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A cure for the plague of parameters:
constraining models of complex
population dynamics with allometries

Lawrence N. Hudson and Daniel C. Reuman

Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK

A major goal of ecology is to discover how dynamics and structure of multi-

trophic ecological communities are related. This is difficult, because whole-

community data are limited and typically comprise only a snapshot of a

community instead of a time series of dynamics, and mathematical

models of complex system dynamics have a large number of unmeasured

parameters and therefore have been only tenuously related to real systems.

These are related problems, because long time-series, if they were commonly

available, would enable inference of parameters. The resulting ‘plague of

parameters’ means most studies of multi-species population dynamics

have been very theoretical. Dynamical models parametrized using physio-

logical allometries may offer a partial cure for the plague of parameters,

and these models are increasingly used in theoretical studies. However,

physiological allometries cannot determine all parameters, and the models

have also rarely been directly tested against data. We confronted a model

of community dynamics with data from a lake community. Many important

empirical patterns were reproducible as outcomes of dynamics, and were not

reproducible when parameters did not follow physiological allometries. Results

validate the usefulness, when parameters follow physiological allometries,

of classic differential-equation models for understanding whole-community

dynamics and the structure–dynamics relationship.
1. Introduction
It is important theoretically and possibly for future practical application to

understand the population dynamics of species in complex ecosystems and

how dynamics may depend on and also affect community structure. Dynamical

features of communities, such as their stability or instability to perturbations,

must certainly be related to community structure [1,2]. For instance, one

interpretation of Robert May’s seminal work using randomly parametrized

community matrices [3–5] is that unstructured (i.e. randomly structured) com-

plex communities are extremely unlikely to be stable. Using the same modelling

approach as May, recent work showed that community matrices can imply

stability if they are appropriately structured, with tightly coupled predator–

prey pairs [6]. Community dynamics must, in turn, influence community

structure, because structure is the outcome of dynamics up to the time of obser-

vation. For instance, species average population densities in communities tend

to be approximately proportional to a power of species body mass [7–9];

power-law exponents vary substantially among ecosystems of different types

but much less among ecosystems of the same type [9,10]. Exponents character-

ize community structure by quantifying the balance of population abundance

among large- and small-bodied species that results from their trophic dynamics.

Although there clearly is a relationship between structure and dynamics, it

has been difficult to study it in detail because of insufficient data and difficulties

in parametrizing models. The difficulties arise because dynamical models of

complex systems can have hundreds of unmeasured parameters. Parametrizing

a complex model has been likened to finding a needle in a haystack: the needle
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represents good parameters, which cause the model to pro-

duce realistic outputs, and the haystack represents a very

large space of possible parameters for the model. Evaluation

of a model depends on finding good parameters, if they exist.

Thus, it is hard to determine whether a model is appropriate.

Worse, several competing models may be available, repre-

senting competing hypotheses about what biological and

environmental factors are important. To select among

hypotheses, one must find best parameters for each frame-

work, thereby not only finding a needle in a haystack, but

also finding out which of several haystacks, if any, contain

needles at all. This ‘plague of parameters’ [11] pertains to

all standard dynamical modelling frameworks for complex

communities, including differential equation [11], commu-

nity matrix [12], autoregressive [13] and Markov chain

approaches [14,15].

If an abundance of population time-series data were avail-

able, then parameter values could, in principle, be inferred

statistically; however, whole-community data are limited

and typically provide only a snapshot or time-averaged com-

munity description instead of long time-series of species’

population densities. So time-series fitting methods cannot

realistically be used to infer the values of all parameters

except in cases where truly exceptional data exist—usually

for monotrophic communities of sessile species [14–19]. The

result is that most studies of the dynamics of complex, multi-

trophic communities have been very theoretical; it is not

known to what extent the models and parameters used actually

parallel the dynamical behaviour of real communities and

provide insights about them.

Dynamical models parametrized using physiological allo-

metries may offer a partial cure for the plague of parameters.

Most parameters in some community models represent bio-

logically interpretable quantities, such as species’ maximum

ingestion and respiration rates. These rates are linked to the

physiology of the species and are strongly correlated with

body size. Metastudy information has been used to deter-

mine the interspecific relationship between rates and body

size, and model parameters for species in a community of

interest can then be estimated [11]. Recent models of complex

systems have used this technique to remarkably constrain the

space of possible parameters [20–23]. However, not all par-

ameters can be determined from physiological allometries.

A much smaller, but still large space remains to be searched.

Models parametrized with physiological allometries, despite

their increasing use, have also virtually never been directly

tested, i.e. it is largely unexamined whether the reduced

parameter space contains parameter values that lead to ecologi-

cally sensible model behaviour (but see [24], also discussed

below). Such validation efforts are important, and increasingly

so, as a growing amount of research is based on insights

gained from these models that are, in fact, ecologically irrelevant

if the models do not accurately represent ecosystems.

We confronted physiological–allometry–parametrized

differential equation models with one of the most highly

resolved and complete multi-trophic community datasets

available, from Tuesday Lake, MI, USA. We examined

whether there are sets of parameters, in the reduced space

that remains after physiological parametrization, that cause

the model to reproduce the most important structural

patterns that have been observed in real communities.

Specifically, we asked whether the model could be made to

reproduce: (i) average species population densities and how
these vary with species body size both within and among

trophic and taxonomic groupings; (ii) abundance–spectrum

representations of population densities in size categories;

and (iii) total biomass in trophic levels and taxonomic

groups. Patterns of biomass and population abundance

with body size and trophic level have been studied both

within [7,25] and among [8,26–28] taxonomic groups at

least since the time of Elton [2], in both aquatic [29–31] and

terrestrial [9,10,32] systems, and have been increasingly

important descriptors of community structure in recent

years [9,10,33–36]. The patterns we use provide a reasona-

bly comprehensive description of an ecological community.

In testing differential equation models of community dynamics,

we help answer the question of whether this widely used

modelling framework actually is a sensible tool for understand-

ing structure–dynamics links in ecosystems. If parameters

are not found for which the models can reproduce the gross

and commonly seen patterns described above, then model

usefulness for any purpose will be questionable, whereas find-

ing parameters that reproduce the patterns will support use of

the models.
2. Methods
(a) Community patterns that a model should reproduce
Empirical patterns that emerge in ecological communities by

considering the average population densities (N ) and body

masses (M ) of all species present have become widely studied

[8–10,26,27,29,34,35,37]. The common power-law form of the

N-versus-M relationship has broad implications for community-

[9] and ecosystem-level [32] theories. The relationship indicates

the average abundances of all species and hence provides a

fairly comprehensive summary of the community. Species

N-versus-M patterns are strongly affected by trophic structure,

because consumer population densities are supported by bio-

mass and nutrients that flow through trophic links [9,28,32].

Another commonly used form of mass–abundance relationship,

this one ignoring species distinctions, is the classic abundance or

size spectrum [30]. Log total N is computed in equally spaced

log(M) bins and plotted against (log-scale) bin centres, with appro-

ximately linear results commonly occurring. Linear regressions

fitted to species-specific or binned log(N)-versus-log(M) data

provide a simple description of major patterns in the average

abundances of species and body mass categories, respectively.

Prior work showed that both measures can vary systematically

among ecosystems [8–10,34].

The above patterns were quantified [26,27] for the pelagic

epilimnion community of Tuesday Lake (figure 1 for the

species-specific pattern), which was sampled during summer

stratification in 1984 and 1986 [31]. Species lists, trophic links

and species average M and N were quantified for Tuesday

Lake in both years; these data are available [27,38]. Only about

half of the species from 1984 were detected in 1986, proba-

bly largely owing to a lake-scale experimental manipulation

performed in 1985; however, many structural features of the

two communities are very similar [27]. Dynamic data at the

functional-group level of taxonomic resolution have been col-

lected for Tuesday Lake [13], but we did not use these data,

because we do not seek to model the detailed dynamics of func-

tional groups in the lake, but rather to assess the general realism

of a modelling framework at the species level of resolution, by

examining whether it can reproduce community patterns found

in Tuesday Lake and many other systems. Dynamic data of

this kind are also extremely rare, even at the functional-group

level, whereas the data we use are more common.
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Figure 1. The communities of Tuesday Lake sampled in (a) 1984 and (b) 1986.
Phytoplankton are shown by green circles, invertebrates by blue squares and fish
by purple diamonds. Light grey lines indicate trophic links. Communities include
50 species and 269 trophic links in 1984, and 51 species and 241 links in 1986.
Taxa are highly resolved, with 48 of the 50 food web nodes in 1984 and 49 of
the 51 in 1986 being species and the remaining two taxa in both webs resolved
either to genus level or described as unclassified flagellates.
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(b) The model
The model represents each population by a stock of biomass and

models changes in biomass, Bj, of the jth species as

dBj

dt
¼ rjBjĜjðBÞ � TjBj þ

X

resources; i; of j

eijJijBjF̂ijðBÞ

�
X

consumers; k; of j

J jkBkF̂ jkðBÞ
fejk

ð2:1Þ

[11,39]. The parameters rj, Jij and Tj were computed using allo-

metric relationships that assume negative quarter power

scaling [11,39]. The parameter rj is the mass-specific growth

rate of the jth producer, rj ¼ frarM
�1=4
j , where ar is derived

from empirical data of species’ maximum growth rates and

body masses, fr is the fraction of maximum rate realized in a

given ecological context and rj is zero for non-producers. The

parameter Jij is the mass-specific ingestion rate of the jth consu-

mer, Jij ¼ fJaJM
�1=4
j /eij, for all i consumed by j. We used two

empirically derived values of aJ, one for invertebrates and one

for vertebrate ectotherms, both derived from data on maximum

ingestion rates. We also used two values of fJ, the fraction of

maximum ingestion rate that is realized, one for invertebrates

and one for vertebrate ectotherms. The parameter Tj is the

mass-specific respiration rate of the jth consumer, Tj ¼ aTM�1=4
j ,

again with two values of aT used, one for invertebrates and

one for vertebrate ectotherms; both were computed from ‘typical’

metabolic or respiration rate data. Tj is zero for producers. Values

of ar, aJ and aT were previously determined [11] from empirical

data, whereas fr and the two fJ were unknown parameters.

The terms Ĝj and F̂ij are the normalized (between 0 and 1)

growth model and functional response, respectively, both of

which are functions of the biomass densities of all populations (B).

We used functional forms that had been used with our dynamical

model in previous studies [20,22,23,37,40]. The growth model is

ĜjðBÞ ¼ 1�
X

producers;k

a jkBk

K
; ð2:2Þ

in which producers compete for a global carrying capacity, K. We

set all competition coefficients, ajk, equal to 1, for the sake of simpli-

city. The functional response is

F̂ijðBÞ ¼
ðBi/WÞ1þq

1þ dBj þ
P

resources; k;of j
ðBk/WÞ1þq ; ð2:3Þ

where q ¼ 0 produces a type II response and q . 0 produces a type

III sigmoid response. A type III response models switching between

resource species, i.e. the consumer’s apparent preference for
resources depends on the relative densities of its resource species

[39]. The higher the value of q, the closer the functional response is

to a step function. The parameter W is the half-saturation biomass:

the biomass density at which the functional response results in a

value of 0.5. The parameter d controls the amount of intraspecific

predator interference. Values of d . 0 reduce consumption rates of

the jth population as the jth population becomes more common

[22,37]. Not all consumers ingest everything that they kill, rep-

resented by the ingestion efficiency, feij, which characterizes the

amount of biomass removed from i that is ingested by j. The assim-

ilation efficiency eij is the fraction of biomass of i ingested by j that is

actually converted to biomass of j. The model parallels models used

in earlier works [11,20,22,39]. Time in the final model equations was

normalized to the growth rate of the primary producer with the

smallest body mass; model details are presented in the electronic

supplementary material.

Running a simulation of the model required the set of trophic

links for the community as well as the body mass, initial biomass

density and metabolic category (either producer, invertebrate or

vertebrate ectotherm) for each population. All of this information

was taken from the community being simulated.
(c) Simulations and model – data agreement
Simulations were started at the empirical, measured biomass den-

sities (Bdata, kg m–3), computed from the product of the measured

population densities (Ndata, individuals m– 3) and body masses

(M, kg). All simulations were run to stationary state, and the result-

ing densities, Bsim, were used to compute the stationary-state

population densities Nsim ¼ Bsim/M. Simulations were terminated

when every population’s biomass density reached either an equili-

brium or stable oscillations; in the latter case, final biomass

densities Bsim were time averages. Details on detecting extinc-

tions and stationary states and our conditions for terminating

simulations are in the electronic supplementary material.

Our measures of model–data agreement compare Nsim with

Ndata for all species, beginning by computing the number of

species persisting. Given a community of s species,

model score ¼
Xs

i¼1

ðNsim;i . 0Þ þ 1

1þ SSEmodel

and

SSEmodel ¼
X

species; i;persisting

ðlog10ðNdata;iÞ � log10ðNsim;iÞÞ2:

ð2:4Þ

The second term in the model score formula varies between 0

and 1, so that the model score has a maximum value of 1 plus

the number of species persisting. The degree of model–data

agreement according to these scores assesses the extent to

which major patterns in mass–abundance relationships can be

explained as the dynamical outcome of the model.

For simulations in which all species persisted, we compared

the sum-squared error (SEE), SSEmodel, with the equivalent SSE

measure for an ordinary linear regression, here called SSEregression,

in order to measure whether the dynamical model or ordinary

linear regression was a better description of data. After performing

an ordinary linear regression through a log10(Ndata)-versus-

log10(M) scatter plot, SSEregression was computed as the sum of

squares of the residuals. Because this procedure is analogous to

how SSEmodel was computed, but replacing model predictions,

log10(Nsim,i), with regression-based predictions, SSEmodel and

SSEregression are directly comparable.
(d) Parameter space and optimizations
Seven parameters could not be determined from physiological

allometries ( fr, fJ for invertebrates and vertebrate ectotherms, d,
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Figure 2. The performance of the best set of parameters fitted to the 1984 community. (a) Grey lines connect Ndata (symbols and colours as in figure 1) and Nsim

(crosses). Linear regressions through Ndata (solid lines) and Nsim (dashed lines) are shown for producers, invertebrates and all populations. Regression equations with
95% confidence intervals of slope are shown in the legend. (b) Histogram of model – data residuals. (c) Abundance spectra for log10(M )-binned Ndata (circles and
solid line) and Nsim (crosses and dashed line). (d,e) Bdata and Bsim binned by ‘prey-averaged’ trophic level [44], rounded down to the nearest integer. ( f,g) Bdata and
Bsim binned by metabolic category.
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q, W and K; see the electronic supplementary material). We

searched the space of undetermined parameters for good

model–data agreement for the communities of 1984, 1986 and

simultaneously for both years, each step through parameter

space in the search requiring simulation of whole-community

dynamics. The search is for model parameters that conform to

physiological allometries and reproduce community patterns.

The limits of sampling space and values of fixed parameters

are in electronic supplementary material, table S1.

Each set of optimizations contained 1000 independent

optimization runs starting from points sampled according to a

Sobol low-discrepancy sequence (sobol.design in the pomp R

package, v. 0.35-1 [41]). Optimizations were performed using the

constrOptim function in R, with the Nelder–Mead method;

the optimizer box-constrained parameter values to be within the

sampling space. The two sets of optimizations that fitted to

the 1984 or 1986 data used an objective function that ran a single

dynamical model simulation to completion and returned the

resulting model score. The objective function for the optimizations

that fitted jointly to both communities ran a simulation of each

community and returned the mean model score.

(e) Randomizations
The optimizations described above will show whether parametri-

zation by physiological allometries enables models to reproduce

important community patterns. To further illuminate the impor-

tance of physiological allometries, it is necessary to check

whether models with parameters not following physiological allo-

metries are unable to reproduce community patterns. We randomly

shuffled the parameters rj within metabolic categories. This

destroys the body mass dependence of these parameters while

retaining their aggregate statistical properties. In separate analyses,

we randomly shuffled the Tj, and, separately, the Jij, again within
metabolic categories. We performed three separate randomiza-

tions for each of rj, Tj and Jij, to prevent results from being overly

dependent on the individual randomizations used. For each ran-

domization, we repeated the optimization procedure outlined

above, to see whether, or not, model agreement with community

patterns could be obtained in spite of parameters not following

physiological allometries. Optimizations using randomized

parameters were carried out using 1984 data only.

All simulations were conducted using the R and C program-

ming languages on the Imperial College High Performance

Computing Cluster (R v. 2.11.1 [42]). Model differential

equations were solved using the lsoda function in the R package

deSolve v. 1.8.1 [43]. The Tuesday Lake communities both con-

tained six producers with no consumers [27], which were

removed for simulations.
3. Results
(a) Model – data agreement
We found many sets of parameters that gave coexistence of all

species, in both years (details in the electronic supplementary

material, table S2). This result is notable in light of earlier

results illustrating that the overwhelming majority of par-

ameters for models of complex communities give model

instability and/or species extinctions [4,5,20,21]. Although

the region of parameter space is small for which species co-

exist as they do in nature, that region can easily be found if

the search for it is guided by physiological allometries.

With the best sets of parameters, the model not only achie-

ved species persistence, but also successfully reproduced a

variety of commonly observed community patterns (figure 2).
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The performance of the best set of parameters for the 1984 com-

munity produced SSEmodel ¼ 27.26, beating SSEregression¼ 37.27

and showing that the dynamical model can predict numerical

abundances in the community of 1984 better than a linear

regression. Linear regression is a purely phenomenological

model in this context, whereas our model is mechanistic, so

the fact that our model does as well as regression is notable,

even though it has more free parameters. The mass–

abundance relationships through Ndata and Nsim, as given by

linear regression through log-transformed data, were remark-

ably similar both for the whole community and within the

phytoplankton and zooplankton subgroups; we did not

examine this relationship for the three fish species as they

have very similar body masses. The abundance spectrum

of Nsim was also very close to that of the measured data.

Total simulated and real biomasses were within an order of

magnitude:
Ps

i¼1 Bdata;i ¼ 1:17� 10�02 kg m�3;
Ps

i¼1 Bsim;i ¼
3:92� 10�03 kg m�3. Biomass pyramids for Bdata and Bsim,

split by trophic level and also by metabolic category, were

very similar. A histogram showing the distribution of the resi-

duals log10(Nsim) 2 log10(Ndata) across species indicates that

model errors were approximately normally distributed with

mean close to zero (figure 2). Similar assessments using 1986

data and using data from both years jointly (see electronic

supplementary material figure S1) show that species coexis-

tence was achieved, and the model also performed reasonably

well in those cases, although with patterns substantially less

well matched than for 1984. Electronic supplementary material

figure S2 plots biomass against time for the best parameters,

showing that all populations reached equilibrium.
(b) Parameter constraints
All three fittings (1984, 1986 and both years jointly) resulted in

similar values of the seven fitted model parameters (see elec-

tronic supplementary material, figure S3), showing that

constraints imposed by the requirement that models reproduce

community patterns are broadly consistent for different com-

munities of the same type. We here take the communities of

1984 and 1986 to be of the same type because they come

from the same lake, but to represent different communities

because of the manipulation in 1985 and because species com-

position changed by about half from 1984 to 1986. In both

years, there was a clear lower bound to the growth rate of pro-

ducers ( fr), below which producers do not supply enough

biomass for consumers to persist. There were also lower

bounds to rates of ingestion ( fJ) for both invertebrates and ver-

tebrate ectotherms. Coexistence required a minimum global

carrying capacity, K, in both years. The value of the predator

interference parameter, d, seemed unimportant to model per-

formance in 1984, but high values were required for good

performance when compared with 1986 data. All optimization

endpoints with species coexistence had values of q greater than

zero, corresponding to a type III functional response. The

lowest value of q across all endpoints was 0.34, showing that

coexistence required only a relatively weak type III response

[22]. To further validate the commonality of parameter con-

straints imposed by community patterns in 1984 and 1986,

we examined how model scores in the 2 years were correlated.

Each of our three sets of fitting contained 1000 start points and

produced 1000 endpoints. For each of these 6000 points in par-

ameter space, we plotted the model score values for the 1986

community against those for 1984 (figure 3). Association was
clear, with Pearson correlation coefficient 0.803. Electronic sup-

plementary material, figure S4 shows the relationships among

the seven parameters for each model fitting exercise.

The region in parameter space of ‘good’ model par-

ameters was larger for 1984 than for 1986. The performance

of the model for the 3000 optimization endpoints is summar-

ized in the electronic supplementary material table S2.

Parameters that fit well to the 1984 data, when applied to

the 1986 data, did not produce good agreement. Most par-

ameters that were obtained via the 1986 optimization also

worked well for 1984 without modification. The number of

simulations for each optimization set is presented in the

electronic supplementary material, table S3.

(c) Necessity of parameter allometries
Optimizations using randomized parameters never resulted in

model scores as high as those using parameters that followed

physiological allometries. For two of the three randomiza-

tions of the rj parameters, no optimizations even obtained

coexistence of all species. For the third randomization, co-

existence was achieved, but with a minimal SSEmodel for

simulations with coexistence of 58.41, higher than the value

SSEmodel ¼ 27.26 obtained using allometries. For one of the

three randomizations of the Tj coexistence was never achieved,

and for the other two randomizations, minimal SSEmodel across

simulations showing coexistence was 28.95, again higher than

27.26. None of the three randomizations of the Jij ever led to

coexistence in any simulation. These results not only indicate

the importance of allometric parametrizations, but also suggest

an ordering of importance: allometry in ingestion rates, Jij, is

most important for model–data agreement, and allometry in

the Tj is least important.
4. Discussion
Results provide an important message: that allometrically

parametrized differential-equation models of community

dynamics can recreate, with reasonably good accuracy, impor-

tant large-scale quantitative patterns commonly seen in data.

Had parameters not been found for which the models could
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reproduce the patterns examined here, model usefulness for

any purpose would have been questionable. We found the

reverse. Our results buttress the growing use of allometrically

parametrized models [11,20,21,23] as reasonable tools for

building understanding of community dynamics and the

relationship between structure and dynamics.

In addition, our randomization results show that not

only are physiological allometries sufficient to reproduce

community patterns, they are also necessary: models with par-

ameters not respecting physiological allometries cannot

reproduce the patterns. The patterns are widespread and impor-

tant. Therefore, our results show that research using models

parametrized without respect to physiological allometries

may be ecologically irrelevant.

(a) Comparison with prior work
It had previously been shown that equation (2.1), when para-

metrized using body mass data, has qualitatively realistic

properties, including stability [20]. However, it seems probable

that many dynamical mechanisms confer stability and other

qualitative features also found in real systems, and not all

such mechanisms are ecologically important—stability per se
is not a sufficiently exacting test of a model. Our work builds

on earlier work by showing not only that allometrically para-

metrized models agree with observation qualitatively, but

also quantitatively, in terms of log(N )-versus-log(M) scaling

and good agreement with precise N values. This is a much

more exacting model test and is more indicative that models

contain correct mechanisms. Our result that allometric para-

metrization is not only sufficient but also necessary to

reproduce important patterns also extends prior work and

indicates that allometric parametrization is the way forward

for studies of community dynamics.

Boit et al. [24] also examined the question of whether allo-

metrically parametrized models can reproduce quantitative

empirical patterns; to the best of our knowledge, theirs is the

only prior study to do so. Our results complement those of

Boit et al. in two related ways, and avenues of future research

proposed below are informed by both studies. First, Boit et al.
primarily examined whether their models could reproduce

seasonal dynamical patterns, whereas we examined common

average patterns of population density. Both seasonal fluctu-

ations and average population density regularities should be

reproduced by a good modelling framework, so our results

combine with those of Boit et al. to increase support for

models. The models of Boit et al. were driven by observed

fish mortality, whereas our models were not externally

forced and Tuesday Lake was not fished prior to 1984 [27].

Second, the dataset of Boit et al. was of low taxonomic resol-

ution but of high temporal resolution and extent, whereas

ours was of high taxonomic resolution. Multi-annual whole-

community time series such as those of Boit et al. are extremely

rare and difficult to obtain, whereas our data can be gathered in

one summer. One goal of modelling community dynamics is to

predict the consequences of perturbations. For practical use,

prediction should be based on data that can be gathered in

reasonable time.

(b) Future research
Comparisons of model–data agreement results for 1984

versus 1986 and for phytoplankton versus zooplankton

versus the whole community provide important lessons,
discussed below, about how model–data agreement might

be improved for Tuesday Lake. More importantly, and also

discussed below, these comparisons indicate how a formal

statistical approach based on the conceptual framework pro-

vided here might be constructed for model selection among

multiple models to determine what mechanisms are impor-

tant for community dynamics and what models should be

used for forecasting. This approach is the way forward we

recommend for increasing the realism of models of Tuesday

Lake and other systems.

Model–data agreement was worse for 1986 than for 1984,

and examining this difference indicates ways in which

models of Tuesday Lake might be improved in future work.

We considered four possible improvements and fitted

models for two of them. First, the largemouth bass, Microp-
terus salmoides, present in 1986 but not in 1984, is known to

consume non-pelagic species [31,45,46]. External subsidies

to bass in 1986 may help explain why model–data agreement

was less good for 1986 than 1984. Second, bass are atypical in

that they were artificially introduced to the lake, and other

species found in the lake in 1986 were much smaller than

typical adult bass prey. The only prey items in Tuesday

Lake 1986 in the preferred prey size range of adult bass

were young bass. Consumption of young bass by adult

bass may therefore have been accentuated in Tuesday Lake

in 1986 relative to cannibalism rates that occur when other

prey are available, and this may have effectively reduced

the efficiency of trophic transfer from non-bass prey species

to bass. Atypical respiration rates of bass may also help

explain why model–data agreement was less good for

1986 than 1984. Third, poor model–data agreement may

have come about because Tuesday Lake had not reached a

new steady state by 1986 following the perturbation imposed

in 1985, whereas model–data comparisons used model

steady states. Fourth, species-specific deviations from rate

allometries in other species besides bass could have cause

model–data discrepancies. We fitted models to 1986 data to

test the first two hypotheses. Best results had all species persist-

ing with SSEmodel equal to 135.10 for the external subsidy

hypothesis, and 99.00 for the atypical bass efficiency and

respiration hypothesis, compared with 135.23 for the unmodi-

fied model. These appear to be improvements, but our

approach does not allow judgements on whether these values

are statistically significantly better given that they require

additional free parameters. Models were not fitted for the

latter two hypotheses, because a large number of additional

parameters would have been needed, and spurious ‘improve-

ments’ in model fit could easily have been observed. Boit et al.
also made comparisons among models of their system,

although their approach, like ours, is also not a formal statistical

approach and also does not allow for judgements as to whether

apparent improvements are significant. Although some models

of Boit et al. appeared substantially better than others, some of

their models apparently also had as many as 55 additional free

parameters, and a variety of adjustments were made by hand

that seem likely to contribute additional degrees of freedom.

Model–data agreement in this study was better for zoo-

plankton and for all species together than it was for

phytoplankton: slopes of log(N )-versus-log(M ) regressions

through model output for 1984 were within 95% CIs of the

slopes of regressions through data for zooplankton and for

all species, but not for phytoplankton (figure 2a). This

suggests one more possible improvement to the model that
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could be considered in future work, to its phytoplankton

competition component. Currently, all phytoplankton com-

pete equally and are subject to an overall biomass carrying

capacity. In fact, phytoplankton compete for nutrients and

light, and recent literature explores how this competition

depends on body size [47]. Encorporating a more realistic com-

petition model may improve overall fit. This proposal was not

carried out because of the statistical considerations mentioned

above and discussed in detail below, but will probably be a

fruitful avenue of research once statistics are improved.

Our study and Boit et al. did not develop methods that

allow formal statistical comparison of different models

because developing such methods will be a major challenge,

and would have been premature before having evidence that

models can at least approximately reproduce quantitative

patterns. Because our work and that of Boit et al. has demon-

strated they can, we describe two characteristics a future

formal approach should have. First, the approach should be

based on statistical likelihood, so model selection tools such

as the Akaike information criterion can be used to weight

alternative models while accounting for both quality of fit

and model complexity. Population ecologists have used like-

lihood and model selection with great success to infer

mechanisms that drive the dynamics of important population

systems such as cholera [48], Tribolium beetles [49,50] and

others [51]. The approach is also used in other fields [52,53],

and is increasingly seen as the future for models and data

in ecology [54,55]. But, it has not been applied to whole-

community dynamics. Likelihood and model selection in
population ecology exploit high-quality time-series datasets,

almost never available for communities. So community-level

data previously appeared too scarce for the methods but our

study suggests that if existing community data are combined

with literature metastudy data on body size and taxonomic

correlates of model parameters, fitting can be successful.

A key insight from our results is that community data are in

fact not scarce, they are just more heterogeneous than the

time series of population ecology: relevant data encompass

not just measurements from the community but also litera-

ture data constraining physiological rates. So the second

feature of our proposed approach is that it should unify com-

munity data with literature data on body size and taxonomic

correlates of rates within a single likelihood framework.

The same concepts could be applied to community matrix,

autoregressive and Markov chain approaches to studying

community dynamics, whenever it is possible to constrain

parameters using physiological allometries.
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