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A B S T R A C T   

Generative Artificial Intelligence foundation models (for example Generative Pre-trained Trans-
former – GPT – models) can generate the next token given a sequence of tokens. How can this 
‘generative AI’ be compared with the ‘real’ intelligence of the human brain, when for example a 
human generates a whole memory in response to an incomplete retrieval cue, and then generates 
further prospective thoughts? Here these two types of generative intelligence, artificial in ma-
chines and real in the human brain are compared, and it is shown how when whole memories are 
generated by hippocampal recall in response to an incomplete retrieval cue, what the human 
brain computes, and how it computes it, are very different from generative AI. Key differences are 
the use of local associative learning rules in the hippocampal memory system, and of non-local 
backpropagation of error learning in AI. Indeed, it is argued that the whole operation of the 
human brain is performed computationally very differently to what is implemented in generative 
AI. Moreover, it is emphasized that the primate including human hippocampal system includes 
computations about spatial view and where objects and people are in scenes, whereas in rodents 
the emphasis is on place cells and path integration by movements between places. This com-
parison with generative memory and processing in the human brain has interesting implications 
for the further development of generative AI and for neuroscience research.   

1. Introduction 

A key interdisciplinary research area at present is the relation between the brain and generative AI: how similar are their com-
putations? One aim of this paper is to describe the computations that take place in the human brain when a whole memory of a past 
recent episode is recalled from a partial retrieval cue, and to compare this with the computations made in generative AI when it 
generates an answer to a question about what happened recently. Given the major differences in the way in which the computations are 
performed, a second aim is to consider some implications for generative AI in the future. The evidence about the operation of the 
hippocampus is based on evidence available in humans and other primates, which shows that locations being viewed in spatial scenes 
are important in the spatial representations, and how the locations of objects and people in spatial scenes are important in human 
episodic memory [1–3]. This is in contrast to modelling of what is found in rodents, which considers rodent place cells and path 
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integration between places [4–11]. The reasons for this paper are thus to consider similarities and differences between what is 
computed in the human brain and in generative AI models, taking as an example the generation in humans of a whole memory when a 
part of it is provided as a recall cue [1–3]. Key differences are the use of local learning rules with the information available in the 
presynaptic and postsynaptic rates in the hippocampal-neocortex system for the storage and recall of episodic memory, whereas in AI, 
deep learning is involved which makes the details of the operation of the system more opaque [2]. Given what can be achieved by the 
human brain, there are implications for AI systems of the future. 

2. Generative AI 

Generative AI is generative in the sense that given some sequence of input tokens, it can generate the next token [12]. A token might 
be a word, and this approach can be used for natural language processing, for example in Chat GPT-4 (opeanai.com). These Foundation 
Models do this by being trained on enormous datasets, of for example text, and from all these exemplars can estimate a likely next 
token given the sequence of input tokens that they have just been given [12]. The answers provided by generative AI may thus not be 
the correct answer to a question asked in the input sequence, but are based on the process just described. What is provided is just the 
most likely next token given all the text etc on which the network was trained. Given its vast amount of training data, the AI network 
may form a compressed representation of all its training data such that the compressed representation may include commonalities 
extracted from different examples in the training data [12]. Details of the many variations of the methods used in generative AI, and of 

Fig. 1. The human/primate hippocampus receives neocortical input connections (blue) not only from the ‘what’ temporal lobe and ‘where’ parietal 
and ventral visual scene areas, but also from the ‘reward’ prefrontal cortex areas (orbitofrontal cortex, vmPFC, and anterior cingulate cortex) for 
episodic memory storage; and has return backprojections (green) to the same neocortical areas for memory recall. There is great convergence via the 
parahippocampal gyrus, perirhinal cortex, and dentate gyrus in the forward connections down to the single network implemented in the CA3 
pyramidal cells, which have a highly developed recurrent collateral system (red) to implement an attractor episodic memory by associating the 
what, where and reward components of an episodic memory. a: Block diagram. b: Some of the principal excitatory neurons and their connections in 
the pathways. Time and temporal order are also important in episodic memory, and may be computed in the entorhinal-hippocampal circuitry [30]. 
Abbreviations - D: Deep pyramidal cells. DG: Dentate Granule cells. F: Forward inputs to areas of the association cortex from preceding cortical areas 
in the hierarchy. mf: mossy fibres. PHG: parahippocampal gyrus and perirhinal cortex. pp: perforant path. rc: recurrent collateral of the CA3 
hippocampal pyramidal cells. S: Superficial pyramidal cells. 2: pyramidal cells in layer 2 of the entorhinal cortex. 3: pyramidal cells in layer 3 of the 
entorhinal cortex. The thick lines above the cell bodies represent the dendrites. The numbers of neurons in different parts of the hippocampal 
trisynaptic circuit in humans [87] are shown in (a), and indicate very many dentate granule cells, consistent with expansion encoding and the 
production of sparse uncorrelated representations prior to CA3 [88,89]. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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the equations used that require deep learning by error backpropagation, are easily available [10,12]. 

3. Generative AI compared to the generation by the human hippocampal memory system of a complete memory from a 
partial retrieval cue 

It is of great interest to compare this Generative AI with generative processing in the brain, as this is likely to advance our un-
derstanding of Generative AI and of brain function. The example of brain function chosen for this comparison is the memory system, in 
which an incomplete memory retrieval cue is provided, and the brain then generates the rest of the memory. An example is that when 
provided with a memory retrieval cue, for example a question of who was present at dinner yesterday, the brain can then generate 
recall of the whole memory of this episode including who was present, where the dinner was, what the discussion was about, and how 
delicious the food was. The episodic memory system is chosen for the comparison not only because it can generate from a retrieval cue, 
but also because there is much evidence about the neuronal network computations in the hippocampal episodic memory system, and 
the ability of the hippocampus to recall whole memories to the neocortex [1–3,13–18]. In this paper, the term ‘prompt’ is used to refer 
to a linguistic input for generative AI, such as a query question. 

The operation of the human hippocampal system for episodic memory can be described with the help of the brain connectivity 
illustrated in Fig. 1a and b. An episodic memory typically combines in the hippocampus information from the ‘What’ cortical systems 
(e.g. about objects or individual people), from ‘Where’ cortical systems about the location of the event, and about the Reward or 
emotional value of the event [2,3,19]. There may also be some information about the sequence of particular events in an episodic 
memory, such as who arrived after whom for dinner, and the order in which items may have been discussed [20]. 

For episodic memory, the memory of particular events or episodes, the neocortical representations of ‘what’ (objects, people, 
represented in the anterior temporal lobe [18]), ‘where’ (viewed spatial location, in scene regions in the ventromedial visual stream [1, 
16,18]), and reward value (in the orbitofrontal cortex [2,21,22]) in different parts of the neocortex, reach the hippocampal system 
(dentate, CA3 and CA1) via the perirhinal, parahippocampal, and entorhinal cortex (Fig. 1a and b). The neocortical information 
representations typically involve semantic information, such as who knows whom, many of the attributes of each person or object, and 
schemas of for example what is likely to happen at a dinner party [2,23]. 

In the hippocampal system circuitry, the (‘standard’ [2,3,15,24]) theory is that the dentate granule cells perform pattern separation 
on the inputs to make them less correlated with previous inputs (to reduce interference between different episodic memories); the CA3 
recurrent associative connectivity operates as an attractor network to associate the ‘what’, ‘where’ and reward inputs currently being 
received; and the CA1 network prepares a compressed representation for the return pathways back to the neocortex (green in Fig. 1) [2, 
15,25,26]. During storage of the episodic memory, these backprojections to the neocortex will be active, and can be associated by 
pattern association learning with whichever neocortical neurons are firing [2,3,15,26]. During recall of the episodic memory, just part 
of the episode may be presented, such as ‘what’ information about who was present, the CA3 network operating as an attractor 
network performs completion and recalls the other components of the episode memory (‘where’ and reward value), and all parts of the 
memory can be reinstated in different parts (‘what’, ‘where’ and reward) of the neocortex by the associatively modified backprojection 
synapses onto neocortical neurons [2,3,15,17,25,26]. A property of hippocampal activity is that some neurons are ‘time cells’ that fire 
at particular times in a fixed sequence [27–30]. Associating items such as objects, places, or reward onto these time cells may provide a 
way of remembering the order of events within an episodic memory [2,3,20]. 

A key property of all the computations just described for the neocortical-hippocampal system for the storage and recall of episodic 
memories is that the key computations are performed by autoassociation (/attractor) networks and by pattern association networks, in 
which the learning rules are associative and local, i.e. depend on the presynaptic and postsynaptic firing rates [2,3,15,17]. The whole 
theory is quantitative and analytic using for example approaches developed in theoretical physics [2,3,15,31–34], and has been tested 
numerically [2,17]. In contrast, the AI approach relies on very different computations, with backpropagation of errors in a hierarchy 
for which there is no clear architecture or biologically plausible mechanism provided in the brain [2]. An implication is that there may 
be much to learn from the brain that is relevant to AI, for the human brain solves many complex problems in different ways to those 
used in current AI. 

It is important in understanding the hippocampo-cortical memory system in humans and other primates that what it encodes for 
memories and navigation is very different from the neuronal representation by ‘place’ cells found in the rodent hippocampus of the 
place where the individual is located [4,5,35–39]. In contrast, in primates the predominant spatial representation in the hippocampus 
and parahippocampal cortex is provided by spatial view neurons that code for the location ‘out there’ where the primate or human is 
looking in space [1,2,40–44]. This discovery, together with much recent evidence from primates [45–49] and humans [50–52] (see the 
Special Issue of Hippocampus, May 2023), is leading to a revolution in our understanding of hippocampal function in primates 
including humans, in that this allows memories to be formed of where people and objects are in spatial scenes even though the viewer 
may never have visited the places being viewed. This is prototypical of human memory, and means that hippocampo-neocortical 
function as we now understand it is highly relevant to understanding human generative memory brain systems [1,2,40]. 

Now we can consider whether parts of this hippocampo-neocortical process involved in the retrieval of episodic memories might be 
described as ‘generative’. 

First, the hippocampo-cortical memory recall process is generative in the sense that when prompted with a partial cue for memory 
retrieval, the whole memory of the episode can then be generated using completion in the CA3 attractor network in the hippocampus, 
and then recall back to the neocortex. An example is that given the ‘where’ retrieval cue of a dinner that took place in College the 
previous evening, that retrieval cue leads to recall of ‘what’ information, such as who was present, and what was discussed. That 
generative outcome has similarities with generative AI. 
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Second, insofar as hippocampal circuitry may help with sequence memory using time cells as just described, the hippocampus could 
enable recall of items back to the neocortex in the temporal order in which they originally occurred, up to the last item in the previously 
stored sequence, and there is evidence that the hippocampus performs this sequence functionality for places and for objects [20]. Thus 
if only the first item in the sequence is presented to the human as a recall cue, the human could generate the remaining items in the 
sequence, and thus in the generative AI sense [12], would be generating the next item or items, given the recall cue that consists of an 
earlier item in the sequence. 

Third, the hippocampo-neocortical system might appear to be different from generative AI, in that if the human system was acting 
as an episodic memory retrieval system for a particular event, it would recall only exactly what was stored for that particular event, and 
this might be different from generative AI, which may utilize information learned as a result of many different training examples [12]. 
But what is stored in the neocortical regions accessed by the hippocampal memory system (anterior temporal lobe for ‘what’ infor-
mation; medial temporal lobe for ‘where’ information; and orbitofrontal cortex for reward value information [2]), is, as described 
above, semantic, in that it includes many attributes of people, objects, etc. Given the stochastic dynamics of memory operations in the 
brain [2,17,53–55], the exact information recalled in the neocortex may not be exactly what was stored. Moreover, what is recalled in 
the neocortex may be influenced by the semantic structure of the information stored in the neocortex, and that may influence exactly 
what is present in the recalled neocortical representation. For example, if two of the people in the recalled episodic memory had never 
been on the same continent previously, that might make the neocortical memory difficult to activate for those two persons together, 
but easy to activate for one of the people and a second person strongly associated with the first person, resulting in recall of a memory 
that better might fit the existing semantic structures in the neocortex. Thus in human episodic memory recall, existing semantic 
knowledge may influence exactly what is generated next in recall, and this is analogous to the situation with generative AI. 

In this sense, existing schemas in human semantic neocortical memory may influence what is recalled [2]. Perhaps we could think 
of some generative AI systems as containing ‘schemas’ due to their vast training that is likely to result in similar sequences of tokens 
being compressed together. Such a schema might be a doctor’s surgery, in which there would be many elements and events that might 
be likely to happen in common between different doctor’s surgeries. 

Fourth, once an episodic memory has been retrieved to neocortex, it may be rehearsed and thought about more within the 
neocortical semantic networks [2,17,23], which may in turn modify so that they incorporate information retrieved from an episode, 
such as modification to neocortical autobiographical semantic memory about interesting discussions held at a particular scientific 
conference. In this way, the episodic memory may lead to the generation of new semantic representations in the brain [2]. That is 
something that is much more difficult for generative AI, in that the information trained into GPT-4 was correct in 2021, and when the 
information needs to be updated with new data, the process is very time-consuming, costly, and compute-intensive [12]. 

Fifth, after an episodic memory has been retrieved using the hippocampus to neocortex backprojection retrieval pathways (green in 
Fig. 1), the planning and imagining systems in cortical regions such as the prefrontal cortex that utilize attractor networks [2] can 
become active [56,57], and can be triggered into thinking about the possible implications for the future of the recalled information. 
These are neocortical mechanisms that contribute to prospective memory [58] after recall using the hippocampo-neocortical con-
nections (Fig. 1). Prospective memory involves the use of information from the past and the present to generate predictions about the 
future [58], may be implemented by the network mechanisms referred to here [2], and is inherently constructive [59,60]. 

Sixth, the human brain appears to use several separate types of memory system, a neocortical long-term memory for semantic 
representations based on previous experience, and a hippocampal system for episodic memory [2,3,13,14]. This enables real-time 
collection of new memories about particular events in the hippocampal system, separate from long-term semantic memory which 
though may gradually benefit from what has been learned from episodic events. In addition, there are several short-term memory 
systems in the human brain [2]. These are not properties of generative AI systems, which might benefit from these different types of 
architecture and memory systems. 

We thus see many differences in kind between what is implemented in generative AI with its implementation of an ability to predict 
the next token, and the mechanisms in the brain that are triggered by memory recall to lead to prospective thinking and also creativity. 
Creativity in the brain is supported by probabilistic computations triggered by the almost random timing of neuronal action potentials 
that generate ‘noise’ in the brain and facilitate jumping to new locations in the energy landscape making the operation of the human 
brain probabilistic [53,61–65]. Moreover, thoughts about thoughts, and in particular higher order syntactic thoughts, may be useful in 
correcting mistakes in human thinking, to improve creativity by selecting useful new ideas generated by the stochastic dynamics of the 
brain [2,66,67]. Generative AI has been described as ‘stochastic parroting’ [68], in that it predicts the next item based on an 
agglomeration of vast training of sequences, though perhaps it does more than stochastic parroting [69]. In contrast, in humans there is 
continuous updating of the semantic system that in part utilizes the hippocampal episodic memory system; what is recalled from the 
hippocampal episodic memory system can be influenced by what is already in the neocortical semantic memory system; and once the 
information is recalled to the neocortex then neocortical processing can perform logical, spatial, and reasoning operations at which 
generative AI systems can notoriously fail, because they are parroting [70]. 

4. AI-based approaches to understanding hippocampal memory function 

There have been some generative AI approaches to understanding hippocampal function [6–10]. However, these have involved 
models of place cells found in rodents, and self-motion update of place representations to generate maps. One problem is that place 
cells, which encode where the individual is located, are the predominant spatial representation in the rodent hippocampus [4,5, 
35–39]. In contrast, in primates the predominant spatial representation in the hippocampus and parahippocampal cortex is provided 
by spatial view neurons that code for the location ‘out there’ where the primate or human is looking in space [1,2,40–44]. This 
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discovery is supported by much recent evidence from primates [45–49] and humans [50–52]. Thus these AI-based studies do not 
address what is found in the hippocampus of humans and other primates, or the generation of a whole memory from any part in the 
human hippocampal memory system. A second problem is that these AI-based approaches to understanding hippocampal function rely 
on deep learning, so are likely to not be biologically plausible (see below and [2]). 

Another approach has been a hybrid approach [71], using a relatively standard biologically plausible neuronal network approach 
to modelling the hippocampus that includes an autoassociation network [3,15,17], implemented with a modern Hopfield network 
[72], but combining this with generative models (variational autoencoders) for the connectivity between the neocortex and the 
hippocampus. A problem again with this approach is that the generative autoencoder requires deep learning, and is impenetrable in 
exactly what is computed at different levels of the network [2,73]. 

5. Implications 

The differences in what is being computed in the neocortex and how it is computed [2] vs in generative AI [10,12] have clear 
implications for the design of future AI machines, and for understanding the great differences between generative computations in the 
brain and generative AI. 

First, generative AI algorithms, and approaches to understanding hippocampal function using them [6–10], use backpropagation of 
error, which seems physiologically implausible for there is no generally accepted way understood by which the appropriate errors for 
every neuron at every level of a cortical hierarchy could be fed back to update all the synaptic weights. The connections and operation 
of the cerebral cortex do not seem to support backpropagation error learning, but instead learning does occur using local learning rules 
[2]. 

Second, deep learning does not provide reasoned explanations for how it reached its answers and is somewhat impenetrable in that 
it cannot explain the particular evidence by which it produced a particular result [73], whereas humans are able to provide reasoned 
arguments for their choices. Indeed humans can think about their own thoughts, and this may be helpful in correcting errors in first 
order thoughts [66], and that is a process that needs development in AI. 

Third, generating creative thoughts in the brain may involve stochastic jumping to nearby parts of a semantic space driven by the 
stochastic nature of neuronal spike timing in the brain which is close to Poisson [2,53,62], and generative AI is not naturally creative, 
for it aims to generate the next most likely token in a sequence given its previous training. 

Fourth, it has been argued that predictive coding and active inference are key properties of the human brain [74–79], and this is 
different from generative AI. 

Fifth, the power of learning by error backpropagation and the multiple parameters by which the learning can be optimized make it 
possible to mimic properties of what is found in the brain, for example neuronal activity in the inferior temporal visual cortex [80–83], 
but this does not mean that we understand better what computations are being performed and how they are performed in the brain. 
This is partly because exactly what is learned in deep learning is somewhat impenetrable [73], and partly because the brain probably 
does not implement backpropagation error learning in deep networks but computes by different principles [2,84–86]. 
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