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Non-invasive fetal electrocardiography represents a valuable alternative continuous fetal

monitoring method that has recently received considerable attention in assessing fetal

health. However, the non-invasive fetal electrocardiogram (ECG) is typically severely

contaminated by a considerable amount of various noise sources, rendering fetal ECG

denoising a very challenging task. This work employs a deep learning approach for

removing the residual noise from multi-channel fetal ECG after the maternal ECG has

been suppressed. We propose a deep convolutional encoder-decoder network with

symmetric skip-layer connections, learning end-to-end mappings from noise-corrupted

fetal ECG signals to clean ones. Experiments on simulated data show an average

signal-to-noise ratio (SNR) improvement of 9.5 dB for fetal ECG signals with input SNR

ranging between −20 and 20 dB. The method is additionally evaluated on a large

set of real signals, demonstrating that it can provide significant quality improvement of

the noisy fetal ECG signals. We further show that employment of multi-channel signal

information by the network provides superior and more reliable performance as opposed

to its single-channel network counterpart. The presented method is able to preserve

beat-to-beat morphological variations and does not require any prior information on the

power spectra of the noise or the pulse location.

Keywords: convolutional neural networks, encoder-decoder network, fetal ECG denoising, fetal ECG

enhancement, fetal electrocardiography

INTRODUCTION

The fetal electrocardiogram (ECG) can be used to monitor the condition of the fetal heart
from early pregnancy until delivery (1). Nowadays, fetal monitoring is mainly performed by
cardiotocography or by ECG recordings where an electrode is directly placed on the fetal
scalp. Cardiotocography records the fetal heart rate together with the uterine contractions. The
advantages of the method are that it is performed non-invasively and is safe for the patient. On the
other hand, it is prone to signal loss, while recorded changes of the heart rate are not always precise
(2). Scalp ECG recordings are a more reliable means of monitoring the fetal health. However, they
are invasive, may pose a health risk to the fetus, and can only be performed during labor, when the
membranes have ruptured.

Non-invasive fetal electrocardiography, performed by placing electrodes on the maternal
abdomen, is a promising alternative to standard fetal monitoring. In comparison with
cardiotocography, it provides more accurate information because it does not need to average over
multiple beats for the heart rate extraction. Moreover, it provides the possibility to assess the ECG
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morphology, related to the electrical activity of the fetal heart.
The advantage of the method over the scalp ECG measurements
is that it can be performed already during pregnancy, it is safe for
the fetus and comfortable for the mother. However, the difficulty
to extract a clean fetal ECG from the abdominal mixture is the
main reason that the application of themethod in clinical practice
is still limited. The interferences and noises in the abdominal
recordings among others include the maternal ECG, powerline
interference, baseline wander, muscle noise from the fetus and
mother and movement artifacts. Considering that the signals of
some of these interferences overlap both in time and frequency
with the fetal ECG, the extracted fetal ECG signals usually have
very low signal-to-noise ratio (SNR). Therefore, the non-invasive
recordings are in practice merely used for heart rate analysis.

There are typically three main steps in the fetal ECG
extraction process; preprocessing, separation and postprocessing
(3). Preprocessing includes removal of unwanted noise such as
powerline interference and baseline wander. In the separation
step, the maternal ECG is estimated and then subtracted from
the signals to obtain the fetal ECG. Finally postprocessing is
employed to enhance the quality of the extracted fetal ECG
signals. The work on non-invasive fetal ECG analysis has mainly
targeted the first two steps, together with the improvement of
the acquisition devices (4), while only few works focused on the
postprocessing of the obtained signals. Beat-to-beat averaging is a
traditional method which is often used to improve the SNR of the
extracted signals, at the expense of losing individual variations
in pulse shape (5). Different wavelet denoising techniques were
additionally proposed in the literature for the postprocessing of
the extracted fetal ECG signals (6, 7). In a previous work (8),
the authors employed an augmented time-sequenced adaptive
filter to enhance the quality of the extracted fetal ECG. Despite
the significant quality improvement that the method achieves,
the location of the fetal pulses is required to synchronize the
filter and the method cannot handle abrupt changes in fetal ECG
morphology, e.g., in cases of arrhythmia.

Recently, deep neural network models such as convolutional
neural networks (CNNs), recurrent neural networks (RNNs) and
stacked denoising autoencoders have been successfully applied
for a variety of purposes including signal and image denoising (9–
13). Moreover, few works reported adult ECG signal denoising
(14, 15), fetal QRS detection (16, 17), and fetal ECG signal
reconstruction (18). Zhong et al. (19) presented a deep
convolutional encoder-decoder framework for preprocessing
abdominal recordings to remove noise. However, they did not
extract the fetal ECG from the preprocessed signals to ensure that
it is not suppressed by the network. The authors were the first
to propose a deep convolutional encoder-decoder network for
postprocessing non-invasive single-channel fetal ECG (20, 21),
achieving a substantial quality improvement of the noisy signals.
The method tackled some of the shortcomings of the state-of-
the-art non-invasive fetal ECG postprocessing methods, since
it can preserve beat-to-beat morphological variations and does
not require prior knowledge about the location of the fetal
pulses. However, in cases of heavily corrupted signals, themethod
was unable to reliably reconstruct some relevant morphological
features of the ECG, sporadically even causing presence of “fake”

waves, i.e., waves in the reconstructed ECG that should not have
been there or should have had opposite sign. For a practical
application this might be dangerous, leading to wrong diagnosis.

In this work, we are dealing with the aforementioned problem
by extending our model to handle multiple fetal ECG channels.
Multiple electrodes measure the electrical activity of the heart
from different angles. We propose to use a deep convolutional
encoder-decoder network with symmetric skip connections that
learns how to optimally combine the input channels to deliver
a reliable clean, multi-channel ECG as output. The method
eliminates the residual noise in the fetal ECG by capturing the
signal structure in the convolutional layers and recovering the
details by the transposed convolutional layers.

MATERIALS AND METHODS

Data
Simulated Data
For the training, but also for the evaluation of the proposed
network, we created an extensive simulated fetal ECG dataset that
consists of two parts. The first part was built by employing the
fecgsyn toolbox developed by Behar et al. (22, 23). The toolbox
enables the creation of abdominal mixtures with adjustable noise
sources, heart rate, heart rate variability, fetal movement, ectopic
beats and contractions. A Gaussian model is used to simulate
the ECG beats, as originally developed by McSharry (24) and
further improved by Sameni (25). Any number of electrodes
can be positioned on the maternal abdomen for the simulations.
Unfortunately, the simulated fetal ECGs are based merely on
9 available vectorcardiograms (VCGs). Since there is limited
variation in the shape and lengths of the individual PQRST
waves in these VCGs, there is an increased risk of overfitting the
network. This means that the network might learn to reproduce
these limited morphologies and enforce resemblance of the
denoised signals with the training data. In fact, what happened in
our initial experiments is that the P and T waves of the denoised
signals were shifted with respect to their ground truth data to
match the locations of the training data. For this reason, we
built a modified version of the toolbox that creates a variety of
new ECG morphologies based on the already available VCGs.
The modified toolbox receives a VCG as input, alters the length
of the VCG intervals along with the amplitudes of the PQRST
waves and subsequently uses it as a base to form the abdominal
fetal ECG. Initially, for all 9 VCGs, the points of interest, which
are the beginning and end of the P wave, T wave, and QRS
complex were annotated and saved to be later available to the
simulator. In every iteration of the modified simulator, one of
the 9 VCGs is randomly selected and subsequently the start and
the end of the waves are randomly shifted in position. Since
the shift of the start and shift of the end point of each wave
are not identical, also the length of the waves is automatically
varied this way. The amplitude of each wave is changed as well
by random scaling. The modified VCG is the starting point
that the abdominal fetal ECG can be created. With the help of
the modified toolbox we created a large dataset of four-channel
abdominal mixtures, where different physiological events were
considered, such as heart rate decelerations and accelerations,
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fetal movement, ectopic beats, uterine contraction etc., similar to
the Fetal ECG Synthetic Database (26). The VCG alterations were
chosen so as to include an ample range of variations of the ECG
morphological features, while still ensuring their physiological
plausibility. When obtaining the simulated data, we varied the
placement of the four electrodes to make the method invariant to
variations in the electrode position.

To further enrich the ECG morphologies in our dataset and
reduce the risk of overfitting to the training data we generated
an additional set of simulated signals based on adult ECG
from the PTB Diagnostic ECG Database of Physionet (27). The
database comprises of both normal and pathological signals with
15 leads, sampled at 1,000Hz. 549 records from 290 male and
female subjects are available. Adult and fetal ECG have similar
morphology but the adult ECG intervals and amplitudes are
larger compared to the fetus. The adult ECG was preprocessed
to remove noise and resemble the fetal ECG. First, a high-pass
filter with cut-off frequency of 1Hz was applied followed by
Savitzky-Golay filtering of order 8 and length 31. Afterwards,
considering that the fetal heart beats two to three times faster
than the adult heart, the signals were resampled to half frequency.
Adjustment of the signals amplitude was not necessary because
they were, in a later data preparation step, anyway normalized
before entering the network. As a next step, four-channel signals
were created by making random combinations of four leads,
where a maximum of two was chosen out of the six first limb
leads. Finally, “real” noise was added to the signals. For the “real”
noise we employed a set of six-channel abdominal recordings
of an ongoing study of which the protocol is described in (28).
In a subset of these recordings we found it impossible to detect
the fetal ECG, either because of the shielding of the fetus by
the vernix caseosa or because the fetal heart was far from some
electrodes. We considered that these measurements, after the
maternal ECG suppression and powerline interference removal,
consist of pure noise and added them to the preprocessed adult
ECG to generate our simulated fetal ECG signals.

Real Data
In order to evaluate how well our algorithm performs in real
signals we employed two databases. The first one is a private set of
non-invasive fetal ECGmeasurements, obtained in collaboration
with the Máxima Medical Center, Veldhoven, the Netherlands
(28, 29). The dataset contains 462 six-channel recordings of
different women, at least 18 years old, between 18 and 24 weeks
of gestation. The fetal ECG was recorded with adhesive Ag/AgCI
electrodes on the abdomen of the pregnant women while
they were in semi-upright position. Six electrodes were placed
around the navel to produce six channels of electrophysiological
measurements, while two additional electrodes, placed close
to the navel, served as common reference and ground. Each
recording lasted from 5 up to 50min and was digitized and
stored at 500Hz sampling frequency by a fetal monitoring system
(Nemo Healthcare BV, The Netherlands). Since the signals were
measured through six electrodes, we selected the first, third,
fourth and fifth dimensions to form the four-channel fetal
ECG signal.

The second real dataset is the Abdominal and Direct Fetal
Electrocardiogram Database which consists of four-channel
abdominal fetal ECG recordings obtained by five women in
labor, between 38 and 41 weeks of gestation (30). Each recording
comprises four different signals acquired from the maternal
abdomen together with a reference direct fetal ECG registered
from the fetal head. The configuration of the abdominal
electrodes consisted of four electrodes placed around the navel,
a reference electrode placed above the pubic symphysis and
a common reference electrode placed on the left leg. The
recordings have duration of 5min and are sampled at 1,000 Hz.

Data Preprocessing
The signals of all the datasets were preprocessed before entering
the network. The fetal ECG extraction was performed with the
help of the open-source algorithm of Varanini et al. (31) and the
signals were resampled to 500Hz to have a common reference.
Finally, the fetal ECG signals were divided in segments of 1920
× 4 samples and normalized to have zero mean and unity
standard deviation. The normalization was performed along each
channel separately.

Network Description
The proposed fetal ECG denoising CNN network is illustrated
in Figure 1. It consists of an encoder of eight convolutional
layers and a decoder of eight symmetric transposed convolutional
layers. The network receives a noisy fetal ECG signal as input and
delivers a denoised one as output. The convolutional layers act
as a feature extractor which captures the abstraction of the fetal
ECG while eliminating the noise. Subsequently, the transposed
convolutional layers decode the fetal ECG abstraction to recover
the signal details. The convolutional layers are symmetrically
connected with the transposed convolutional ones via skip
connections. The role of the skip connections is two-fold. First,
they help back-propagating the gradients to bottom layers,
facilitating the training of our deep network. Second, they pass
signal content from the bottom to top layers to aid in recovering
the signal details.

The non-invasive fetal ECG typically contains a high amount
of noise and thus a large denoising patch can lead to more
efficient noise removal by using context information from
a larger signal region. It was indicated in the literature
that the denoising patch is highly correlated with the
receptive field of the network, i.e., the region in the input
space that a CNN feature can be affected by (11, 32). The
receptive field of the network is determined by the kernel
size, the depth of the network and whether subsampling or
dilation is used in the convolution operations. A common
approach to increase the receptive field is to increase the
number of layers in the network but this is computationally
expensive. We chose to use a relatively deep network of eight
convolutional and eight transposed convolutional layers.
Since our data are temporal, we adopt one-dimensional
convolutions and transposed convolutions. In addition,
subsampling by two is performed after each convolutional
layer, apart from the first, and upsampling by two after
the transposed convolutional layers, apart from the last
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FIGURE 1 | The architecture of the proposed multi-channel fetal ECG denoising network. The network consists of an encoder of eight convolutional layers and a

decoder of eight transposed convolutional layers, which are linked symmetrically by skip connections.

one. Subsampling operations are not generally preferred in
denoising tasks in order to preserve the signal details (10).
On the other hand, in our case they lead to a significant
increase of the receptive field, necessary for removing the large
amount of noise present in the fetal ECG signals. Moreover,
in order to exploit the self-similarity of the ECG signals
the network should permit the convolutions to extend to
several heartbeats. Regarding the kernel size we empirically
determined that 15 achieves satisfactory results by being
large enough to include sufficient signal information without
excessively increasing the number of network parameters.
The input and output of the network have dimension 1920
× 4 which corresponds to four-channel ECG of 3.84 s. For
non-linearity after each layer, leaky rectified linear units
(LeakyRelu) with a slope of 0.2 are utilized. The aforementioned
parameter choices led to a receptive field of roughly 4 s
that corresponds to 5–10 heartbeats. A detailed description
of the network architecture and the parameters is given
in Table 1.

Skip Connections
In shallow networks transposed convolutions works well for
recovering the signal details but as the network goes deeper,
they do not longer work satisfactory (9). Our network is
deep and heavy subsampling is performed for the sake of
increasing the receptive field of the network, resulting in
significant loss of signal information. To address this issue,
skip connections are added between every two convolutional
and mirrored transposed convolutional layers as shown by
the arrows in Figure 1. The skip connections carry signal
information and account to a great extent for the lost signal
details introduced by the subsampling. Moreover, these skip
connections allow the gradient update rules to back-propagate
to the bottom layers directly, dealing with the gradient
vanishing problem occurring in deep architectures. The way
that the skip connections are used in the network is depicted
in Figure 2.

Network Training
For training the network the normalized mean squared error loss
was minimized, which is defined as:

L =
1

N∗L∗M

∑

N
n=1

∑

L
l=1

∑

M
m=1

(

Xcleann,l,m − Xdenoisedn,l,m

)

X
2
cleann,l

2

,

(1)

where N is the number of the training data in a batch, L is the
number of channels, M is the length of the signals, X represents

the fetal ECG and X
2
is the mean squared amplitude of X. In our

experiments N = 64, L = 4 and M = 1920. The Adam algorithm
was selected (33) as an optimization algorithm while the learning
rate was set to 0.00001. The training method that we followed
is supervised, meaning that we need clean fetal ECG signals as
labels together with the noisy signals. For this reason, the training
of the network was performed based only on simulated data.
The simulated data were separated in two sets for the training
and testing of the method. The training set contains the signals
simulated by themodified fecgsyn toolbox based on VCG 1-7 and
449 preprocessed records from 212 subjects of the PTB dataset.
The test set contains the simulated signals based on VCG 8-9
from themodified fecgsyn toolbox, plus 100 preprocessed records
of 78 subjects of the PTB dataset. The SNR of the training set
ranges from−15 to 15 dB. The network was trained for 21 epochs
until convergence was reached.

Performance Evaluation
In the simulated dataset, the performance of the method was
evaluated based on the SNR improvement of the fetal ECG signals
achieved by the network. The metric is estimated for a channel, l,
of a signal as:

SNRimp = 10log10

∑M
m=1

∣

∣

∣
Xnoisyl,m

− Xcleanl,m

∣

∣

∣

2

∑M
m=1

∣

∣Xdenoisedl,m − Xcleanl,m

∣

∣

2
. (2)
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TABLE 1 | Detailed overview of the proposed network architecture.

Layer Output size Filter size Kernel size

Encoder Convolution (stride = 1)

LeakyRelu(0.2)

Convolution (stride = 2)

LeakyRelu(0.2)

Convolution (stride = 2)

LeakyRelu(0.2)

Convolution (stride = 2)

LeakyRelu(0.2)

Convolution (stride = 2)

LeakyRelu(0.2)

Convolution (stride = 2)

LeakyRelu(0.2)

Convolution (stride = 2)

LeakyRelu(0.2)

Convolution (stride = 2)

LeakyRelu(0.2)

1920 × 64

1920 × 64

960 × 128

960 × 128

480 × 256

480 × 256

240 × 256

240 × 256

120 × 512

120 × 512

60 × 512

60 × 512

30 × 1024

30 × 1024

15 × 2048

15 × 2048

64

128

256

256

512

512

1024

2048

15

15

15

15

15

15

15

15

Decoder Transposed Convolution(stride = 2)

LeakyRelu(0.2)

Transposed Convolution(stride = 2)

Addition

LeakyRelu(0.2)

Transposed Convolution(stride = 2)

LeakyRelu(0.2)

Transposed Convolution(stride = 2)

Addition

LeakyRelu(0.2)

Transposed Convolution(stride = 2)

LeakyRelu(0.2)

Transposed Convolution(stride = 2)

Addition

LeakyRelu(0.2)

Transposed Convolution(stride = 2)

LeakyRelu(0.2)

Transposed Convolution(stride = 1)

Addition

Linear Activation

30 × 1024

30 × 1024

60 × 512

60 × 512

60 × 512

120 × 512

120 × 512

240 × 256

240 × 256

240 × 256

480 × 256

480 × 256

960 × 128

960 × 128

960 × 128

1920 × 64

1920 × 64

1920 × 4

1920 × 4

1920 × 4

1024

512

512

256

256

128

64

4

15

15

15

15

15

15

15

15

FIGURE 2 | Detailed illustration of the way that the skip connections (represented by the arrows) are applied in the network. Only two skip connections are shown for

simplicity. Conv stands for convolution and ConvT for transposed convolution.

The metric was computed for each channel and subsequently
averaged over all the ECG channels and test signals.

For real fetal ECG signals there is no ground truth available,
because even after the maternal ECG suppression there is still
noise present in the signals. Thus, it is impossible to have a
gold reference to quantitatively validate the results. Simultaneous
scalp recordings may help but they can be performed only during
labor. Unfortunately, since our real private dataset was obtained
during the second trimester of pregnancy, it was not possible
to measure the scalp ECG to have a clean reference. For this
dataset, in order to provide some quantitative results along with

the qualitative, we decided to generate a surrogate “clean” ground
truth signal by calculating the running median of 100 heartbeats.
We thenmeasure howwell the quality of the denoised signals was
enhanced by computing the improvement in SNR performance
defined by Equation (2). The metric was calculated for 455 cases,
where sufficient QRS complexes were detected for the generation
of the “ground truth” signal.

In the Abdominal and Direct Fetal Electrocardiogram
Database, since simultaneous scalp measurements are provided
together with the non-invasive fetal ECG, the performance of our
method was evaluated by comparing with the scalp electrode.
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The scalp ECG is however a different lead than the abdominal
ones and we cannot compare them directly since, even in case
of perfect denoising by our method, the morphology of the
ECG will not be the same between different leads. Instead, we
estimated a denoised scalp ECG as a linear combination of the
four abdominal fetal ECG channels:

X̂scalp = aTXdenoised, a = (XdenoisedXdenoised
T)

−1
XdenoisedX

T
scalp,

(3)

where Xscalp is the [1 x 250] scalp ECG and X̂scalp the [1 x
250] estimation of the scalp ECG from the abdominal fetal ECG
channels. The coefficients of the [4 x 1] linear combination, a,
were computed on windows of half a second that corresponds to
250 samples. The dimension of Xdenoised is 4 x 250. Because the
scalp ECG measurements contain considerable amount of noise
and this could affect the comparison, we denoised the scalp ECG
by high pass filtering followed by averaging of 30 ECG complexes.
Nevertheless, we provided comparative results both when the
estimation was done based on the noisy scalp ECG as well as on
the denoised scalp ECG.

Four different quantitative measures were employed for the
comparison, the Pearson correlation coefficient (R), the mean
squared error (MSE), the mean absolute error (MAE) and the
signal-to-noise ratio (SNR). The metrics are defined by the
following equations:

R =
cov(X̂scalpXscalp)

σX̂scalp
σXscalp

, (4)

MSE =
1

K

∑

K
i=1 (Xscalpi − X̂scalpi )

2, (5)

MAE =
1

K

∑

K
i=1|Xscalpi − X̂scalpi |, (6)

SNR = 10log10

∑

K
i=1

∣

∣

∣
Xscalpi

∣

∣

∣

2

∑K
i=1

∣

∣

∣
Xscalpi

− X̂scalpi

∣

∣

∣

2
, (7)

where cov stands for the covariance, σ the standard deviation and
K the length of the signals. The metrics were computed for the
five signals of the database and subsequently averaged to obtain
one final value.

Reference Methods
Our method was evaluated in comparison with 3 other ECG
denoising methods. The first method is the single-channel CNN
denoising network, where each fetal ECG channel is denoised
separately (21). The second method is a wavelet denoising
algorithm that removes the noise by thresholding the detail
coefficients after the signal decomposition. The symlet wavelet
was selected due to its resemblance with an ECG, while a fixed
threshold was used, estimated by the minimax principle (34). The
lastmethod is the widely used beat-to-beat averagingmethod.We
selected to average 30 beats similar to the averaging performed by
the STAN method (35). The QRS complexes were detected by a
Pan Tompkins detector in the clean fetal ECG signals and not the

noisy ones because we do not intend to assess the performance of
the QRS detector but the performance of the averaging method.
However, we should note that it is not guaranteed that the
QRS complexes can be accurately estimated in the presence of
acute noise.

RESULTS

Performance on Simulated Signals
The improvement in SNR performance of the proposed network
in comparison to the other denoising algorithms, for input SNR
from −20 to 20 dB, is illustrated in Figure 3. As demonstrated
in this figure, the CNN network provides a considerable amount
of SNR improvement throughout the whole range of input SNR.
The proposed method outperforms the beat-to-beat averaging
and the wavelet denoising methods for all the input SNR
values. This was anticipated because the averaging method does
not preserve individual variations among complexes, while our
method is capable of doing so. Moreover, the wavelet denoising
distorts the signal amplitude, whereas the proposed network
preserves it better. The multi-channel network additionally
outperforms the single-channel nearly for the whole range of
input SNR values. More specifically, for input SNR <0 dB
the multichannel algorithm provides an SNR improvement of
at least 10 dB with respect to the input signal and at least
2 dB further improvement as compared to the single-channel
method. As the input SNR increases the performances of the
two methods become gradually comparable, while for input SNR
more than 11 dB the single-channel network slightly surpasses
the multi-channel. This was something to expect because for
signals of lower quality, information from multiple channels will
be beneficial for recovering the ECG structure. On the other

FIGURE 3 | Performance of the proposed multi-channel convolutional

network in comparison with other denoising methods in terms of improvement

in SNR of the denoised fetal ECG signals when compared with the noisy ones.
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hand, if a fetal ECG channel has sufficiently high quality not
only the other channels are unnecessary for denoising it but
could also slightly affect the quality of the denoised fetal ECG,
especially in case their SNR is low. This can be explained better
by the following: By using any set of three linearly independent
ECG leads, the VCG can be constructed, which is the three-
dimensional representation of the electrical activity of the heart.
A VCG can explain about roughly 90% of an ECG signal (36).
This means that when a signal is reconstructed from different
channels, 10% of the signal information should be considered as
not reconstructable. In case of very high signal quality, the single-
channel denoiser can perform better than themulti-channel since
it could theoretically reconstruct 100% of the signal.

By observing Figure 3, we see that, for all methods, there is an
input SNR for which the denoisers decrease the SNR. This input
SNR value is 9, 12, 18, and 20 dB for the wavelet, averaging, multi-
channel network and single-channel network denoisingmethods,
respectively. Since it is not common to obtain fetal ECG signals
of very high quality (more than 18 dB), we do not consider it as
a limitation of our method. We additionally noticed that there is

a upgoing trend for the SNR improvement metric as the input
SNR decreases. However, we did not test for signals of quality
even lower than −20 dB because real fetal ECG signals typically
do not have quality less than−20 dB.

Figure 4 depicts two typical denoising results from our test
dataset. The SNR values of the signals before and after denoising
are provided in Table 2. Note that in Figure 4 the vertical axes
limits for the noisy signals differ from those of the ground truth
and denoised signals for better visualization. However, the axes
limits for the clean and denoised fetal ECG are the same to allow
for their comparison. As can be noted, the network suppresses
the noise in a great extent for both signals simulated-A (SA)
and simulated-B (SB). In the case of signal SA the similarity of
the network’s output with the clean signals is very high for all
channels and all ECG waves are clearly distinguishable. Even for
channel 4, with input SNR of −12 dB, the network provides a
high-quality result, since it combines all channels to reconstruct
it. For signal SB the majority of ECG channels have very low
quality (around −9 dB). The SNR after denoising with our
network is significantly higher (3.75 dB on average). However, we

FIGURE 4 | Denoising results by the proposed method for two simulated signals (SA and SB) of the test dataset. For both signals: each panel in the left presents one

channel of the noisy four-channel fetal ECG signal (red), in the middle the corresponding channels of the clean signal (blue) are shown and in the right the denoised

fetal ECG signal by our network (green). The horizontal axis depicts the samples at 500Hz, while the vertical the amplitude of the signals. The SNR values of the noisy

and the denoised fetal ECG for both signals are given in Table 2 (SNRin and SNRout, respectively).
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TABLE 2 | The SNR values in dB for the four channels of the simulated signals

depicted in Figure 4, before (SNRin) and after (SNRout) denoising.

Channel Signal SA Signal SB

SNRin SNRout SNRin SNRout

1 1 17 −9 5

2 −2 13 −9 4

3 −3 14 −10 3

4 −12 8 0 3

notice some distortion on the signal amplitude, while particularly
the P-waves are suppressed by the network. Moreover, despite
channel 4 having the least amount of noise before entering
the network, we observe the least improvement after denoising,
evidencing that indeed the network’s output is obtained through
combination of information from all leads.

Evaluation on Real Fetal ECG Signals
The proposed method was evaluated on our extensive non-
invasive fetal ECG dataset (28) and the results are presented in
Figure 5. Figure 5 illustrates the improvement in SNR for input
SNR ranging from−17 to 1 dB. The input SNR corresponds to
the SNR of the noisy fetal ECG signals when we assume that
the ground truth signal is the running median of 100 heartbeats.
We need to stress that this is not the actual SNR of the signals
but merely an approximation of it. In fact, the more noise is
present in the signals or the more physiological variation, the
less accurate the constructed “clean” signal is. Examining the
Figures 3, 5, where the performance in the simulated dataset is
illustrated, we observe an analogy between them. In both graphs
themulti-channel denoiser surpasses the single-channel for lower
input SNR while for higher SNR values the two methods perform
comparably. The performance improvement as compared to the
single-channel approach is lower for the real signals than for the
simulated ones but this might be due to the lack of actual ground
truth signals for comparison. By all means the evaluation in this
dataset is suboptimal but it provides a performance indicator in a
large real dataset.

Figure 6 demonstrates the result of denoising two signals of
this database, while Table 3 provides the corresponding SNR
values before and after denoising. Note that the vertical axes
limits for the noisy signals differ from the ones of the “clean”
and denoised ones for clearer visualization. Both signals in
Figure 6, especially signal real-B (RB), have a significant amount
of noise before denoising (see Table 3). The “clean” reference
signals as well contain few noise but in most of them the ECG
morphology is relatively clear. On the other hand all the possible
variations among the successive complexes is lost due to the
heavy averaging performed. Themulti-channel network achieved
a fairly remarkable result in denoising those signals. Comparing
the morphology of the denoised with the “clean” reference
signals, the various ECG waves and segments correspond
relatively well. In this comparison, we acknowledge that the
running median of 100 heartbeats is not the gold standard.

FIGURE 5 | Performance of the proposed fetal ECG denoising method in a

large real dataset (28) in terms of improvement in SNR of the denoised signals.

However, the averaging of the heartbeats brings evidence for the
location of the ECG waves, especially the P-waves, information
that cannot be seen in the noisy signals. It is important to
recognize that in the denoised signals by our network, these
locations seem to correspond with the locations in the median
signals. As a matter of fact, the denoised signals appear to exhibit
better quality and clearer morphology than the reference. Some
morphological features seem to be distorted, as we can see in
Figure 6 for signal RB. However, the overall performance in those
low-quality signals is relatively good.

Figure 7 illustrates the performance for a fetal ECG signal of
on non-invasive fetal ECG dataset in comparison to the single-
channel network, 30-complex averaging and wavelet denoising.
For simplicity we present only one channel out of the four. As
shown in the figure, all methods provide a noise-free result.
However, our method retains the individual ECG complex
differences as opposed to the averaging method and does not
distort the signal amplitude as opposed to wavelet denoising. In
addition, the morphology of the denoised ECG is clearer in our
case. The single-channel network provided a similar result to the
multi-channel for this signal.

The performance of the network on the Abdominal andDirect
Fetal ECG Database is illustrated in Table 4. The scalp ECG
was compared with the aforementioned linear combination of
abdominal signals, as described in Equation (3). In Table 4 we
provide the results of this comparison for 2 cases; when we
used the original scalp ECG and when we denoised it. For each
performance metric the values before and after denoising with
the multi-channel and single-channel network are presented,
while with bold the best performing method is marked.

First, we believe that denoising of the scalp ECG was
important to allow for better comparison with the scalp ECG
estimation from the denoised abdominal leads. By averaging
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FIGURE 6 | The results of denoising two signals (RA and RB) from our private real fetal ECG dataset (28). For each signal: the noisy four-channel fetal ECG signal

extracted from the abdominal measurements is presented in the left (red), the running median of 100 heartbeats for each channel in the middle (blue) and the

denoised fetal ECG signal by our network in the right (green). The horizontal axis depicts the samples at 500Hz, while the vertical the amplitude of the signals in µV.

The SNR values of the noisy fetal ECG signals (SNRin) together with the values for the denoised ones (SNRout) are given in Table 3.

TABLE 3 | The SNR values in dB for the four channels of the real signals depicted

in Figure 6, before (SNRin) and after (SNRout) denoising.

Channel Signal RA Signal RB

SNRin SNRout SNRin SNRout

1 −8 3 −13 3

2 −3 3 −8 5

3 −8 2 −6 6

4 −1 6 −14 1

30 successive ECG complexes we might have lost some
morphological variations among the successive beats of the scalp
lead but achieved significant quality improvement. Even the
scalp ECG approximated by the noisy fetal ECG signals has
better resemblance with the denoised scalp lead, e.g., correlation
coefficients of 0.74 vs. 0.53. Second, we observe that both the
multi-channel and single-channel networks achieve significant

quality improvement of the fetal ECG signals for all the metrics

presented in Table 4. We should note here once more that by
no means the scalp estimation is expected to be the same with

the scalp ECG even after perfect denoising, because the latter

is a different lead than the abdominal leads. Last, the multi-

channel network outperforms the single-channel in terms of all
computed performance metrics. However, the differences are
relatively small. It might be because the extracted fetal ECG
signals already have decent quality and, as we have already
found in simulated signals, employing multiple channels is more
advantageous in cases of signals exhibiting lower SNR. Larger
difference was found regarding the MSE metric (62.1 vs. 68.4
µV2), indicating that the single-channel network may provide
more outliers, while the multi-channel a smoother outcome.

Figure 8 provides two qualitative results of the scalp
estimation, when fetal ECG denoising is performed with the
proposed multi-channel method. In both cases, the scalp
estimated by the denoised fetal ECG is free from noise and the
individual waves and intervals correspond relatively well to those
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of the scalp ECG.We do not expect absolute correspondence, not
only because the scalp ECG is a different lead, but also because it
was averaged over 30 complexes.

DISCUSSION

We have proposed a CNN network for postprocessing non-
invasively extracted multi-channel fetal ECG signals to improve
their quality. The non-invasive fetal ECG is substantially
contaminated by various noises, even after the application of
various signal processing tools proposed in literature, such as

FIGURE 7 | The result of denoising a real fetal ECG signal from our private

dataset (28) with different denoising algorithms. For simplicity, only one

channel is displayed. The panels show: (A) the noisy extracted fetal ECG, (B)

the denoised signal by the proposed method, (C) the denoised signal by the

single-channel denoising network, (D) the result of 30-complex averaging and

(E) the result after wavelet denoising. The horizontal axis depicts the samples

at 500Hz, while the vertical the amplitude of the signals in µV.

maternal ECG suppression. The low quality of the fetal ECG is
the principal reason that the applicability of non-invasive fetal
electrocardiography in clinical practice is limited. The suggested
multi-channel network was trained on awide dataset of simulated
four-channel ECG signals, with SNR ranging from−15 to 15 dB,
while it was extensively validated both on simulated as well as on
real datasets.

Experiments on simulated data showed a significant
improvement in the quality of the noise-corrupted fetal ECG
signals. The network combined information from all the
channels to efficiently remove the noise and uncover the ECG
signal morphology even in the presence of acute noise. However,
the network suppressed some morphological characteristics
in cases there was not sufficient content for denoising i.e.,
when most signal channels were severely corrupted. The
multi-channel network outperformed the single-channel (21)
in cases of low SNR of the input signals, while for SNR more
than 11 dB the single-channel network exhibited slightly better
performance. This behavior could be anticipated. A multi-lead
signal configuration captures the spatiotemporal nature of the
cardiac electrical activity. For low quality signals this is beneficial
as more signal information can be exploited to better reconstruct
each channel. However, if we wish to denoise a channel that
already has high quality, using spatiotemporal content may be
not always the best choice. Nevertheless, it is very uncommon
in practice to obtain fetal ECG of such high quality. Yet, in case
this would happen, the output of the multi-channel network
would still be of such quality that it could be used for further

clinical interpretations.
The evaluation of our network on a large real fetal ECG dataset

showed an analogous behavior to that on the simulated data; for

low quality fetal ECG the multi-channel network outperformed

the single-channel, while for higher SNR the performances

of the networks were comparable. We cannot make a direct

comparison because the evaluation method for the real signals

was suboptimal. We are aware that the approximation of the

ground truth signals with the running average of 100 heartbeats
was not very accurate. However, it gave us an indication that the
method is efficient in real data too. We additionally presented
some qualitative denoising results for two signals of this database
in Figure 6 to support our claim. The network outputted clean
denoised signals with good correspondence of the individual

TABLE 4 | Performance of the multi-channel CNN network vs. the single-channel one on the Abdominal and Direct Fetal ECG Database in terms of comparison of the

scalp ECG with a scalp estimated from the denoised abdominal fetal ECG.

Metric Original scalp ECG Denoised scalp ECG

Noisy input Multi-channel

output

Single-channel

output

Noisy input Multi-channel

output

Single-channel

output

R 0.53 0.66 0.65 0.74 0.87 0.85

MSE (µV2 ) 555.8 440.7 449.3 116 62.1 68.4

MAE (µV) 15 12.9 13 7.3 5.4 5.5

SNR (dB) 1.5 2.7 2.5 3.7 6.4 6.1

The best performing method is marked with bold.
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FIGURE 8 | Comparison of the scalp ECG with an estimation of it as a linear combination of the abdominal fetal ECG for 2 records (r10 and r08) of the Abdominal and

Direct Fetal ECG Database. In the first row (red) the scalp ECG estimated from the noisy fetal ECG is presented, in the second (blue) the ECG as measured by the

scalp electrode (running average of 30 complexes) and in the last one (green) the scalp ECG estimated from the denoised fetal ECG by the proposed network. The

horizontal axis depicts the samples at 500Hz, while the vertical the amplitude of the signals in µV.

ECG waves between the reference and denoised signals. A few
recordings in our dataset had input SNR that was even lower
than−17 dB. Based on visual analysis of the output of our
proposed denoiser, we could argue that the performance of the
denoiser breaks down at these very low signal quality levels and
the network is no longer capable of reconstructing a reliable
fetal ECG. This limitation probably comes from the fact that
the network was trained for input SNR range of−15 to 15 dB.
Thus, the network did not learn to remove efficiently the noise
when the quality of the signals is even lower. This indicates that
we might need to perform experiments for a wider SNR input
range. However, the capacity of the network might no longer be
sufficient for handling such an ample range of signal qualities and
further research is needed to evaluate this.

The CNN network was additionally evaluated in the
Abdominal and Direct Fetal ECG Database. Simultaneously
recorded scalp ECGs were compared to an estimated scalp ECG
from the denoised abdominal channels, also here demonstrating
that the method can provide significant quality improvement of
the noisy fetal ECG signals. Comparison of the performances of
the multi-channel and single-channel networks for this database,
revealed that they achieve comparable results, probably because
the input signals were of relatively good quality. It is difficult
to compare the performances between the two real datasets for
several reasons. Most importantly, the sizes of the two datasets
differ a lot (455 vs. 5) and so do the gestational ages of the subjects
(18-24 vs. 38-41 weeks).

As mentioned in the introduction and also in (21), the
shortcoming of denoising single-channel fetal ECG with a
convolutional network is that the network can output signals
that look as if they were ideally denoised, but that can have
“fake” waves that can differ both in location and polarity when
compared to the actual ECG waves. This happens mostly when

the quality of the input signals is relatively low and the network,
not having enough signal information, reconstructs a clean
signal from unreliable information in the encoded latent space.
We demonstrated that by employing multichannel signals this
problem is eliminated to a large extent. When the quality of
the signals is very low, the amplitude of the small signal waves,
like the P-wave and T-wave, and less often of the R-peaks in
the denoised signals can be distorted rather than “fake.” This
means that some waves may be virtually absent, or the output
does not even resemble an ECG anymore. This makes themethod
safer to use in clinical practice, because clinicians will typically
discard a distorted signal but a signal that looks like a high-
quality ECG but in fact contains “fake” information might lead
to erroneous decision-making.

To summarize, we have shown the potential of deep CNNs
for removing noise from non-invasive multi-lead fetal ECG. We
validated the method on a wide dataset of simulated but also
real recordings with both early as well as late gestational ages
(18 to 24 and 38 to 41 weeks). Primarily, we demonstrated
that employing multi-channel information for denoising does
not only lead to more clean signals but also to more reliable
results, when compared to single-channel information. The main
advantage of the method is that, as opposed to the widely used
averaging method, no prior processing of the signal is needed
to extract the locations of the R-peaks and variations in ECG
morphology among consecutive heartbeats are preserved. This is
especially important in case that arrhythmias are present. Up to
now, arrhythmia is assessed through echocardiography because
the averaging that was performed to enhance the quality of
the fetal ECG hinders its application for arrhythmia analysis.
Moreover, the quality of the denoised signals is high enough to
allow for measuring the timing of intervals, like the PR and QT
interval. However, in order to confirm this, we need to perform a
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thorough comparison of the ECG intervals between the denoised
and the clean signals. If we wish to obtain reliable results, a large
annotated dataset is necessary, but this requires time and experts
to perform these annotations.

Certainly, there is room for improvement of our method.
Most importantly, the capacity of the network could be further
increased to handle even more noisy signals. Moreover, we can
explore denoising directly the raw abdominal signals, without
cancelling the maternal ECG. Most probably a more complex
network architecture is needed for such a task and appropriate
data for training.

CONCLUSION

An end-to-end trained deep CNN network was presented for
denoising of fetal ECG signals. Convolutions and transposed
convolutions were combined in the network, modeling the
denoising problem as an encoding of primary signal content and
subsequent decoding to recover details. Essentially, we proposed
to employ spatiotemporal information in the ECG signal by
usingmultiple ECG leads simultaneously as input to the network.
The network then learned how to combine the input channels
and deliver a reliable clean ECG as output. Experiments on
simulated as well as in real data showed that the network can
achieve a substantial quality improvement of the noisy signals
and outperform a single-channel alternative.
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