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Abstract: Cisplatin has long been a first-line chemotherapeutic agent in the treatment of cancer,
largely for solid tumors. During the course of the past two decades, autophagy has been identified in
response to cancer treatments and almost uniformly detected in studies involving cisplatin. There
has been increasing recognition of autophagy as a critical factor affecting tumor cell death and tumor
chemoresistance. In this review and commentary, we introduce four mechanisms of resistance to
cisplatin followed by a discussion of the factors that affect the role of autophagy in cisplatin-sensitive
and resistant cells and explore the two-sided outcomes that occur when autophagy inhibitors are
combined with cisplatin. Our goal is to analyze the potential for the combinatorial use of cisplatin
and autophagy inhibitors in the clinic.
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1. Introduction

Cisplatin (cis-diamminedichloroplatinum (II)) was first approved for clinical use by
the FDA in 1978 and has continued to be used as a first-line chemotherapeutic agent
for the treatment of approximately 50% of solid tumors, including lung, head and neck,
breast, testicular, ovarian, prostate, and bladder cancers [1,2]. Cisplatin was initially
synthesized by Michel Peyrone in 1845 and therefore was initially called Peyrone’s salt.
In testing the effects of platinum compounds on E. coli proliferation, Rosenberg and his
group found that cisplatin also has inhibitory effects on sarcoma 180 and L1210 leukemia
cells [3,4]. Prior to this time, chemotherapeutic drugs in the clinic were all natural or
synthetic organic compounds, and cisplatin became the first antitumor candidate containing
heavy metal elements. After approximately 15 years of preclinical experimentation, through
1975, clinical trials led by the J.M. Hill laboratory confirmed the antiproliferative activity
of cisplatin against multiple solid tumors [5]. Although cisplatin has a wide range of
antitumor activity, its side effects continue to limit its therapeutic use and efficacy. In the
clinic, patients treated with cisplatin often experience symptoms of renal tubular necrosis
(nephrotoxicity), hearing loss or cochlear damage (ototoxicity), and peripheral sensory
neuropathy (neurotoxicity) [6]. These side effects appear more frequently with increasing
doses of the drug. In addition to side effects, patients with solid tumors will frequently
develop resistance to cisplatin, forcing physicians to consider other treatment options.
As cisplatin resistance is often associated with cross-resistance to other commonly used
cytotoxic chemotherapeutic drugs, such as doxorubicin and etoposide, this results in a
reduction in treatment options [7]. There are many factors leading to cisplatin resistance,
including alterations in DNA metabolism, epigenetic and transcriptional modifications,
activation of drug efflux systems, and subcellular drug localization and translocation [8].

The mechanisms mediating the antitumor actions of cisplatin have been studied for
decades, with DNA being the primary drug target. Once inside the cell, cisplatin undergoes
aquation to form [Pt(NH3)2Cl(OH2)]+ and reacts with DNA to form monoadducts, inter-
strand, intrastrand or DNA–protein cross-links, affecting the DNA double helix structure
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and nucleosomes of cancer cells [9,10]. This leads to replication and transcriptional repres-
sion, and DNA double-strand breaks (DSBs), which then initiate DNA repair. Once DNA
repair fails or is overwhelmed by excessive DNA damage, cell death is triggered [11]. An
increased capacity to repair DNA is considered as the most significant feature of platinum-
resistant cells [12,13].

The central downstream event following cisplatin interaction with cellular DNA
is apoptosis [14–16]. The intrinsic pathway of cisplatin-induced apoptosis involves the
promotion of oxidative stress, whereby cisplatin-treated cells accumulate excessive reactive
oxygen species (ROS) (hydroxyl radicals and superoxide). Abnormally accumulated ROS
damages mitochondrial respiratory function, leading to mitochondrial dysfunction [17].
ROS, influencing the pro-apoptotic protein Bax, also cause damage to mitochondrial DNA
and a reduction in mitochondrial membrane potential, which promotes mitochondrial
destruction. Cytochrome c and caspase 9 are then released by damaged mitochondria and
evoke a cascade of caspase cleavage reactions [18].

The extrinsic pathway of cisplatin-induced apoptosis is mediated via a type-II mem-
brane protein that activates the Fas receptor in conjunction with the Fas ligand, thereby
promoting the formation of the apoptosome complex by the Fas-associated death domain
and pro-caspase 8. This apoptosome complex activates caspase 3, caspase 6, and caspase 7,
ultimately leading to apoptosis [19]. In addition, cisplatin generally arrests cells in the G1/S
or G2 phase of the cell cycle, providing time for repair of damaged DNA prior to DNA
synthesis. When cells fail to repair DNA damage at the cell cycle checkpoints, they are
forced to re-enter the cycle prematurely, progressing to apoptosis [20,21]. As a “gatekeeper”,
the activation of p53 also contributes to cisplatin-induced tumor cell apoptosis [22]. In ad-
dition, the p21, MDM2, GADD45 [23], MAPK pathway [24], and PI3K/Akt pathways [25],
which are related to p53 and cell cycle regulation, have all been shown to be involved in
cisplatin-induced apoptosis.

Macroautophagy (which we will refer to as autophagy) is a critical process in eukary-
otic cells whereby superfluous organelles, misfolded proteins, and other cellular debris
are cleared, restoring a state of cellular equilibrium [26]. This process is an evolutionar-
ily conserved process whereby cellular debris or toxic cellular components are engulfed
by the autophagosome, a double-layered membrane structure, and transported to acidic
lysosomes, where they undergo degradation and recycling [27]. Autophagy occurs in
cells under nutrient-poor conditions, responding to the decline in external energy sources.
Therefore, autophagy is generally considered to reflect a survival-promoting function.
However, if autophagy is continuously or overly activated, cell death will be triggered.
Upon cisplatin treatment, autophagy induction has been detected in both cisplatin-sensitive
and cisplatin-resistant cancer cells. In fact, the basal level of autophagy was significantly
elevated in cisplatin-resistant cells [28–31].

Defective apoptosis is one cause of cisplatin resistance, which confers a survival
advantage to tumor cells. This defect facilitates the generation of cellular stress-mediated
autophagy, which precedes or effectively blocks the apoptotic cascade. A large number of
studies have shown that when cisplatin-induced autophagy is inhibited in cancer cells, the
manner of cell death switches to apoptosis [28]. Therefore, taken together, cisplatin-induced
autophagy is often considered one of the primary factors thwarting its chemotherapeutic
effects. However, the role of autophagy is often far more complex than has been appreciated.

In addition to autophagy and apoptosis, the tumor cell response following cisplatin
treatment can include cellular senescence, as in some cases, persistent DNA damage
leads to long-term growth arrest [32]. Although senescence was previously considered
an irreversible response after chemotherapy, recent studies from a number of laboratories,
including our own, have shown that tumor cells have the capacity to escape from this
therapy-induced senescence [33]. In this review, we focus on the influence of cisplatin-
induced autophagy on the response of solid tumors to this therapy.
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2. Cisplatin-Induced Autophagy
2.1. Cisplatin Resistance

Clinical resistance is defined as the failure of tumor cells to undergo apoptosis at
clinically relevant doses or at clinically achievable plasma drug concentrations. The mecha-
nisms conferring cisplatin resistance are numerous and include the following (Figure 1):

Biomolecules 2022, 12, x FOR PEER REVIEW 3 of 23 
 

versible response after chemotherapy, recent studies from a number of laboratories, in-
cluding our own, have shown that tumor cells have the capacity to escape from this ther-
apy-induced senescence [33]. In this review, we focus on the influence of cisplatin-induced 
autophagy on the response of solid tumors to this therapy. 

2. Cisplatin-Induced Autophagy 
2.1. Cisplatin Resistance 

Clinical resistance is defined as the failure of tumor cells to undergo apoptosis at 
clinically relevant doses or at clinically achievable plasma drug concentrations. The mech-
anisms conferring cisplatin resistance are numerous and include the following (Figure 1): 

 
Figure 1. Primary mechanisms of cisplatin resistance. (a) Decrease in DNA adduct levels. Inward 
transport: copper transporter 1 (CTR1) and organic cation transporters (OCTs). Outward transport: 
ATP-binding cassette (ABC) multidrug transporters (including the multidrug resistance proteins 
and multidrug resistance-associated protein families). ATP7A/B, which belongs to the copper-trans-
porting P-type ATPase, is the response for delivering copper into the organelles and removing the 
excess copper out of cells. (b) DNA damage recognition defects and increased DNA damage toler-
ance. (c) Inhibition of apoptosis. (d) Induction of cytoprotective autophagy. APE1: apurinic/apyrim-
idinic endonuclease 1; ATM: ataxia telangiectasia mutated protein; ATR: ataxia telangiectasia and 
RAD3-related protein; AMBRA1: activating molecule in Beclin1-regulated autophagy. 

(a) Decrease in DNA adduct generation: This can result from a number of factors 
including decreased drug uptake, increased drug efflux, interference with intracellular 
trafficking and subcellular distribution, increased levels of glutathione (GSH) and the cys-
teine-rich metallothionein in the cytoplasm in response to cisplatin activation [34], and 
increased DNA adduct repair by non-homologous recombination. Among these, the most 

Figure 1. Primary mechanisms of cisplatin resistance. (a) Decrease in DNA adduct levels. Inward
transport: copper transporter 1 (CTR1) and organic cation transporters (OCTs). Outward transport:
ATP-binding cassette (ABC) multidrug transporters (including the multidrug resistance proteins
and multidrug resistance-associated protein families). ATP7A/B, which belongs to the copper-
transporting P-type ATPase, is the response for delivering copper into the organelles and removing the
excess copper out of cells. (b) DNA damage recognition defects and increased DNA damage tolerance.
(c) Inhibition of apoptosis. (d) Induction of cytoprotective autophagy. APE1: apurinic/apyrimidinic
endonuclease 1; ATM: ataxia telangiectasia mutated protein; ATR: ataxia telangiectasia and RAD3-
related protein; AMBRA1: activating molecule in Beclin1-regulated autophagy.

(a) Decrease in DNA adduct generation: This can result from a number of factors
including decreased drug uptake, increased drug efflux, interference with intracellular
trafficking and subcellular distribution, increased levels of glutathione (GSH) and the
cysteine-rich metallothionein in the cytoplasm in response to cisplatin activation [34],
and increased DNA adduct repair by non-homologous recombination. Among these, the
most attention in recent years has been paid to the intracellular trafficking and subcellular
distribution of cisplatin. Researchers have detected increased cisplatin accumulation in
cellular compartments such as Golgi, lysosomes, melanosomes, and exosomes [35], but
how cisplatin accumulates in these organelles has not been fully elucidated. Among these,
the lysosomal transport of cisplatin [36] was demonstrated to be associated with reduced
cytotoxicity (and even resistance) to this drug [37–39]. According to this view, lysosomes
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are regarded as a detoxifying organelle that sequesters both metals and metal-containing
drugs and removes them via the exosomal pathway. By doing so, lysosomes tend to reduce
the cellular accumulation of cisplatin via exocytosis or its reduced uptake (or both) and
transfer the drug to other subcellular targets, thus reducing its cytotoxicity [38,40].

(b) DNA damage recognition defects and increased DNA damage tolerance: Dam-
age recognition proteins such as the mismatch repair (MMR) complex generally promote
cisplatin-mediated apoptosis after ineffective repair of DNA adducts. However, if the
integrity of the MMR complex is lost, the response to cisplatin is significantly reduced [41].

(c) Inhibition of apoptosis: As mentioned in the introduction, cisplatin is a potent
inducer of apoptosis. A loss of apoptotic signals elevates the threshold of DNA damage
for inducing cell death, which is also one of the ways that cells improve DNA damage
tolerance [42]. p53 is one of the key factors regulating cisplatin-induced apoptosis, as
p53 not only participates in apoptosis but also in the activation of checkpoints following
platinum–DNA complexation [43]. Thus, when p53 is mutated, the three-dimensional
structure of p53 is altered and can no longer bind to DNA in a sequence-specific manner to
transactivate proteins, including cyclin-dependent kinase (CDK) inhibitors, p21Waf1/Cip1,
p53 feedback inhibitor murine double minute 2 (MDM2) [44], the growth arrest and DNA
damage-inducible Gadd45a gene, and the BCL-2 family, where apoptosis resistance occurs,
thereby reducing the susceptibility of tumor cells to cell death [45–47].

(d) Induction of cytoprotective autophagy: In response to chemotherapy, autophagy
can exhibit several functional forms, including a cytoprotective form that plays a pro-
survival role, a cytotoxic form that promotes tumor cell death, and a nonprotective form,
which does not seem to directly affect cell proliferation or apoptosis [48]. When proposing
that autophagy may suppress cisplatin sensitivity or lead to drug resistance, it is necessary
to distinguish the function of autophagy. This is because although cisplatin often induces
the cytoprotective form of autophagy, whereupon autophagy inhibition enhances cisplatin
efficacy, our research group as well as other laboratories have found that cisplatin can also
induce non-protective autophagy and cytotoxic autophagy [49,50]. Furthermore, we and
others have reported on the existence of an “autophagic switch” due to manipulation of
the status of specific genes [51–54]. For example, after cisplatin treatment, non-protective
autophagy in p53 H460 cells can be “switched” to cytoprotective autophagy in CRISPR/cas9
p53 H460 cells [50].

2.2. Factors That Affect the Role of Autophagy in Cisplatin-Sensitive Cells

ATM-CHK2 and ATR-CHK1 pathways: The DNA damage chemotherapeutic drug
response has largely been defined in the context of the ataxia telangiectasia mutated (ATM)-
CHK2 and RAD3-related (ATR)-CHK1 pathways. Cell cycle-related proteins downstream
of ATM and ATR such as p53, p21, MAPK, AMPK, and PTEN are inextricably linked to the
proliferation of tumor cells. Reinhardt et al. found that activation of the ATM/ATR-p38
MAPK-MK2 pathway in p53-deficient cells is required for resistance to DNA-damaging
chemotherapeutic agents such as cisplatin [55]. However, we as well as other researchers
have found that the deletion of p53, AMPK, or PTEN does not affect the induction of
autophagy by cisplatin [50,56], suggesting that there must be other key factors that regulate
autophagy in cisplatin-treated cells. A further study by Gomes et al. found that in their
3D-rBM cell model, although the p53 status did not affect cisplatin sensitivity, the inhibition
of ATR enhanced cisplatin-induced cell death [57]. A recent study by Chen et al. showed
that the ATM-CHK2 axis is associated with cisplatin-induced autophagy via modulation
of FOXK proteins, members of the forkhead transcription family. While these can act as
transcriptional repressors of autophagy, DNA damage promotes phosphorylation of the
FOXK proteins via CHK2, resulting in their being trapped in the cytoplasm and thereby pro-
moting protective autophagy. Furthermore, a cancer-derived FOXK mutation also induced
FOXK hyperphosphorylation, exacerbating autophagy and drug resistance. Consequently,
the combination of chloroquine (CQ) with cisplatin has a strong growth-inhibitory effect in
tumor cells expressing these cancer-derived FOXK mutants [56].
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AMBRA1: Activating molecule in Beclin1-regulated autophagy (AMBRA1) is an
important factor in regulating autophagy and cell proliferation. AMBRA1 promotes au-
tophagy by activating ULK1 and the BECN1-PIK3C3/VPS34 complex [58,59]. Using a
genetic knockdown approach, AMBRA1 was found to mediate cisplatin-induced autophagy
and chemosensitivity in prostate cancer [60] and cervical cancer [61]. A recent study fur-
ther clarified the mechanism of AMBRA1 as being related to the tumor cell response to
cisplatin. Antonioli et al. found that human papillomavirus (HPV)-negative oropharyngeal
squamous cell carcinoma (OPSCC) had higher autophagy levels as well as higher AMBRA1
levels compared with HPV-positive OPSCC, while knockdown of AMBRA1 decreased
cisplatin-induced cytoprotective autophagy in HPV-negative OPSCC [62]. These studies
suggest that AMBRA1 may serve as a potential target in combination with cisplatin when
autophagy plays a protective role.

Galectin-1: Galectin-1 is a member of a family of galectins with an affinity for β-
galactosides, that is involved in cell adhesion, cell cycle progression, and apoptosis [63]. It
is detected in the periphery of tumor cells and is involved in various stages of tumor cell
proliferation, in addition to its involvement in the inflammatory response [64]. However, an
increasing number of studies have indicated the inconsistent biological functions of galectin-
1 in intracellular and extracellular compartments on tumor cells (i.e., extracellular galectin-1
induces anti-proliferative effects via the Ras/MAPK pathway, whereas intracellular galectin-
1 exhibits the ability to promote tumor transformation) [65]. Due to the diversity of its
biological functions, researchers have been attracted to exploring its effect on the antitumor
actions of platinum-based chemotherapy drugs. Chung et al. found that galectin-1 was
overexpressed in lung cancer cells and the tissues of lung cancer patients and was associated
with Ras, p38 MAPK, ERK, and NF-κB. They also found that knockdown of galectin-1
increased the sensitivity of A549 cells to cisplatin [66]. It has also been reported that
galectin-1 knockdown promotes cisplatin sensitivity in other tumor cells, such as bulky
squamous cervical cancer [67] and epithelial ovarian cancer [68]. Gao et al. asserted that
the inhibitory effect of galectin-1 on cisplatin sensitivity may be related to its induction
of autophagy [30]. Further analysis of the relationship between galectin-1 and cisplatin-
induced autophagy determined that inhibition of autophagy abolished the resistance to
cisplatin conferred by galectin-1 in hepatoma cells [69]. Interestingly, however, we noted
that in their studies, silencing of ATG5 or pharmacological inhibition of autophagy by
Bafilomycin A pretreatment did not enhance cisplatin-induced cell death in Huh7 cells.
Therefore, we suggest that cisplatin likely induced non-protective autophagy in Huh7 cells,
while the exogenous addition of galectin-1 not only accelerated hepatocellular carcinoma
cell death but also promoted the cisplatin-induced autophagy switch from non-protective
autophagy to protective autophagy.

ARHI: Bast et al. found that the oncogene ARHI (DIRAS3), a gene downregulated
in 60% of cervical cancers [70], is involved in cell proliferation [71,72], migration [73],
autophagy, and tumor dormancy [74,75] regulation. Their study suggests that ARHI may
also have a regulatory role in the cisplatin-induced autophagic switch. These investiga-
tors reported that in a nude mouse xenograft model of ARHI-re-expressing SKOV3 cells,
treatment with CQ significantly delayed the regrowth of the dormant tumor cells after
withdrawal of ARHI [75]. Complementary findings were reported by Li et al., who ob-
served that overexpression of ARHI in TOV12D and ES2 ovarian cancer cells significantly
delayed xenograft growth by inhibiting AKT activity and decreasing Bcl-2 expression,
inducing apoptosis and autophagic cell death [76]. Bast et al. subsequently found that
autophagy inhibition using CQ or shATG5 had no significant effect on cisplatin-induced
colony formation or cell survival in ARHI-negative SKOV-3, Hey, and OVCAR4 cells,
suggesting that non-protective autophagy was induced [77]. These results again allude to
our previous view that cisplatin-induced autophagy is not always promoting or inhibitory
to tumor growth and that there is also “nonsense” autophagy (i.e., a non-protective form of
autophagy whose inhibition does not alter sensitivity to the autophagy-promoting stimu-
lus). In contrast, ARHI re-expression enhanced the sensitivity to cisplatin both in vitro and
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in vivo, and the combined treatment with CQ attenuated the enhanced effect of ARHI on
cisplatin chemosensitivity, implying that here, autophagy played a role in promoting cell
death in ARHI re-expressed cells (e.g., cytotoxic autophagy) [77]. These results suggest that
high expression of ARHI can have a positive role in promoting cisplatin activity against
cervical cancer. On the other hand, re-expression of ARHI induced the switch to cytotoxic
autophagy from non-protective autophagy, which should suggest caution in that that the
use of CQ in combination with cisplatin therapy in patients with high ARHI expression has
the potential to generate an undesirable outcome.

ECRG4: Esophageal carcinoma-related gene 4 (ECRG4) is a novel candidate tumor
suppressor gene that has frequently been found to be inactivated by promoter hyperme-
thylation in different cancer types, including esophageal cancer, prostate cancer, gastric
cancer, colorectal carcinoma, and glioma [78–80]. ECRG4 is also identified as a paracrine
factor-activated microglia, which has effects on the chemotaxis of monocytes and potential
as a target for anti-tumor therapy [81]. You et al. showed that ECRG4 overexpression not
only promotes cisplatin chemosensitivity but also plays a role in the cisplatin-induced
autophagic switch. They found that 3-methyladenine (3-MA) had no effect on the survival
of cisplatin-induced nasopharyngeal carcinoma CNE1 cells, but it decreased the chemosen-
sitivity of cisplatin in ECRG4-overexpressing CNE1 cells [82]. This suggests that ECRG4
overexpression leads to the cisplatin-induced autophagic switch from nonprotective au-
tophagy to cytotoxic autophagy. However, studies on the relationship between this gene
and autophagy regulation are relatively limited.

PFKFB3: Upregulation of glycolytic metabolic pathways is associated with cancer
progression [83]. The activity of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase
3 enzyme (PFKFB3) represents one of the rate-limiting steps in mediating the conversion
of fructose-6-phosphate to fructose 2,6-bisphosphate (F-2,6-BP) in the glucose metabolic
pathway. PFKFB3 is highly expressed in a variety of tumors [84], such as head and neck
squamous cell carcinoma [85], hepatocellular carcinoma [86], breast and colon cancer [87],
gastric cancer [88], and ovarian cancer [89]. PFKFB3 inhibition was found to induce B16-F10
tumor vessel normalization, impaired metastasis, and improved cisplatin chemosensitiv-
ity [90]. Similar results were reported by Li, who found that PKF15, an inhibitor of PFKFB3,
sensitized tumors to cisplatin treatment in a xenograft model [91]. Following this, a recent
study showed that PFK158, another PFKFB3 inhibitor, also promotes cisplatin chemosensi-
tivity in endometrial cancer through the induction of cytotoxic autophagy via inhibition
of the PI3K/Akt/mTOR pathway [92]. These positive outcomes support the potential
combination of inhibitors of PFKFB3 with cisplatin.

2.3. Factors That Affect the Role of Autophagy in Cisplatin-Resistant Cells

p53: As mentioned above, the status of the tumor suppressor p53, which is gener-
ally regarded as a key cellular defense mechanism against cancer, can influence cisplatin
sensitivity. Tung et al. demonstrated that wild-type p53 in non-small cell lung cancer
(NSCLC) cells inhibits the Nrf2 promoter’s activity to promote cisplatin-induced apopto-
sis. In contrast, mutant p53 causes apoptosis resistance due to its inability to inhibit the
activity of Nrf2, followed by the induction of the anti-apoptotic protein Bcl-2 and increased
expression of Bcl-XL [93]. These studies support the necessity for p53 in the process of
cisplatin-induced apoptosis in NSCLC cells. Although the promoting effect of wild-type
p53 on the efficacy of cisplatin is easy to understand, clinical trials 20 years ago found that
this effect and the type of tumor are interrelated, and the results have not always been
consistent. Clinical trials have found that for the treatment of cervical cancer, p53 wild-type
patients do not respond optimally to cisplatin [94]. More interestingly, for testicular cancer,
a tumor that is highly sensitive to cisplatin, almost all of the few refractory patients have
been found to harbor wild-type p53, which is not consistent with the commonly accepted
view that tumors with p53 mutations are more therapy-resistant [95]. In addition, the Kroe-
mer laboratory found that the regulation of autophagy was associated with the subcellular
localization of p53. In short, p53 in the cytoplasm inhibited autophagy, whereas p53 in the
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nucleus, in contrast, induced autophagy [96]. It is tempting to speculate that the influence
of p53 on cisplatin-induced autophagy is also inconsistent. A recent study showed that
re-expression of p53 in p53-null SKOV3 cells increased cisplatin-induced autophagy and
apoptosis in vivo and in vitro, while the induction of p53 in ERK-active Ras-expressing
cells did not further induce autophagy but reversed the cisplatin resistance to sensitivity,
indicating that the wild-type p53 status determines the role of autophagy in ovarian cancer
chemoresistance [97]. This result is consistent with a study from Rosenfeldt et al., who
demonstrated that treatment with the autophagy inhibitor hydroxychloroquine (HCQ)
significantly accelerated tumor formation in autophagy-competent mice with oncogenic
KRAS but lacking p53 [98]. These results all imply that the status of p53 influences the
occurrence and the nature of autophagy. However, the outcomes in cisplatin-sensitive cells
are complicated. Studies from the Gewirtz laboratory demonstrated that the status of p53
has no effect on the extent of autophagy but instead influence the nature of the autophagy.
H460 p53 wild-type cells exhibited nonprotective autophagy in response to cisplatin treat-
ment, whereas CRSPR/Cas 9 knockout of p53 H460 cells demonstrated cytoprotective
autophagy [50]. Similar to the outcomes of this work, Tripathi et al. found that cisplatin
induced cytoprotective autophagy in p53 knockdown embryonal carcinoma cells [99]. May-
cotte et al., however, found non-protective autophagy in p53-null mouse breast cancer
cells (67NR and 4T1 cells) after exposure to cisplatin [100]. Unlike these findings, Gomes
et al. found that, whether the breast cancer cells or lung cancer cells responded to cisplatin
in traditional two-dimensional (2D) or in 3D reconstitution-based membrane cell culture
models, cisplatin-induced autophagy appeared to be independent of the p53 status [57].
These results indicate that p53 clearly may play a key role in cisplatin-induced autophagy,
and this is particularly important in cisplatin-resistant cells.

RASSF1A: RAS association domain containing family 1A (RASSF1A), a tumor sup-
pressor gene frequently inactivated in human cancers, is phosphorylated on ser131 by ATM
following DNA damage, leading to an apoptotic response [101]. Koul et al. showed that
promoter hypomethylation of the RASSF1A gene plays a role in cisplatin resistance in
male germ cell tumors [102]. Similar results were found in a clinical trial after paclitaxel-
carboplatin or gemcitabine-cisplatin treatment, where methylation of RASSF1A negatively
impacted the prognosis of early-stage NSCLC [103]. Levesley et al. found that cisplatin in-
duced more extensive apoptosis in RASSF1A-complete pediatric medulloblastoma UW228-
3 cells, further identifying the RASSF1A tumor suppressor as a promoter of apoptotic
signaling pathways [104]. In addition, cisplatin decreased the ability of ATM to phosphory-
late RASSF1A-p.133Ser and to affect p53 activation [101]. Because RASSF1A, similar to p53,
is a tumor suppressor gene that is involved in cisplatin-induced apoptosis, the relationship
between RASSF1A and autophagy has attracted the interest of researchers. Surprisingly,
unlike p53, a recent study suggests that the activation of RASSF1A may activate the Keap1-
Nrf2 pathway by regulating microtubule-associated protein 1s (MAP1S), thus activating
cytotoxicity autophagy to enhance the chemosensitivity of cisplatin in cisplatin-resistant
NSCLC [105]. However, further investigation is required to determine whether the tumor
suppressor role of RASSF1A is related to the activation of cytotoxic autophagy.

APE1: Apurinic/apyrimidinic endonuclease 1 (APE1) can repair DNA damage and
regulate select processes related to cell survival, proliferation, and migration through the
base excision repair (BER) pathway. Its regulatory role is inextricably linked to nuclear
factor-κB (NF-κB) [106], hypoxia inducible factor 1α (HIF-1α) [107], p53 [108], signal trans-
ducer and activator of transcription 3 (STAT3) [109], and nuclear factor (erythroid-derived
2)-like 2 (Nrf-2) [110]. Clinical samples and preclinical studies of cisplatin suggest that APE1
is associated with NSCLC invasiveness, a poor prognosis, and cisplatin resistance [111–114].
Li et al. demonstrated that APE1 was not only overexpressed in cisplatin-resistant A549
cells but also had a correlation with cisplatin-induced autophagy [115]. This conclusion
was further refined by Pan et al., whose experiments showed that cisplatin-induced cy-
toprotective autophagy in KRASG12S-mutant A549 cells and the combined treatment of
CQ with APE1 siRNA increased cisplatin sensitivity [116]. The above studies suggest that
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APE1 overexpression is often detected in NSCLC and is associated with cisplatin-induced
cytoprotective autophagy.

2.4. The Non-Coding RNA That Affects the Role of Autophagy in Cisplatin-Treated Cells

Francis Crick’s “central dogma” states that genetic information is transmitted through
the DNA–RNA–protein sequence. In this process, however, there are always some genes
that are not translated into proteins, which are called non-coding RNAs (ncRNAs). Many
ncRNAs have been discovered and shown to be involved in regulating cellular processes
and pathways in cancer. Some of these long non-coding RNAs (lncRNAs), circular RNAs
(circRNAs), and microRNAs were demonstrated to mediate cisplatin-induced cytopro-
tective autophagy. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is
located on chromosome 11q13 and has been identified to be involved in cancer develop-
ment and progression [117]. Hu et al. found that CQ enhanced cisplatin-induced apoptosis
in vincristine-resistant SGC-7901 cells, indicating that cisplatin-induced resistance in gastric
cancer cells is associated with autophagy. They also found that lncRNA MALAT1 enhanced
cisplatin-induced cytoprotective autophagy by sequestering mir-23b-3p and increasing
the level of ATG12 [118]. lncRNA MALAT1 has also been found to be highly expressed in
cisplatin-resistant AGS and HGC-27 gastric cancer cells and promotes autophagy through
suppression of the miR-30b/ATG5 and miR-30e/ATG5 axes, thereby reducing cisplatin
sensitivity [119,120]. In addition, the regulation of cisplatin-induced autophagy by circR-
NAs has also been reported. Peng et al. found that circCUL2 regulated cisplatin sensitivity
through mir-142-3p/Rock2-mediated autophagy activation in AGS/cisplatin and SGC-
7901/cisplatin cell lines [121]. It is interesting to note that miRNA is also reported to be
involved in cisplatin-induced protective autophagy, but it is more commonly observed
in gastric cancer cells. For example, miR-148a-3p reconstitution in cisplatin-resistant cells
inhibits cytoprotective autophagy by suppressing RAB12 expression and mTOR1 acti-
vation [122]. MiR-216a-5p overexpression decreased Bcl-2 expression, enhanced Beclin1
expression, and activated cisplatin-induced autophagy [123]. However, more interest-
ingly, for the gastric cancer cell line SGC-7901, the research of Zhu et al. showed that CQ
also decreased cisplatin sensitivity and induced cytotoxic autophagy [49]. In contrast to
the inconsistent reports in gastric cancer cells, the role of ncRNAs seems to be relatively
consistent for cisplatin-induced autophagy in lung cancer cells. For example, LncRNA BLA-
CAT1 [124], miRNA-1 [125], miR-181 [126], miR-223 [127], and miR-425-3p [128], whose
overexpression was reported to upregulate cisplatin-induced autophagy, were associated
with resistance to cisplatin in lung cancer cells.

There are many other reports relating to the regulation of cisplatin-induced autophagy
in tumor cells by different species of ncRNA [129], such as the enhancement of cisplatin-
induced autophagy in thyroid cancer cells by overexpression of MicroRNA-125b in vivo
and in vitro [130]. Although we will not list all of these studies here, it is important
to emphasize that virtually all of these studies are missing the necessary experiments
to confirm the role of cisplatin-induced autophagy. Although it has been reported that
cisplatin-induced apoptotic cell death was enhanced by the blockade of either siRNA-
mediated knockdown of Atg7 genetic expression or a pharmacological inhibitor (3-MA) in
NSCLC [131], we and other labs indeed observed that the use of CQ or other autophagy
inhibitors did not enhance cisplatin-induced apoptotic cell death (i.e., non-protective
autophagy) [50,100] or reduce the cell death rate’s decline (i.e., cytotoxic autophagy) [49].
The current status of the research is that many studies are somewhat handicapped by
the preconceived notion that cisplatin-induced autophagy is cytoprotective and related to
cisplatin resistance. Therefore, after knockdown or overexpression of ncRNAs, a decreased
level of autophagy is observed (usually, only downregulation of LC-I to LC3-II is detected),
leading to the possibly incorrect conclusion that the specific ncRNA mediated cisplatin
chemoresistance by regulating autophagy.
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2.5. Other Genes That Affect the Role of Autophagy in Cisplatin-Treated Tumor Cells

In addition to the more widely reported genes listed above, the expression of many
other genes has been shown to affect cisplatin chemosensitivity by regulating autophagy.
These include BCAT1 [132], protein disulfide isomerase family 6 (PDIA6) [133], serum-and
glucocorticoid-inducible kinase 2 (SGK2) [134], inhibitor of DNA binding 1 (ID1) [135],
O-6-methylguanine-DNA methyltransferase (MGMT) [136], PDZ-binding kinase (PBK) [137],
IGF2R [138], caveolin-1 (Cav-1) [139], HSP90AA1 [140], O-GlcNAc transferase (OGT) [141],
neutrophil gelatinase-associated lipocalin (NGAL) [142], and GFRA1/GFRα1 (GDNF fam-
ily receptor α1) [143]. However, it is necessary to strongly emphasize that when studying
the relationship between specific genes and cisplatin-induced autophagy, it is critical to
clarify the function of autophagy in the study model; otherwise, any conclusions that might
be drawn would be lacking a rigorous experimental foundation.

3. The Yin and Yang Faces of Autophagy Inhibition in Cisplatin Therapy

Cisplatin treatment promotes autophagy in both cisplatin-sensitive and cisplatin-
resistant cells. Consequently, inhibition of autophagy can be considered a strategy for
improving cisplatin chemosensitivity [29–31]. This is the positive side, which is what we
call Yang. However, as discussed in Section 2, the functional activity of cisplatin-induced
autophagy is related to different genetic phenotypes and tumor types as well as the microen-
vironment of the tumor. In addition, preclinical studies have found that pharmacological
autophagy inhibitors are not uniformly effective in enhancing the effectiveness of cisplatin
and may also exacerbate the side effects of cisplatin toward normal tissue. This is the nega-
tive side, which we call Yin. We will next elaborate on the two elements that autophagy
inhibition brings to cisplatin treatment in terms of both therapeutic efficacy and side effects.

3.1. A Beneficial Treatment Strategy of Autophagy Inhibition Combined with Cisplatin Is Closely
Related to Tumor Types

CQ and HCQ are quinoline derivatives that exhibit a variety of activities and are
able to cross cell membranes by passive diffusion. These drugs accumulate and are sub-
sequently protonated in acidic vesicles such as lysosomes. This accumulation leads to a
weakened acidic environment, thereby disrupting the endolysosomal system [144]. The
fusion of lysosomes and autophagosomes is a critical step for the completion of autophagy,
sometimes referred to as autophagic flux. CQ interferes with the fusion process and
is therefore considered to be an effective inhibitor of late-stage autophagy [145]. The
combination of CQ with cisplatin has been reported to not only increase the chemothera-
peutic efficacy of cisplatin-sensitive cancer cells [145] but also to effectively improve the
chemosensitivity of cisplatin-resistant cancer cells (Table 1). For example, as listed in Table 1
below, CQ increased cisplatin sensitivity by inhibiting autophagy in cisplatin-resistant
A549 (A549/cisplatin) [146], endometrial cancer [147], urothelial carcinoma [148], epithe-
lial ovarian cancer [149], esophageal cancers [29], and neuroblastoma [150]. Apart from
the generally recognized autophagy inhibitory effect, recent studies have also reported
autophagy-independent activities of CQ against breast cancer [100], as well as increased
cisplatin sensitivity to laryngeal tumor cells by promoting repolarizing tumor-associated
macrophages from M2 to M1 in vivo and in vitro [151].

The above studies appear to suggest that the combination of CQ and cisplatin is indeed
a potential approach to overcoming cisplatin resistance, where this sensitizing effect is
largely relevant to specific tumor types. For instance, in patients with cisplatin-resistant oral
squamous cell carcinoma, inhibition of autophagy does not seem to be an ideal treatment.
A recent study showed that although CQ increased the apoptosis rate of cisplatin-treated
SSC-4 cells, it had a very limited effect on the apoptosis of cisplatin-resistant SSC-4 cells
(only about a 5–7% increase) [152].
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Table 1. Effect of CQ or HCQ on cisplatin-treated cancer cells.

Cancer Types In Vitro Study Models In Vivo Study Models Effect of CQ or HCQ on
Cisplatin Sensitivity Reference

NSCLC A549/cisplatin cells - Increased [146]

H460 cells - No effect [50]

Endometrial cancer cells Ishikawa/cisplatin cells - Increased [147]

Urothelial carcinoma cells RT-112/cisplatin cells - Increased [148]

Ovarian cancer A2780-CP20/cisplatin cells

An orthotopic mouse model
established with A2780-CP20

cells and a drug-resistant
patient-derived
xenograft model

Increased [149]

ARHI-low expressed
SKOV3 cells - No effect [77]

Esophageal cancers EC109/cisplatin cells Nude mice xenografted with
EC109/cisplatin cells Increased [29]

Neuroblastoma cells Cisplatin-resistant model
SK-N-BE(2)Cres cells - Increased [150]

Oral squamous
cell carcinoma

SCC-4 cells and
SCC-4/cisplatin cells -

Increased in SCC-4 cells,
no effect in

SCC-4/cisplatin cells
[152]

Pediatric
medulloblastoma cells DAOY and ONS76 cells - no effect [153]

Breast cancer cells 67NR and 4T1 cells - no effect [100]

For cells that are inherently sensitive to cisplatin, the outcomes for CQ in combination
with cisplatin seem to be more relevant to the tumor types. For example, in cisplatin-
sensitive glioblastoma, pediatric medulloblastoma cell lines, atypical teratoma/rhabdo-
myosarcoma cell lines [153], low ARHI-expressing ovarian cancer SKOV3 cells [77], p53
wild-type lung cancer H460 cells [50] and p53-null mouse breast cancer 67NR and 4T1
cells [100], CQ had no significant effect on the activity of cisplatin (Table 1).

In addition to CQ, Bafilomycin-A1 and PI3K inhibitors (3-MA and wortmannin) are
also common inhibitors of autophagy and have been reported to increase the chemosensi-
tivity of cisplatin in different tumor cells in a large number of studies, which have been
summarized in many reviews [28]. Nevertheless, there are also exceptions. An example
is that the 3-MA showed no effect on the cell proliferation rate in cisplatin-treated na-
sopharyngeal carcinoma CNE1 cells [82]. More interesting examples are cisplatin-resistant
gastric cancer KATO-III cells, for which studies have shown that the resistance is indepen-
dent of MRP1 and MDR1 and rather linked to Aldoketoreductase1 C1 and C3 (AKR1C1
and AKR1C3). When AKR1C1 and AKR1C3 were inhibited, the combination of 3-MA
paradoxically decreased the cell death rate of KATO-III induced by cisplatin [154].

Based on the data presented above using combinations of autophagy inhibitors with
cisplatin, although most of the reported cisplatin-resistant cells demonstrated sensitization
from the combination treatments, inefficient or even ineffective outcomes were also evident.
Moreover, most of the experimental data were generated solely in in vitro cellular models.
Furthermore, the paradigm that “autophagy is a drug resistance mechanism” may have
occasionally resulted in a less than objective interpretations of the data.

In addition to these more classical autophagy inhibitors, there are some compounds
and nanomaterials that have also been found to overcome cisplatin resistance by disrupting
autophagy. U0126, a MAPK inhibitor, enhanced cisplatin-induced apoptosis by inhibiting
autophagy in cisplatin-resistant ovarian cancer cells [155] and NSCLC cells [156]. Some
natural products have also been found to promote the activity of cisplatin by regulating
autophagy (Table 2). For example, astragaloside IV (AS-IV) derived from Astragalus mem-
branaceus sensitizes cisplatin-resistant NSCLC cells to cisplatin by inhibiting ER stress
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and autophagy [157]. However, the role of autophagy induced by natural products in
combination with cisplatin is not consistent. For instance, Gardenia jasminoides (GJ), a
medicinal herb abundant with flavonoids, in combination with cisplatin paradoxically acti-
vated cytotoxic autophagy in glioblastoma multiforme [158]. In addition, the combination
of autophagy-inhibiting nanoparticles or materials with cisplatin enhanced the chemosen-
sitivity or reduced the resistance to cisplatin. For instance, a nanoparticle-based co-delivery
system (siBec1@PPN) is centered on the efficient co-delivery of Beclin1 siRNA (Beclin1 is
an autophagy initiation factor) and cisplatin to enhance the inhibitory effect on cisplatin-
resistant A549 cells by inhibiting autophagy in vivo and in vitro [159]. Compared with the
poly lactic acid (PLA) + cisplatin nanoparticles (CDDP-PLA NPs), the PLA + cisplatin-CQ
nanoparticles (CDDP/CQ-PLA NPs) reduced autophagy and enhanced the ROS and apop-
tosis of Cal-27 cells [160].

Table 2. Role of autophagy in synergistic effects of natural products and cisplatin.

Compound In Vitro
Study Models

In Vivo
Study Models

The Role of
Autophagy in

Cisplatin
Only-Treated

Models

Effect of
Combination

Treatment
on Autophagy

Reference

Astragaloside IV
(AS-IV) derived from

Astragalus
membranaceus

Cisplatin-resistant
NSCLC cell lines - Unknown Decreased

autophagy levels [157]

Hederagenin, a
triterpenoid derived
from Hedera helix

NSCLC cell lines
NCI-H1299 and

NCI-H1975

NCI-H1299 cells
xenograft model Unknown Decreased

autophagy levels [161]

Acetyl-11-keto-β-
boswellic acid (AKBA),

a pentacyclic
triterpenes, from
Boswellia serrata

NSCLC cell
lines A549 - Unknown Decreased

autophagy levels [162]

Andrographolide
(Andro), one of the

major active
components in
Andrographis

paniculata

Cisplatin-resistant
A549 cells

A549/cisplatin
cells

xenograft model
Unknown Decreased

autophagy levels
[163]

Colon cancer cells
HCT-116 (p53 wild
type and p53-null)

-
Cytoprotective

autophagy (both
cell lines)

Decreased
autophagy levels [164]

Morin hydrate, a
bioflavonoid, isolated

from the
Moraceae family

HepG2 cell HepG2 xenograft
nude mice Unknown Decreased

autophagy levels [165]

Cisplatin-resistant
HepG2 cells

Cisplatin-resistant
HepG2 xenograft

nude mice
Unknown Decreased

autophagy levels [166]

Gardenia jasminoides
(GJ) is a medicinal

herb abundant
with flavonoids

Glioblastoma
multiform U87MG
and U373MG cells

-

Unknown, but
induced cytotoxic
autophagy when

combined with GJ

Increased cytotoxic
autophagy levels [158]

One final issue that we suggest is worthy of additional attention is the “switch” be-
tween the roles played by autophagy in different tumors. As mentioned earlier, although in
many if not most cases where cisplatin-induced autophagy has been detected the autophagy
was functionally cytoprotective, particularly in cisplatin-resistant cells, the non-protective
form of autophagy (i.e., where autophagy inhibition failed to influence cisplatin sensitiv-
ity) has also been observed, particularly in cisplatin-sensitive cells [50,77,100]. However,
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interestingly, re-expression of ARHI in SKOV3 cells allowed for CQ to suppress cisplatin
sensitivity [77], whereas knockdown of p53 in H460 cells resulted in enhanced cisplatin
sensitivity [50], which is what we refer to as the “autophagic switch”. This again argues
that studies to improve the efficacy of chemotherapy by altering autophagy function should
first distinguish the role of autophagy in specific models. In the absence of such a strategy,
experimental conclusions in preclinical models may prove to be flawed, while translation
of the work could be compromised.

3.2. Does Autophagy Inhibition Have the Potential to Exacerbate the Toxicity of Cisplatin to
Normal Tissue?

The above extensive literature strongly suggests that inhibition of autophagy could,
in fact, prove to be an effective strategy for combating cisplatin resistance in the clinic.
However, this approach does not fully consider, for example, the troublesome issue of
cisplatin toxicity to the kidneys. Cisplatin nephrotoxicity is related to the excretion of
cisplatin, which occurs through the kidney tubular epithelial cells. Asymptomatic elevation
of serum creatinine levels or even acute tubular injury requiring dialysis therapy occurs with
cisplatin chemotherapy in the clinic. Patients who present with this condition often need to
have their medication doses reduced to avoid further kidney damage, resulting in under-
treatment of the disease [167]. Renal injury is often accompanied by other complications
such as water and nitrogenous waste retention and is associated with a poorer patient
prognosis [168]. Recent studies have shown that proximal tubule-specific autophagy-
deficient mice are more susceptible to kidney injury after cisplatin treatment than wild-type
mice [169]. This may be related to autophagy protecting the proximal tubular cells from
mitochondrial oxidative stress and protecting the proximal tubular cells from DNA damage.
Furthermore, autophagy also protects the proximal tubular cells from ischemic injury [170].
Zhang et al. reported that the mechanism of cisplatin nephrotoxicity may be related to the
inhibition of autophagy by the activation of protein kinase C δ [171]. Li et al. found that
3-dehydroxyceanothetric acid 2-methyl ester (3DC2ME) isolated from the roots of jujube
(Ziziphus jujuba, Rhamnaceae) protected against cisplatin-induced renal epithelial LLC-PK1
cell injury via autophagy modulation [172]. Retinoic acid, a major derivative of vitamin A,
attenuates cisplatin-induced acute kidney injury by activating autophagy [173]. Numerous
reports have demonstrated a protective effect of autophagy against cisplatin-induced renal
cell injury [174]. Thus, prolonged coadministration of high doses of CQ or other autophagy
inhibitors may exacerbate the nephrotoxicity of cisplatin. An example of this outcome can
be taken from a study of amniotic fluid stem cells (AFSC) by Minocha et al., who found
that AFSC reduced cisplatin-induced renal apoptosis in rats and served to protect against
acute kidney injury, but CQ counteracted the renal protective effect of the AFSC [175].
The protective effect of autophagy was also demonstrated in cisplatin-induced damage to
the cochlear cells [176]. In addition, the current study also demonstrates the importance
of autophagy in enhancing the therapeutic potential of stem cell therapy in attenuating
cisplatin-associated liver injury [177]. The two-sided nature of autophagy inhibition during
cisplatin treatment suggests the necessity of elucidating the pattern of autophagy in therapy
and finding ways to target the delivery of autophagy inhibitors to lesions while mitigating
nephrotoxicity as well as other normal tissue injury associated with the administration of
cisplatin in cancer therapy.

4. Autophagy in Cisplatin Combination with Immunotherapy

The Beth Levine laboratory reported 20 years ago that beclin 1+/− mice spontaneously
develop lymphomas, lung cancer, as well as liver cancer [178,179], implicating autophagy
in the protection of normal tissues from transformation. Subsequent studies found that this
observation may be related to the role of autophagy in the immune system. Autophagy
deficiency disrupts the clearance of malignant cells by dendritic cells and CD8+ T cells.
Autophagy also has a facilitative role in tumor antigen cross-presentation and enhances
the tumor responsiveness of the immune system [180]. However, autophagy can play an
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opposite role in the developmental process of established tumors. The deficiency of ATG7,
an autophagy-associated gene that is essential for autophagosome production, delayed
PTEN-deficient prostate tumor progression [181]. Lévy et al. showed that the loss of ATG7
promotes adaptive immunity, during which CD8+ T cells are necessary to prevent intestinal
adenomas in APC+/− mice [182]. This suggests the need for autophagy as a “guardian”
in the early stages of tumor formation and as an “accomplice” for tumor survival in the
later stages.

During chemotherapy, autophagy also acts as a signal in the process of immune recog-
nition and immunogenic cell death (ICD) [183,184]. Among the several cytotoxic antitumor
compounds investigated (cisplatin, carboplatin, etoposide, paclitaxel, and gemcitabine), cis-
platin was demonstrated to induce the highest levels of ICD-associated damage-associated
molecular patterns (DAMPs) [185]. This study suggests the potential utility of cisplatin in
combination with immunotherapy. A recent study showed that platinum-based chemother-
apy synergizes with ErbB-targeted CAR-T cells, significantly reducing the tumor burden in
mice, while co-treatment with the pharmacological autophagy inhibitor 3-MA caused a
reversal in tumor cell suppression [186]. These results suggest a requirement for autophagy
for the effectiveness of platinum-based chemotherapeutic agents, which argues against the
strategy of autophagy inhibition.

Other studies, however, have suggested the necessity for autophagy inhibition in the
utility of cisplatin with respect to the immune response. The tumor microenvironment is
critical for chemotherapy efficacy where, for example, the polarization of tumor-associated
macrophages (TAMs) influences tumor growth. Guo et al. found that the inhibition of
autophagy using CQ would promote the polarization of tumor-associated macrophages to
the M1 type, with an inhibitory effect on tumor proliferation and enhanced chemosensitivity
of cisplatin [151]. LC3-associated phagocytosis (LAP) is a non-canonical autophagy that
would be detected during phagocytosis by macrophages [187]. Recent studies have shown
that blocking LAP inhibits the M2 type polarization of TAMs (a pro-tumoral proliferative
state) and delays melanoma growth in vivo and in vitro [188]. These studies imply that the
two-sided role of autophagy in the immune system is closely related to the timing of tumor
development and furthermore that autophagy inhibition at a late stage of tumorigenesis
might facilitate cisplatin activity.

5. Summary

Is autophagy always a barrier to cisplatin therapy? The currently available data
indicate that the answer is nuanced and still uncertain. In general, the combination of au-
tophagy inhibitors and cisplatin appears to have therapeutic potential for cisplatin-resistant
tumors, but this approach likely cannot be generalized to cisplatin-sensitive tumors. With
very few exceptions, the ongoing clinical trials of autophagy inhibition combined with
cancer therapeutics have not yielded encouraging outcomes. Some fundamental reasons
for this include that it has not been demonstrated conclusively that autophagy is consis-
tently induced in malignancies by chemotherapy or radiation. Further, even if this were
to be the case, there is no current approach that might indicate the nature of the induced
autophagy. In addition, it is uncertain whether the tolerated dose of HCQ actually inhibits
chemotherapy and radiation-induced autophagy and, if so, to what extent.

A clinical trial exploring the efficacy of combining CQ with cisplatin-etoposide in
small-cell lung cancer (SCLC) patients was terminated 3 years after the initiation of the
trial because of poor accrual (NCT00969306). Another clinical trial of CQ combined with
cisplatin-etoposide for SCLC is currently ongoing in the Netherlands (EUCTR2009-014772-
22-NL).

In addition to the reservations indicated above, how autophagy might influence the
function of normal tissues such as the kidney (as indicated above), the GI tract where
autophagy maintains integrity, or the central nervous system, wherein defective autophagy
has been implicated in a number of pathological conditions, has generally not been given
adequate consideration. Finally, the somewhat contradictory and still incomplete data
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relating to the influence of autophagy modulation on immune function with regard to tumor
suppression indicates that we are not yet at a point where autophagy inhibition should be
considered a viable clinical strategy in cancer therapeutics, whether in combination with
cisplatin or other antitumor drugs or radiation.
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