEO; Gene Expression Omnibus.
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Figure 1: (a) Volcano plot of DEGs in IPAH. Green represents downregulated DEGs; red represents upregulated DEGs; and black represents
no difference. (b) Heat map of the DEGs in IPAH compared with normal controls. Red represents greater expression and green represents less
expression. (c) Volcano plot of DEMIs in IPAH. DEG: differentially expressed gene; IPAH: idiopathic pulmonary arterial hypertension;
DEMI: differentially expressed miRNA.
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Figure 2: The top 10 enriched Gene Ontology terms in biological process (a), cellular component (b), molecular function (c) and enriched
Kyoto Encyclopedia of Genes and Genomes pathway (d) of DEGs. DEG: differentially expressed gene.
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and 6 DEMIs were found, indicating these 6 DEMIs may par-
ticipate in the pathogenesis of IPAH (Figure 1(b)). Details of
DEGs and DEMIs between IPAH patients and the control are
showed in Supplement Tables 1 and 2, respectively.

3.2. Functional Enrichment Analyses. Subsequently, func-
tional enrichment analyses were performed to reveal the
function of DEGs and the results are shown in Figure 2.

Go enrichment analysis revealed that DEG-related bio-
logical processes (BP) were mostly enriched in antimicrobial
humoral response (P value < 0.0001), neutrophil chemotaxis
(P value < 0.0001), and neutrophil migration (P value <
0.0001), while cellular components (CC) were mainly
enriched in cytoplasmic vesicle lumen (P value < 0.0001),
vesicle lumen (P value < 0.0001), and collagen-containing

extracellular matrix (P value < 0.0001). In addition, molecu-
lar function (MF) analyses suggested that DEGs were
involved in RAGE receptor binding (P value = 0.0016), integ-
rin binding (P value = 0.0159) and Toll-like receptor binding
(P value = 0.0029).

To investigate the crucial pathways of these DEGs, KEGG
pathways analysis was performed and the significant pathways
are shown in Figure 2. The DEGs were enriched in the pathway
of African trypanosomiasis (P value = 0.0020), malaria (P value
= 0.0020), fluid shear stress and atherosclerosis (P value =
0.0020), and IL-17 signaling pathway (P value = 0.0085).

3.3. PPI Network Analysis. Using the STRING database, we
performed PPI network analysis for DEGs. As we have
shown in Figure 3, 24 nodes were mainly identified. AQP9,
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Figure 3: Protein-protein interaction network analysis (a) and hub genes (b) identified by Cytoscape.
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EDN1, S100A12, S100A8, S100A9, SPP1, HMOX1, VCAM1,
LCN2, and SAA1 were the top 10 hub genes.

3.4. Prediction of miRNA-Targeted Gene and DEMI-DEG
Network. In order to further identify important miRNA-
mRNA-regulated axes in IPAH, four databases (miRDB,
TargetScan, TargetMiner, and miRWalk) were employed to
predict the target genes of DEMIs. 9095 genes were pre-
dicted as target genes of 6 DEMIs. GO and KEGG analyses
of those genes were performed with results shown in Supple-
ment Figure 1. Among the target genes of DEMIs, 16 were
intersected with DEGs (HBB, COL14A1, WIF1, OGN,
RGS1, ASPN, ESM1, SFRP2, ENPP2, EDN1, VCAM1,

CCDC80, AQP9, SAA1, SOSTDC1, and SPP1), which were
used to construct the DEMI-DEG network (Figure 4). The
network consisted of 4 DEMIs, 16 predicted target DEGs,
and 27 edges, while hsa-miR-99a-5p and hsa-miR-30a-5p
were connected with no predicted target DEGs and were
excluded from the network. hsa-miR-34b-5p was related to
most of the predicted target DEGs (14 edges), followed by
hsa-miR-26b-5p (7 edges), hsa-miR-205-5p (4 edges), and
hsa-miR-199a-3p (2 edges). In the other hand, ASPN,
CCDC80, and SOSTDC1 were connected with 3 DEMIs,
respectively. Details of DEGs and DEMIs in the DEMI-
DEG network are showed in Tables 2 and 3, respectively.

3.5. Prediction of Potential Drugs for IPAH. The 12 upreg-
ulated DEGs in the DEMI-DEG network were uploaded to
the L1000 platform to search for potential drugs, and the
top 20 ranked by CMap connectivity score are listed in
Table 4.

4. Discussion

Though new therapies have been developed in recent years,
IPAH remains a severe disease with continuous suffering to
patients and society. Therefore, better understanding of
potential mechanisms in the pathogenesis of IPAH may shed
a light for future studies.
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Figure 4: DEMI-DEG network. Rhombus represents miRNA while rectangle represents mRNA. DEG: differentially expressed gene; DEMI:
differentially expressed miRNA.

Table 2: Details of the 16 DEGs included in DEMI-DEG network.

Gene Ensembl ID Log2FC Adjusted P value

HBB ENSG00000244734 2.1829 3.26E-10

COL14A1 ENSG00000187955 1.1296 3.55E-06

WIF1 ENSG00000156076 1.3922 3.82E-06

OGN ENSG00000106809 1.0880 1.34E-05

RGS1 ENSG00000090104 1.2087 1.95E-05

AQP9 ENSG00000103569 -1.3423 2.29E-05

ASPN ENSG00000106819 1.3752 2.96E-05

ESM1 ENSG00000164283 1.1911 3.45E-05

SFRP2 ENSG00000145423 1.3301 3.83E-05

ENPP2 ENSG00000136960 1.1842 9.72E-05

SAA1 ENSG00000173432 -1.1547 0.0002

EDN1 ENSG00000078401 1.0631 0.0006

VCAM1 ENSG00000162692 1.0820 0.0006

SOSTDC1 ENSG00000171243 -1.1114 0.0014

CCDC80 ENSG00000091986 1.0089 0.0024

SPP1 ENSG00000118785 -1.2404 0.0026

DEG: differentially expressed gene; DEMI: differentially expressed miRNA;
FC: fold change.

Table 3: Details of the 4 DEMIs included in the DEMI-DEG
network.

Gene miRBase Log2FC P value

hsa-miR-205-5p MIMAT0000266 1.2088 0.0038

hsa-miR-199a-3p MIMAT0000232 1.2975 0.0109

hsa-miR-34b-5p MIMAT0000685 1.2421 0.0270

hsa-miR-26b-5p MIMAT0000083 1.1240 0.0418

DEG: differentially expressed gene; DEMI: differentially expressed miRNA;
FC: fold change.
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In the present study, 30 DEGs, mostly related to immune
and inflammatory response such as neutrophil chemotaxis
and migration, integrin binding and Toll-like receptor bind-
ing, and significantly enriched in inflammation pathways like
IL-17 signaling pathway, and 6 DEMIs were found in IPAH.
The DEMI-DEG network was conducted subsequently with
4 DEMIs (hsa-miR-34b-5p, hsa-miR-26b-5p, hsa-miR-205-
5p, and hsa-miR-199a-3p) and 16 DEGs. We found that 5
DEGs (AQP9, SPP1, END1, VCAM1, and SAA1) were
included in the top 10 hub genes of the PPI network, indicat-
ing those factors may play important roles in the pathogene-
sis of IPAH. Finally, drugs including nimodipine were
identified. To our knowledge, this is the first study that con-
ducted the network of mRNA and miRNA and predicted
potential drugs in IPAH, which provides a foundation for
further research and development of therapy.

Previous studies have revealed the important role of the
miRNAs and mRNAs that is identified in our DEMI-DEG
network in the pathogenesis of IPAH. Wu et al. identified
dysregulated miRNAs in IPAH via miRNA profiling and
qRT-PCR. miR-26b-5p and miR-199a-3p were detected as
two of the top 5 most significantly increased miRNAs target-
ing major PAH related pathways including Wnt/β-catenin in
end-stage IPAH [21]. In pulmonary vascular smooth muscle
cells (PASMCs), miR-205-5p was reported to suppress cell
proliferation by targeting MICAL2-mediated Erk1/2 signal-
ing, which may be regarded as a therapeutic target in PAH
[22]. For mRNA, 5 mRNAs of the top 10 hub genes in the
PPI network were included in our DEMI-DEG network.
Among them, endothelin-1 (EDN1) is a potent vasoconstric-
tor and its receptors are therapeutic targets in the treatment

of PAH [23, 24]. It was able to promote contraction via
increasing intracellular Ca2+ and increasing PASMC prolifer-
ation and migration, leading to vascular remodeling, which is
a key mechanism underlying PAH [25–27]. Vascular cell
adhesion molecule 1 (VCAM1), an adhesion molecule medi-
ating leukocyte transmigration and increasing tissue inflam-
mation [28], was found to increase in both patients and
animal models of IPAH [29, 30]. Aquaporin (AQP), a family
of water-selective membrane channels promoting endothe-
lial cell migration and angiogenesis [31], was found to be
overexpressed in PAH patients [32, 33], indicating its poten-
tial role in the treatment of PAH. Secreted phosphoprotein 1
(SPP1, also known as osteopontin or OPN), a key mediator
secreted by SMCs, contributes to the genesis and progression
of pulmonary hypertension by enhancing PVSMC prolifera-
tion [34–36]. It is upregulated in the lung tissues of patients,
and the SPP1 expression level is associated with the severity
of PAH [37–39]. These results demonstrated that SPP1 may
be a prognostic marker as well as a therapeutic target in PAH.

However, some of the factors in our DEMI-DEG network
were poorly studied. The role of hsa-miR-34b-5p, which was
connected with most of the predicted target DEGs, has not
been studied in IPAH before. miR-34b was known to affect
cell proliferation and adhesion-independent growth in sev-
eral types of cancer [40, 41]. Lin et al. previously discovered
DNA methylation of miR-34b-regulated vascular calcifica-
tion by targeting Notch1 [42]. Furthermore, serum amyloid
A1 (SAA1), an acute phase protein, is primarily synthesized
in the liver and highly expressed when inflammatory
response occurs [43]. The elevated SAA1 concentration was
associated with cardiovascular risk [44], carotid intima

Table 4: The top 10 and bottom 10 chemical compounds identified by L1000 platform.

Name CMap connectivity score Description

Nimodipine 99.89 Calcium channel blocker

GW-501516 99.82 PPAR receptor agonist

Icilin 99.82 TRPV agonist

Fexofenadine 99.82 Histamine receptor antagonist

Modafinil 99.79 Adrenergic receptor agonist

Guanabenz 99.79 Alpha-2 selective adrenergic agonist

Mianserin 99.75 Serotonin receptor antagonist

CGP-53353 99.75 EGFR inhibitor

TUL-XXI039 99.72 Serine/threonine kinase inhibitor

Diphenoxylate 99.68 Opioid receptor agonist

Huperzine-a -99.46 Acetylcholinesterase inhibitor

Perindopril -99.47 ACE inhibitor

Solanine -99.47 Acetylcholinesterase inhibitor

Phenothiazine -99.51 Dopamine receptor antagonist

Tyrphostin-AG-1295 -99.68 PDGFR receptor inhibitor

Y-27152 -99.72 Potassium channel activator

Lenalidomide -99.79 Antineoplastic

Androstenedione -99.89 Cytochrome P450 inhibitor

Repaglinide -99.89 Insulin secretagogue

Neurodazine -99.89 Neurogenesis of nonpluripotent C2C12 myoblast inducer
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media thickness [45], and smooth muscle cell homeostasis
[46] according to previous researches. Whether and how
these factors contribute to IPAH need to be investigated in
future studies.

The calcium channel blocker is an effective treatment for
IPAH patients with a positive vasodilator response, which
dramatically improves the survival of those patients and
has been widely applied recent years [47, 48]. Nimodipine,
a kind of calcium channel blocker, was identified as the top
of the potential drugs in our research. However, other cal-
cium channel blockers were not predicted with a high rank,
so whether nimodipine has a clinical benefit cannot be deter-
mined. Furthermore, other drugs in the prediction list,
which were hardly researched in IPAH before, may serve
as potential directions for future development of therapies
in IPAH.

There are some limitations in our study. Firstly, only two
mRNA expression profiles and one miRNA expression pro-
file were found in GEO; the relatively small number of sam-
ples may make the results less convincing. Secondly, since
the expression profiles of miRNA and mRNA were obtained
from different datasets in this study, coexpression analysis
cannot be performed currently, which prevents us from
obtaining a more accurate miRNA-mRNA regulation net-
work. In addition, PCR orWB should be done to further con-
firm our results, and the relationship between miRNAs and
mRNAs in our DEMI-DEG network should be validated
via in vivo or in vitro experiments.

5. Conclusion

Our study initially conducted a miRNA-mRNA network
including 4 miRNAs and 5 mRNAs to systematically analyze
the pathogenesis of IPAH and provided a new insight for
future therapies by predicting potential drugs acting with
hub genes.
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