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A general theory for temperature dependence in biology
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At present, there is no simple, first principles–based, and general model for quantita-
tively describing the full range of observed biological temperature responses. Here we
derive a general theory for temperature dependence in biology based on Eyring–Evans–
Polanyi’s theory for chemical reaction rates. Assuming only that the conformational
entropy of molecules changes with temperature, we derive a theory for the temperature
dependence of enzyme reaction rates which takes the form of an exponential function
modified by a power law and that describes the characteristic asymmetric curved temper-
ature response. Based on a few additional principles, our model can be used to predict the
temperature response above the enzyme level, thus spanning quantum to classical scales.
Our theory provides an analytical description for the shape of temperature response
curves and demonstrates its generality by showing the convergence of all temperature
dependence responses onto universal relationships—a universal data collapse—under
appropriate normalization and by identifying a general optimal temperature, around
25 ◦C, characterizing all temperature response curves. The model provides a good fit to
empirical data for a wide variety of biological rates, times, and steady-state quantities,
from molecular to ecological scales and across multiple taxonomic groups (from viruses
to mammals). This theory provides a simple framework to understand and predict
the impact of temperature on biological quantities based on the first principles of
thermodynamics, bridging quantum to classical scales.

temperature kinetics | scaling | metabolic theory

Temperature is a major determinant of reaction rates of enzymes, which regulate processes
that manifest at all levels of biological organization. Empirical data show a high regularity
in the temperature response across the entire range of biological phenomena from
molecules to ecosystems and across multiple taxa and environments (1–8) (see also Fig. 1).
These typically exhibit an asymmetric curve which increases exponentially followed by an
even more rapid decrease. This remarkably regular behavior is indicative of a universal
law, whose origins have, as yet, remained unexplained. Formulating a fundamental theory
for the response of biological rates to changes in temperature, especially in ecological
systems, has become a matter of some urgency with the intensification of the climate crisis,
particularly since existing models are unable to account for such responses across the entire
range of temperatures that support life. Despite its importance, a comprehensive theory
that unifies several key properties simultaneously has not been as yet possible. Specifically,
the key goals, which the framework we present here achieves, is a theory that 1) is based
on first principles and fundamental physicochemical mechanisms; 2) is simple in terms of
its assumptions and mathematical form, yet efficient in that it explains a plethora of data
and generates many predictions with few free parameters; and 3) is general and applicable
across multiple levels of biological organization and taxa, thereby manifesting a universal
biophysical law.

Various models have been suggested for explaining temperature dependence in biology,
among which the Arrhenius equation (8 and 9) has become the one most used by biologists
and ecologists, as epitomized, for example, in the metabolic theory of ecology (MTE) (2).
It can be expressed as

k = ae−E/kBT , [1]

where k is some biological quantity (e.g., at the molecular level, enzyme reaction rate),
kB is Boltzmann’s constant, T is absolute temperature, E is an effective activation energy
for the process of interest, and a is an overall normalization constant characteristic of
the process. Consequently, a plot of ln(k) vs. 1/T should yield a straight line, often
referred to as an Arrhenius plot. This equation was originally an empirical formulation
but was later motivated heuristically from chemical reaction theory (9) (SI Appendix,
Text S1). Although it has been instrumental in explaining the approximately universal
temperature dependence across many diverse biological rates (2, 4), it cannot account
for the complete pattern of temperature response of different biological traits, including
metabolism and growth rate, among others (3, 4, 10–13). Experiments and observations
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Fig. 1. Temperature response curves compared to the predictions of Eqs. 5
and 7 for a wide diversity of biological examples. Plotted are ln(Y) vs. 1/T
(in 1/K, where K is kelvin) showing (A–C) convex patterns and (D–F) concave
patterns: (A) metabolic rate in the multicellular insect Blatella germanica, (B)
maximum relative germination in alfalfa (for a conductivity of 32.1 dS/m),
(C) growth rate in Saccharomyces cerevisiae, (D) mortality rate in the fruit fly
(Drosophila suzukii), (E) generation time in the archaea Geogemma barossii,
and (F) metabolic rate (during steady-state torpor) in the rodent Spermophilus
parryii. Here the curve corresponds to the metabolic rate in response to
environmental temperature and not body temperature. The x axis is in units
of (1/K) × 103. Examples come from references 58–63.

have long established that the form of the temperature response
has an asymmetric concave upward or downward pattern relative
to the canonical straight-line Arrhenius plot (e.g., ref. 10). Con-
sequently, there are ranges of temperatures where the traditional
Arrhenius expression, Eq. 1, even gives the wrong sign for the
observed changes in biological rates: namely, they decrease with
increasing temperature rather than increase, as predicted by Eq. 1.

The Eyring–Evans–Polanyi (EEP) transition state theory (TST)
(14), which is the widely accepted theory of enzyme chemi-
cal kinetics, offers the possibility of developing a fundamental
theory for the temperature dependence of biological processes
that extends and generalizes the heuristic Arrhenius equation by
grounding it in the first principles of thermodynamics, kinetic
theory, and statistical physics (15, 16). The framework of the TST
conceives a chemical reaction as a flux of molecules with a distri-
bution of energies and a partition function given by the Planck
distribution, flowing through a potential energy surface which
effectively simulates molecular interactions. The configuration of
molecules flowing through this surface proceeds from 1) a separate
metabolite and enzyme to 2) an unstable metabolite–enzyme

complex, which 3) after crossing a critical energy threshold barrier,
or transition state, then forms the final product (the transformed
metabolite). EEP thereby derived the following equation for the
reaction rate (SI Appendix, Text S2):

k =
kB
h
Te−ΔG/RT , [2]

where h is Planck’s constant, ΔG is the change in Gibbs free
energy or free enthalpy, R = NkB is the universal gas constant,
andN is Avogadro’s number. An overall coefficient of transmission
also is originally part of Eq. 2 but is usually taken to be 1.
Since the change in Gibbs free energy, or the energy available to
do chemical work, can be expressed in terms of enthalpy (ΔH )
and the temperature-dependent change in entropy, or dissipated
energy (ΔS ), as ΔG =ΔH − TΔS , Eq. 2 can then be written
as (17)

k =
kB
h
TeΔS/Re−ΔH/RT . [3]

Analogous to the Arrhenius expression, Eqs. 2 and 3 describe
an exponential response of the rate k to temperature provided,
however, that there is no temperature dependence of the
thermodynamic parameters. Models have been developed for
including this temperature dependence, but they typically invoke
several additional assumptions and new parameters (18, 19)
(SI Appendix, Text S1). Moreover, most models for temperature
response have been conceived for a single level of biological
organization (primarily at the enzymatic/molecular level) (6,
17) or for specific taxonomic groups, e.g., only for mesophilic
ectotherms (18), endotherms (19), or thermophiles (20).

Here, starting with the EEP equation, Eq. 3, and assuming that
all of the temperature dependence is in the entropy (see Derivation
of the Theory below for details), we derive a simple mechanistic
model that quantitatively explains the temperature dependence of
biological attributes from microscopic to macroscopic scales.

To extend this model from the molecular level to larger scales
we make three additional interrelated assumptions or considera-
tions that can be summarized as follows: 1) the generic analytic
form of temperature dependence does not change as one sums
up to different levels of biological organization; 2) the classical
limit of enzyme dynamics, in which h → 0, captures the tem-
perature dependence across macroscopic scales (the conventional
correspondence principle); and 3) all biological quantities can be
connected with a rate that in turn depends on temperature. In the
next section, we justify and elaborate on these ideas, using them
to develop the theory and its mathematical details, which are then
tested using a global database of biological quantities. Agreement
with data and observations across all scales is very good, as detailed
in the next section; indeed, our theory shows that the temperature
dependence of almost all biological quantities can be encapsulated
in a single equation. In addition, many predictions are derived.
Having such a theory is critical for making accurate predictions of
temperature dependence that are relevant in industrial processes,
food production, disease spread, and responses to climate warm-
ing, among other potential applications.

Derivation of the Theory

Temperature changes the conformational entropy of proteins (21),
which in turn determines the binding affinity of enzymes (22,
23) and affects the flexibility/rigidity and stability of the activated
enzyme–substrate complex and hence the reaction rate (23). The
resulting temperature dependence of the change in entropy, ΔS
(with enthalpy and heat capacity remaining constant), is the
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simplest mechanism for giving rise to curvature in an Arrhenius
plot and naturally leads, via Eq. 3, to power law deviations from
the simple exponential form (24). Following ref. 20, the change
of entropy for a given change in temperature can be expressed
as TdΔS/dT =ΔC , where ΔC is the heat capacity of pro-
teins, assumed to be independent of temperature. Integrating over
temperature gives ΔS =ΔS0 +ΔC ln (T/T0), where ΔS0 is
the entropy when T = T0, an arbitrary reference temperature,
commonly taken to be 298.15 K (25 ◦C). Using this expression for
ΔS in Eq. 3, and after simplifying, we straightforwardly obtain
(SI Appendix, Text S3)

k =
kB
h
e

ΔS0
R T0

−ΔC
R

(
1

T

)−(ΔC
R +1)

e
−ΔH
RT . [4]

Eq. 4 has the form of a classic Arrhenius-like exponential term,
modified by a power law, but with a different interpretation of the
effective activation energy in terms of the change in enthalpy. The
pattern described by Eq. 4 is a curved temperature response in an
Arrhenius plot of ln k vs. T−1:

ln k = ln
(
kB
h
e

ΔS0
R T0

−ΔC
R

)
−
(
ΔH

R

)
T−1

−
(
ΔC

R
+ 1

)
lnT−1. [5]

In Eq. 5 the terms in parentheses are estimable parameters, and
the model takes the simple form ln y = ln y0 − bx − a ln x .

Some important points should be noted about our result: based
on three additional assumptions or principles this model can be
applied from quantum to classical scales. These are as follows.

Averaging. Following Gillooly et al. (24) and in the spirit of the
MTE, we can extend our derivation from the microscopic up
through multiple scales to multicellular organisms and ecosys-
tems. Biological rates at a given level of organization represent the
average rate over an ensemble of limiting reactions. For example, at
the multicellular level a typical biological rate, K , is the weighted
sum over all contributing intracellular enzymatic reaction rates,
ki—some connected in series, some in parallel—appropriately
averaged over all cells. Symbolically, K ∝

∑
iki ≈

∑
iaie

−βi/T ,
the bar indicating that an average is to be taken. If there is a single
dominant rate limiting reaction, that is, a specific ai is significantly
greater than the rest, then the temperature dependence of K can
be well approximated by an equation of the form of Eq. 4. More
generally, however, the variance in the distribution of the βi is
small, reflecting the clustering of the various effective activation
energies of the contributing reactions around a dominant com-
mon value, βi , typically in the range of 0.5 to 1.0 eV, thereby
leading to K ∝ e−βi/T . This statistical mechanics approach is
an example of a general result (21) that if the variance in the
parameters is small, then the average of a function describing
a biological rate is approximately equal to the function of the
average. Consequently, K can be approximated by an equation
of the form of Eq. 4 but with the parameters being interpreted as
corresponding averages. Metabolic rate, for example, can therefore

be expressed as B(T )≈ B0

(
1
T

)−(ΔC
R +1)

e
−ΔH
RT , where B0 is a

normalization constant (see SI Appendix, Text S7, for details).

Correspondence Principle. This principle specifies the connec-
tions between theories and the conditions by which one theory
reduces to another. In the case of physics, it specifies the conditions
under which quantum mechanics reduces to classical mechanics.

In our theory, this principle suggests that care has to be taken with
the normalization constants, such as B0 in the case of metabolic
rate, since Eq. 4 would predict that these constants would naively
be proportional to the ratio of the two fundamental constants,
kB and h . The presence of Planck’s constant, h , for microscopic
enzymatic reactions appropriately reflects the essential role of
quantum mechanics in molecular dynamics. On the other hand,
for macroscopic processes, such as whole-body metabolic rate, the
averaging and summing over macroscopic spatiotemporal scales,
which are much larger than microscopic molecular scales, must
lead to a classical description decoupled from the underlying
quantum mechanics and, therefore, must be independent of h .
This is analogous to the way that the motion of macroscopic
objects, such as animals or planets, are determined by Newton’s
laws and not by quantum mechanics and therefore do not involve
h . Formally, the macroscopic classical limit is, in fact, realized
when h → 0. The situation here is resolved by recognizing that the
partition function for the distribution of energies in the transition
state of the reaction has not been explicitly included in Eq. 2.
This is given by a Planck distribution which leads to an additional
factor (1− e−hν/kBT ), where ν is the vibrational frequency of
the bond, as first pointed out by Herzfeld (22). For purely enzy-
matic reactions discussed above this has no significant effect since
kBT << hν, and thus (1− e−hν/kBT )→ 1, resulting in Eq. 2.
Multicellular organisms, however, correspond to the classical limit
where h → 0 so kBT >> hν and (1− e−hν/kBT )→ hν/kBT ,
thereby cancelling the h in the denominator of Eq. 4. Conse-
quently, the resulting temperature dependences of macroscopic
processes, such as metabolic rate, become independent of h , as
they must, but lose a factor of T relative to the microscopic result,
Eq. 4. So for multicellular metabolic rate, B , this becomes

B ≈ B0

(
1

T

)−ΔC
R

e
−ΔH
RT , [6]

with the normalization constant, B0, no longer depending on h .
Note that the above correction can also be applied to the Eyring
Eqs. 2 and 3, in which case they become mathematically identical
to the Arrhenius relationship.

Extension Beyond Rates. The third assumption, and a corollary
of the first, is that all rates, whether transient, steady-state, or equi-
librium, all follow the same temperature response relationship. It is
also important to note here that most biological quantities, which
are not obviously rates themselves, are fundamentally associated
with rates. This is true because biological quantities are either
the integral of past rates or maintained by current rates (e.g., ref.
23). For example, diversity and abundance are in general terms
functions of mutation rate, generation times, mortality rate, and
energy requirements, and all these rates and times do vary with
temperature (2, 24–28) (see also Fig. 1D).

Accordingly, our model can be applied from the micro to the
macro, leading to a single master expression for the temperature
dependence of any variable, Y (T ):

Y (T )≈ Y0

(
1

T

)−ΔC
R −α

e
−ΔH
RT . [7]

Here Y (T ) represents either a rate, time, or transient/steady-
state/equilibrium state (11), and α= 1 for the molecular level
and 0 otherwise. It should be noted that the thermodynamic pa-
rameters may have additional implicit parameters (e.g., embodied
in Y0) that make the forms of Eqs. 6 and 7 more complicated
under certain conditions (SI Appendix, Text S3) as, for instance,
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for reaction rates at the molecular level where Y0 is determined
by Eq. 4.

In addition to quantitatively explaining the origin and system-
atic curvature of the Arrhenius plot, a mathematical analysis of our
derived equation reveals important predictions regarding minima,
maxima, and inflection points in the temperature landscape of the
thermal niche, relevant to questions regarding range and safety
margins. Among the many consequences of our analyses are the
following:

1) It provides an analytical equation for the minima and
maxima, which was derived using the Lambert equation
(SI Appendix, Eqs. S22 and S23 and Fig. S1).

2) It derives an equation for the inflection point (SI Appendix,
Eq. S20) where d ln k/dT−1 = 0, leading to the extrema
of ln(k) occurring at T−1 = T−1

opt =−(ΔC + R)/ΔH
(SI Appendix, Fig. S1 and Text S5). This is a minimum, i.e.,
the curve is concave upward, or a “happy mouth” (e.g., for
most biological times or the reciprocal of rates), if ΔC >−R,
whereas it is a maximum, or a convex downward “sad mouth”
(e.g., for most biological rates), if ΔC <−R. Furthermore,
for T−1

opt to be positive requires ΔH < 0 for a minimum or
ΔH > 0 for a maximum. The expression for the inflection
point implies linear relationship between heat capacity and
enthalpy (SI Appendix, Eq. S21, which underlies the principle
of optimization of the rate, i.e., when the rate of change of
k respect to temperature is zero) and where the slope of the
relationship is the optimum temperature of the temperature
response curve (SI Appendix, Eq. S21 and Fig. S5).

3) It provides analytical equations for the different measures of
the width of the thermal niche, such as the range and thermal
safety margin (difference between the optimum and maximum;
SI Appendix, Eqs. S24–S26 and Fig. S1).

From considering consequences 1–3, is possible to deduce
that thermal traits should vary among them, and the maximum
value of a biological quantity should vary with thermal traits,
as suggested in some previous hypotheses in thermal physiology
(29, 30) that could be tested using this framework.

Universal Scaling and Data Collapse

A classic method for exhibiting and testing the generality of
an equation is to express it in terms of rescaled dimensionless
variables, which predict that a plot of all of the data collapses
onto a single “universal” curve (e.g., ref. 23). To do so here, we
introduce dimensionless rates, Y ∗, and temperatures, T ∗, by
rescaling them repectively by Y (Topt ) and Topt , where Y takes
on either its minimum or maximum value, Yopt = Y (Topt ):

Y ∗(T ∗)≡ Y (T )

Yopt
;T ∗ ≡ T

Topt
. [8]

In terms of these rescaled variables, Eq. 7 reduces to the simple
dimensionless form

Y ∗1/a = T ∗e1/T∗−1, [9]

where a =ΔC/R + α with α= 0 or 1, depending on whether
the system is macroscopic or microscopic. Note that the optimum
is given by Yopt = Y0T

−a
opt e

−b/Topt and Topt =−b/a , where
b =ΔH /R.

Our theory therefore predicts that when Y ∗1/a is plotted
against 1/T ∗, all of the various quantities, regardless of the

specific processes, collapse onto a single parameterless curve whose
simple functional form is given by Eq. 9. Notice that this op-
timizes at T ∗ = 1 and encompasses in the same curve both the
convex and concave behaviors predicted in the original Arrhenius
plot as a function of T . In that regard, note also that the function

Ŷ ∗(T ∗)≡ (e/T ∗)aY ∗(T ∗) = ea/T∗ [10]

is predicted to be of a pure exponential Arrhenius form as a
function of T ∗. Thus, an even more dramatic manifestation of
the universality and collapse of the data is to plot ln(Ŷ ∗(T ∗))
vs. 1/T ∗, which is predicted to yield a straight line with slope a
(SI Appendix, Text S6).

Testing the Theory with Temperature Response Curve Data
across Levels of Biological Organization and Taxa. To assess
the model performance, we compiled a database of 65 studies
encompassing 128 temperature response curves including those
which are explicitly predicted by biological theories such as the
MTE. Our survey included data of different rates/times/properties
in different environments ranging from psychrophilic to hyper-
thermophilic organisms and across all domains of life, including
viruses, bacteria, archaea, and unicellular and multicellular eu-
karyotes covering both ectotherms and homeotherms (Materials
and Methods).

We found that our theory provides an excellent fit to a wide
variety of temperature response data, spanning individual to
ecosystem-level traits across viruses, unicellular prokaryotes,
and mammals (SI Appendix, Table S2). Fig. 1 shows some
representative examples of fits to concave patterns with long
tails at low and high temperatures (Fig. 1 A–C ) as well as convex
patterns, such as the effect of environmental temperature on
endotherm metabolism (in torpor) and biological times (Fig. 1
D–F ) also with tails at both ends. As shown in Eq. 10, our
derived equation can alternatively be reexpressed in terms of
rescaled rates and temperature differences, leading to a linear
equation. As an example, we made a linear fit of enzyme activity
vs. temperature, which fits the data significantly well, showing that
curved temperature responses can be transformed into a linear
relationship for discrete measures of both rates and temperatures
(SI Appendix, Fig. S2).

The estimated thermodynamic parameters had a wide varia-
tion, reflecting the variation from molecular to ecosystem levels
and from bacteria to mammals (SI Appendix, Fig. S3 and Table S2).
Thermal traits also varied widely, showing optimum values for the
minima and inflection points (SI Appendix, Fig. S4 and Table S2).
For example, the distribution of optimum temperatures shows
that the highest frequency of optima for all temperature response
curves is around 25 ◦C. A way of visualizing this is by plotting
the estimated thermodynamic parameters −ΔC and ΔH
(SI Appendix, Fig. S5) for all the 128 curves from our database
where the slope of this relationship should be the average optimum
temperature of all curves. Plotting the data in this way showed
that the slope is roughly constant within a certain interval
(0.003 to 0.004 K−1) with an optimum of 0.00335 K−1, which
approximately corresponds to 25 ◦C. This is because the variation
in optimum values is small compared to the range of variation of
heat capacity and enthalpy.

Our prediction of the universal curve is very well supported
by data, as illustrated in Fig. 2, where the collapse of all the data
from this study for both convex and concave patterns regardless
of organizational level, temperature range, or taxa are shown. This
result strongly supports the idea that our theory captures all of
the meaningful dimensions of thermodynamic and temperature
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D

Fig. 2. Universal patterns of temperature response predicted by Eqs. 9
and 10. (Left) The convex and concave nonlinear patterns predicted when
ln Y∗ is plotted vs. 1/T∗ (Eq. 9) and (Right) the straight lines predicted when
ln Ŷ∗ is plotted vs. 1/T∗ (Eq. 10). In theory, if rescaled data collapse into a
single relationship, it means that all respond to the same general law. As ex-
pected, all curves regardless of variable, environment, and taxa collapse onto
a single curve when plotted in either of these ways. These rescalings explicitly
show the universal temperature dependence of the data used in Fig. 1, as
well as additional data from compiled studies. (A and B) Molecular (enzymatic)

variation for diverse biological properties, which when appropri-
ately rescaled, can ultimately be viewed as a single simple exponen-
tial relationship, Eq. 10. (See SI Appendix, Text S6 and Fig. S6,
for an alternative formulation for data collapse.)

Discussion

We developed a simple mechanistic theory based on a single
general assumption for determining the temperature dependence
of biological rates and quantities. The theory is able to capture
the essential features of many different temperature responses and
it is also capable of capturing what is general to all of them.
Eyring was well aware of the potential of absolute reaction rates
theory he formulated, which by combining thermodynamics with
classical and quantum mechanics could account for the absolute
rate of any chemical reaction, beyond the test tube. Indeed,
he developed from it the steady-state theory of mutation rates
based on observations of the effect of plutonium and radium in
beagles, which led to the statistical analysis of survival and its
generalization to understand cancer, aging, ontogenetic growth,
nutrient uptake by plant and loss from soils, population growth,
and species time relationships in islands (31–36). Interestingly,
he did not analyze the contribution of temperature to the cel-
lular and ecological processes he studied. By filling this gap, we
have helped developing a general, first principles theory that
could integrate disparate phenomena in biology, as was certainly
Eyring’s aim.

An important consequence of our derivation is that it shows
that a single assumption/principle (namely, that heat capacity is
independent of temperature or, equivalently, that entropy depends
linearly on temperature) is both necessary and sufficient for si-
multaneously explaining both the convex and concave curvatures
commonly observed in temperature response curves. Under a
thermodynamic interpretation, the decrease in enzymatic rate
with increasing entropy due to increasing temperature beyond
the optimal means that the number of the alternative config-
urational microstates of the protein increases, many of which
have a decreased binding affinity to the ligands (1). In contrast,
changes in enthalpy alone can only explain convex curvature but
not concave curvature. To see this explicitly, we express ΔH in
terms of heat capacity in Eq. 3,ΔH =ΔH 0 +ΔC (T − T0), to

obtain k = kB
h eΔS/R

(
1
T

)−1
e

[
ΔH0−ΔC(T−T0)

R

]
( 1

T ), which leads
to ln k ∝ ln

(
1
T

)
−
[
ΔH 0+T0ΔC

R

] (
1
T

)
. Regardless of the sign

of both ΔC and/or ΔH 0, this always results in a convex curve
and so cannot explain, nor accommodate, concavity. Hobbs et al.
(37) included temperature dependence in both enthalpy and
entropy and derived a significantly more complicated expression
than ours based also on TST, which highlights as we have done
the role of ΔC in affecting optimum temperatures in enzyme
performance.

data exhibiting the predicted concave and convex patterns on the left, while
(C and D) show corresponding concave and convex patterns for data above
the molecular level. Note that there appears to be no variance in the fits
to the linear predictions (Right), whereas there is significant variation in the
nonlinear ones (Left). This is basically because ln(Ŷ∗) >> ln(Y∗). The value of
ln(Y∗) is typically around 0.01 with a variance much smaller than 0.005. Since
ln(Ŷ∗) = ln(Y∗) + a ln(e/T∗) and ln(Ŷ∗) is typically around 3, fluctuations in
ln(Y∗) are very much smaller and consequently completely lost. The point is
that the difference between what is plotted in Left vs. that in Right, namely,
a ln(e/T∗), is in absolute value very large [more than 10 times the value of
ln(Ŷ∗)]; furthermore, it is almost a constant over the range of temperatures
since it is logarithmic, whereas all of the temperature variation is in the much
smaller term ln(Ŷ∗).
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Some empirical models can also explain curvature, but al-
though mathematically simple, they are neither mechanistic nor
general. For example, our mathematical form coincides with an
empirical phenomenological equation suggested by Kooij in 1893
(38). Likewise, a heuristic derivation inspired by a Maxwell–
Boltzmann distribution predicts a similar expression but with a
power law modification of T 1/2 rather than T

ΔC
R +1 (14, 39),

which, apart from not having a mechanistic basis, is also unable
to explain concave patterns.

More complex assumptions could lead to the inclusion of
additional parameters that could increase the explained variance
in temperature response curves. Among these possibilities, for
example, one could assume a nonlinear temperature dependence
of entropy or temperature dependence of other thermodynamic
parameters such as heat capacity. Actually, the temperature de-
pendence of heat capacity has been invoked in models based
on the denaturation of proteins with temperature (40). We did
not include temperature dependency in ΔC because there is no
general theoretical expression for it and because assuming it to be
invariant usually leads to little error (20). Other models have made
even more complex assumptions to explain curved patterns (18),
but they are limited in terms of making predictions and in their
application to different levels of organization. The incorporation
in our model of additional variables affecting biological rates and
quantities, such as pH, salinity, and oxygen availability, however,
may be important to consider as they usually interact in affecting
temperature responses, especially in aquatic environments, and
have become a priority for increased theoretical and empirical
research in the context of current global changes (1, 41–43).
It should be borne in mind, however, that our theory is based
on equilibrium thermodynamics and as such is not designed to
deal with fluctuations out of equilibrium, nor with temporal
changes in state variables, such as, for example, those due to
acute exposure or different exposure times to a given temperature
(7, 44, 45), although it can in principle deal with slow changes,
with respect to fast microscopic changes, assuming a quasi-
equilibrium (quasistatic) condition or a slowly changing tem-
poral sequence of equilibrium states (46). Future connections
with nonequilibrium thermodynamics may prove valuable in this
regard (47).

The additional considerations required to apply the model to
levels above the enzymatic are well supported in the literature
(e.g., refs. 21, 23). More importantly, our model applies to a large
diversity of rates and quantities, including the temperature de-
pendency of classical variables, such as metabolic rate and growth
rate, as well as new ones not previously reported in the literature
(e.g., DNA recombination rate and human population energy use
rate), and across a wide spectrum of levels of organization and
scales. This speaks to the robustness of our model as it holds even
when potential deviations from assumptions are likely, as might
be expected when a diverse array of biological rates and quantities
are analyzed.

As is typical, as, for example, in the MTE and in scaling analy-
sis, most of the data and theoretical predictions are for average
trait values; variability and fluctuations (48, 49), which are an
essential feature of all biological systems (50–52), have generally
been ignored. The explicit consideration of stochasticity opens
potentially important venues for extending the present theory
to account for such variability. For example, some biological
quantities, such as metabolic rate, population density, and body
size, exhibit a characteristic scaling between the variance and the
mean in trait value (48, 53, 54), which our theory predicts should
change with temperature according to Eq. 4.

As already pointed out, due to its mathematical simplicity,
this theory is easily extendable to explain other patterns such as
relationships among attributes of the thermal response (e.g., ref.
55). These could be derived given that different thermal traits
depend on the same parameters, such as the maximum value
of the dependent biological quantity and its range. This could
potentially shed light on several biological hypotheses such as
“hotter is better” (30, 56) (i.e., a positive relationship between
the maximum value of a dependent quantity and its optimum
temperature) or “jack-of-all-temperatures” but “a master of none”
(29, 56, 57) (i.e., a trade-off between the maximum value of a
dependent quantity and the breath of performance).

It is common in different research traditions, such as cell
biology, physiology, and ecology, usually enshrined as departments
within universities, to work with a single process, organism,
or species and emphasize the temperature dependence of that
particular entity. Here we have developed an integrative theory
that expresses temperature dependence as a universal law across
all levels of biological organization, taxa, and the whole range
of temperature within which life can operate (–25 to 125 ◦C);
our framework is applicable for predicting scenarios of global
warming, disease spread, and industrial applications and provides
a general equation to integrate in different theories in ecology and
evolution, such as MTE. It allows us to better understand the
diverse impacts of climate change upon processes at global scales,
suggesting that processes such as mutation rates of viruses and
mortality will likely increase, given their convex temperature re-
sponse curves, but other such maximum germination and growth
rates will likely decrease given their concave temperature response
curves (Fig. 1). Here we show that simple thermodynamics
principles and laws underlie all these complex biological processes,
which we can now better understand, manage, and predict.

Materials and Methods

Data. Data for temperature response curves were obtained directly from tables,
or supplementary data of published articles, requested from the author or
extracted from figures using the tool WebPlotDigitizer (https://automeris.io/
WebPlotDigitizer/) Response variables collected included biochemical reaction
rate, individual metabolic rate, population abundance, population growth rate,
richness, community abundance, biomass, and ecosystem flux, among others.
Data are derived from experimental as well as field observations and cover differ-
ent taxa from viruses to homeotherms and different environments/ecosystems.
Some of these data correspond to recent global efforts such as the global ocean
and Earth microbiome projects. We collected a total of 65 studies summing 128
curves. We show six examples in Fig. 1, corresponding to refs. 58–63.

Statistical Analysis. Eq. 7 (in log scale) was fitted using nonlinear regres-
sion, using damped least-squares [Levenberg–Marquardt algorithm (64, 65); as
implemented in the R package minpack.lm (66)]. Goodness of fit of models
were assessed using r-squared and P value. We recorded the characteristics of
the distribution of thermodynamic properties, r-square, and P value including
minimum, maximum, median, interquartile range, mean, and variance. To com-
pare the values of thermodynamic parameters between organizational levels
and taxonomic groups we performed (one-sided) two-way ANOVA. For factor
organizational level we grouped data in six levels (molecular, cellular, individual,
population, community, and ecosystem), while for the factor taxonomic group,
there were also six levels (viruses, bacteria, archaea, unicellular eukaryotes, ec-
totherms, and homeotherms). Previous to performing the ANOVA we tested for
homoscedasticity using the LeveneTest function implemented in R, and since the
groups were heteroscedastic, we used weighted least squares.

Data Availability. All data and R codes used in the preparation of figures and
in statistical analyses can be found in GitHub (67).
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CP 2340000 Valparáıso, Chile; and iCentro de Modelamiento Matemático, Universidad de
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