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Nucleolar dominance is related to the expression of 45S rRNA genes inherited from one
progenitor due to the silencing of the other progenitor’s rRNA genes. To investigate
nucleolar dominance associated with tetraploidization, we analyzed the changes
regarding the genetic traits and expression of 45S rRNA genes in tetraploidy hybrid
lineage including F1 allotetraploids (4n = 148) and F2 autotetraploids (4n = 200) derived
from the distant hybridization of Carassius auratus red var. (2n = 100) (♀)×Megalobrama
amblycephala (2n = 48) (♂). Results showed that nucleolar dominance from the females
was established in F1 hybrids and it was inherited in F2 hybrids, suggesting that
tetraploidization can lead to rapid establishment of nucleolar dominance in the hybrid
origin’s tetraploid lineage. These results extend the knowledge of nucleolar dominance
in polyploidy hybrid animals, which are of significance for the evolution of hybrids in
vertebrates.

Keywords: nucleolar dominance, distant hybridization, polyploid hybrid progeny, 45S rRNA gene, tetraploidization

INTRODUCTION

Polyploidy species have played a major role in the evolution and the adaptation of eukaryotes in
both animals (Muller, 1925; Peer et al., 2009) and plants (Levy and Feldman, 2002; Soltis et al.,
2009; Jiao et al., 2011). Hybridization is one of the primary mechanisms for the origin of species
leading to the formation of polyploids (Otto and Whitton, 2000; Liu, 2010). In the newly formed
allopolyploids, the genomes changes react in some genomic reorganizations and modifications
of parental genomes. It is assumed that these genomic changes facilitate the establishment and
success of the newly formed polyploids (Song et al., 1995; Ozkan et al., 2001; Kashkush et al.,
2002; Raskina et al., 2002). In previous studies, fertile allotetraploids (abbreviated as F1) (AABB,
4n = 148) were successfully obtained in the first generation derived from the distant hybridization
of Carassius auratus red var. (RCC) (RR, 2n = 100) (♀) × Megalobrama amblycephala (BSB)
(BB, 2n = 48) (♂) as a result of chromosome doubling of diploid hybrid embryos (AB, 2n = 74)
(Liu et al., 2007). Fertile autotetraploids (abbreviated as F2) (AAAA, 4n = 200) were obtained
in the second generation through crossing autodiploid sperm and autodiploid ova produced by
abnormal chromosome behavior during meiosis of F1 hybrids (Qin et al., 2014). In contrast with
the F1 hybrids, the F2 hybrids have increasing the fertility and reach sexual maturity at 1 year old.
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By self-mating, F2 hybrids can generate the next generation
of the autotetraploids. Until now, a stable autotetraploid line
(F2 – F13; 4n = 200) is formed which can provides an excellent
materials to investigate the mechanisms that drive diploidization
in autotetraploids and is useful in the production of the sterile
triploids (Qin et al., 2014). This hybrid origin’s tetraploid lineage
is an attractive model to elucidate genomic changes associated
with tetraploidization.

Nucleoli, the sites of 45S rRNA gene transcription (the
5.8S, 18S, and 28S rRNA) and ribosome assembly, form at the
chromosome loci where tandemly repeated 45S rRNA genes are
actively transcribed (Reeder, 1985; Comai, 2000). In a number of
interspecific hybrids, nucleolar dominance describes expression
of 45S rRNA genes inherited from one progenitor while silencing
of the other progenitor’s rRNA genes (Tucker et al., 2010).
About 70 years of research has contributed to our current
understanding of nucleolar dominance, through studies based
on plants, invertebrates, frogs, flies, fish, and mammals (Mcstay,
2006; Preuss and Pikaard, 2007). The transcriptional dominance
of the ribosomal genes of one species over the ribosomal genes of
another species was first described in some interspecific hybrids
of Crepis (Honjo and Reeder, 1973), and was then confirmed by
the studies of other hybrids or allopolyploid species (Lacadena
et al., 1984; Reeder, 1985; Gustafson et al., 1988). At present,
the knowledge of understanding the nucleolar dominance in
polyploid animals is still limited, because the formation of
distant polyploid hybrid lineages in animals is challenging in
practice.

The genetics traits and expression of 45S rRNA genes have
been studied by detecting single nucleotide polymorphism (SNP)
sites in the 18S rRNA gene (Flowers and Burton, 2006; Xiao
et al., 2016). Nucleotide sequence variation in the internal
transcribed spacer (ITS) region of the 45S rRNA genes has
been the candidate of choice for species identification (Jobes
and Thien, 1997; Hajibabaei et al., 2007; Son et al., 2009) and
phylogenomic analyses (Yonemori et al., 2002; Liu et al., 2008).
Here, we analyzed the genetic traits and expression of 45S rRNA
genes in RCC, BSB, F1 and F2 hybrids. The results showed
that nucleolar dominance from the females was established in
F1 hybrids and it was inherited in F2 hybrids, suggesting that
tetraploidization can lead to rapid establishment of nucleolar
dominance in the hybrid origin’s tetraploid lineage. These results
extend the knowledge of nucleolar dominance in polyploidy
hybrid animals, which are of significance for the evolution of
hybrids in vertebrates.

MATERIALS AND METHODS

Source of Samples
The allotetraploids (F1, AABB, 4n = 148) were obtained in the
first generation of the distant hybridization of Carassius auratus
red var. (RCC, AA, 2n = 100 ♀) × Megalobrama amblycephala
(BSB, BB, 2n = 48 ♂) as a result of chromosome doubling
of diploid hybrid embryos (AB, 2n = 74) (Liu et al., 2007).
The autotetraploids (F2, AAAA, 4n = 200) were obtained in
the second generation through crossing autodiploid sperm and

autodiploid ova produced by abnormal chromosome behavior
during meiosis of F1 hybrids (Qin et al., 2014). All samples were
reared and bred at the Engineering Research Center of Polyploid
Fish Breeding and Reproduction of the State Education Ministry,
China, located at Hunan Normal University.

Fluorescence in situ Hybridization (FISH)
To determine ploidy, a 5S gene probe was made from RCC
genome and amplified by PCR using the primers 5′-TTCG
AAAAGAGAGAATAATCTA-3′ and 5′-AACTCGTCTAAACC
CGAACTA-3′ (Qin et al., 2010). The fluorescence in situ
hybridization (FISH) probes were produced by Dig-11-dUTP
labeling (using a nick translation kit; Roche, Germany) of purified
PCR products. FISH was performed according to He et al.
(2012). Two hundred metaphase chromosome spreads from 10
individuals were analyzed for each type of fish (RCC, BSB, F1
and F2 hybrids). Preparations were examined under an inverted
microscope (CW4000, Leica, Germany), with a confocal imaging
system (LCS SP2, Leica). Captured images were colored and
superimposed in Adobe Photoshop CS6.

Analysis of the Genetics Traits and
Expression in ITS Sequences
The ITS sequences from different genomes were amplified using
ITS primers (5′-AGTCGTAACAAGGTTTCCGTAGGTG-3′; 3′-
TTATGGCCGTGCTCTGGCTAT-5′), with DNA and cDNA
as templates. This pair of primers was designed based on
the 45S sequence of common carp (GenBank, Accession No.
JN628435.1). Unique cleavage sites for restriction enzymes (NotI,
DraI, StuI; New England Biolabs) were located in ITS sequences
from different genomes using a sequence alignment program
(GeneTool) (Beisvag et al., 2006). Three individuals for each type
of fish (RCC, BSB, F1 and F2 hybrids) were used to validate these
restriction enzymes sites.

Analysis of the 18S rRNA Gene Sequence
and Detection of 45S rRNA Gene
Expression
A pair of primers reported by Singh et al. (2009) (18S, 5′-TT
GGTGACTCTCGATAACCTCGGGC-3′; 18S, 5′-CCTTGTTAC
GACTTTTACTTCCTC-3′) was used to amplify the 18S rDNA
fragment. Genomic DNA and total RNA were simultaneously
isolated from single adult fish. Thirty individuals of each fish
(including RCC, BSB, F1 and F2 hybrids) were selected at
random. DNA was extracted with a universal genomic DNA
extraction kit (TaKaRa). The liver tissue of different individuals
was used to isolate total RNA using a Total RNA Isolation
System (Omega Bio-Tek, Norcross, GA, United States). RNA was
treated with gDNA Eraser (TaKaRa) and first-strand cDNA was
synthesized with Superscript III (Invitrogen) using an 18S rRNA
gene-specific primer (5′-CCTTGTTACGACTTTTACTTCCTC-
3′). Then the 18S F/P primer pair was used to amplify
the cDNA fragment of 18S rDNA by PCR. For all samples,
PCR controls were used to detect the contamination of RNA
with genomic DNA. Sequences were analyzed with BioEdit
(Hall, 1999) and Clustal W (Thompson et al., 1994). To
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examine the SNP sites, we designed three pairs of primers
according to 100 upstream and downstream nucleotides in
the SNP sites (Supplementary Table S1). Except the forward
primer in position 41 was designed according to 200 upstream
nucleotides.

RESULTS

Examination by Fluorescence in situ
Hybridization (FISH)
The 5S rDNA probe (477 bp, GenBank: GQ485557) hybridized
with the metaphase chromosomes of RCC, BSB, F1 and F2
hybrids. Hybridization of the 5S rDNA probe yielded eight
5S gene loci in RCC (Figure 1A and Table 1), but none in
BSB (Figure 1B and Table 1); thus, RCC and BSB-derived
chromosomes could be discriminated by the 5S rDNA probe.
In the F1 hybrids, eight RCC-derived 5S rDNA gene loci
were detected in the metaphase chromosomes (Figure 1C and
Table 1). Sixteen RCC-derived 5S rDNA gene loci were detected
in the metaphase chromosomes of the F2 hybrids (Figure 1D and
Table 1).

Inheritance Pattern of ITS Sequences in
Parental Species and Hybrids
Internal transcribed spacer sequence polymorphisms allow
distinct nucleolar organizing regions (NORs) to be identified
via specific restriction enzyme sites in parental individuals and
polyploid hybrid progeny (Figure 2). Lengths of DNA fragments
(including partial 18S rDNA, complete ITS regions, and partial

FIGURE 1 | Examination of hybridizing signals by the 5S rDNA probe. The
white arrows indicate the 5S rDNA gene loci. The eight 5S gene loci were
found in RCC (A), but none in BSB (B). The eight 5S gene loci in F1 (C) and
sixteen 5S gene loci in F2 (D) are shown. Bars (A–D): 3 µm. RCC, Carassius
auratus red var.; BSB, Megalobrama amblycephala; F1, allotetraploids; F2,
autotetraploids.

TABLE 1 | Chromosomal locus numbers.

Fish typea No. of fish No. of metaphases No. of 5S rDNA loci

RCC 10 200 8

BSB 10 200 0

F1 10 200 8

F2 10 200 16

aRCC, Carassius auratus red var.; BSB, Megalobrama amblycephala; F1,
allotetraploids; F2, autotetraploids.

FIGURE 2 | Analysis of the inheritance pattern of complete ITS region in
distant hybrid lineage of RCC × BSB. (A) The complete DNA sequence of ITS
from distant hybrid lineage of RCC × BSB without digestion by enzyme.
(B) The digested product by NotI from distant hybrid lineage of RCC × BSB.
(C) The digested product by DraI from distant hybrid lineage of RCC × BSB.
(D) The digested product by StuI from distant hybrid lineage of RCC × BSB.

28S rDNA sequences) were amplified from the BSB (1296 bp)
(Accession No. MG830472) and RCC (1283 bp) (Accession No.
MG830471). In the F1 and F2 hybrids, the length of the ITS
region was 1283 bp (Figure 2A). The NotI restriction enzyme
could digest the ITS region into two smaller bands in the RCC
(904 and 379 bp), and in the F1 (904 and 379 bp) and F2 (904
and 379 bp) hybrids, but not in the BSB (Figure 2B). The DraI
restriction site was used because it was found in the ITS region of
BSB (1039 bp), but not in the ITS region of RCC, or of the F1 or
F2 hybrids (Figure 2C). The StuI restriction site could be found
in the ITS region of both BSB (658 bp) and RCC (926 bp). In the
F1 and F2 hybrids only a proportion of the individuals carried
the StuI restriction site, although where it was present was in the
same position as in the RCC (Figure 2D). (Note: Three samples
showed the same results.)

Expression Pattern of the ITS Sequence
in Parental Species and Hybrids
Expression of the complete ITS sequence was amplified in BSB
(1296 bp), RCC (1283 bp), and the F1 (1283 bp) and F2 (1283 bp)
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FIGURE 3 | Analysis of the expression pattern of complete ITS region in
distant hybrid lineage of RCC × BSB. (A) The complete cDNA sequence of
ITS from distant hybrid lineage of RCC × BSB without digestion by enzyme.
(B) The digested product by NotI from distant hybrid lineage of RCC × BSB.
(C) The digested product by DraI from distant hybrid lineage of RCC × BSB.
(D) The digested product by StuI from distant hybrid lineage of RCC × BSB.

hybrids (Figure 3A). A NotI restriction site was found in the
cDNA fragment of the ITS region in RCC (904 bp), but not
in BSB. Both the F1 and F2 hybrids carried a restriction site in
the same position as RCC, although in some of the F2 hybrids
the position of this restriction site varied (Figure 3B). A DraI
restriction site was found in the cDNA fragment of the ITS region
in BSB (1039 bp), but not in RCC, or the F1 and F2 hybrids
(Figure 3C). A StuI restriction site was found in the cDNA
fragment of the ITS regions of both BSB (658 bp), RCC (926 bp),
the F1 (926 bp) and F2 (926 bp) hybrids (Figure 3D). (Note: Three
samples showed the same results.)

Sequence and Variation of 18S rRNA
Genes in Parental Species
We examined the intra- and interspecific sequence divergence for
60 sequences from 30 RCC individuals and 60 sequences from 30

BSB individuals. The sequence of the 18S rRNA gene in RCC was
1558 bp (Accession No. MG830470). In BSB, the sequence of the
18S rRNA gene was homogeneous with the sequence provided by
Xiao et al. (2016) (Accession No. AB860215), except for position
12 (indicated with asterisk in Supplementary Figure S1). The
similarity between 18S rRNA gene fragments amplified from
RCC and BSB genome was 97.00% (Table 2 and Supplementary
Figure S1).

Expression of the 45S rRNA Gene
Thirty samples each of fish (RCC, BSB, F1 and F2 hybrids)
were selected. According to genotypes of 18S rRNA gene, the
inheritance pattern in hybrids fell into two classes. In pattern
1, the DNA sequence of the 18S rRNA gene was consistent
with that of RCC. In pattern 2, the DNA sequence of the 18S
rRNA gene had variations in four positions compared with that
of RCC: position 41 (T→C), 486 (A→G), 1124 (T→C), and
1157 (T→C) (Figure 4 and Supplementary Figure S1). The
proportion of F1 hybrids belonging to pattern 1 was 76.67% and
the proportion belonging to pattern 2 was 23.33% (Table 3).
The proportion of F2 hybrids belonging to pattern 1 was
73.33% and the proportion belonging to pattern 2 was 26.67%
(Table 4). The four positions 41, 486, 1124, and 1157 in the
F1 and F2 hybrids were examined by primers (Supplementary
Table S1 and Supplementary File S1). The cDNAs of the
18S rRNA gene in all the F1 and F2 hybrids were consistent
with that of RCC, whether they belonged to pattern 1 or 2
(Figure 4).

DISCUSSION

The 45S rRNA gene is a classic locus for the study of both
genomic structure and expression levels in polyploids, as part
of a study of the more general topic of nucleolar dominance.
The knowledge of understanding the nucleolar dominance in
hybrid origin’s fish and polyploidy livestock is scarce. The limited
data indicate that nucleolar dominance have established in the
red vizcacha rat (Gallardo et al., 2006). However, the nucleolar
dominance established in a hybrids fish lineage is not realized
until the second generation (Xiao et al., 2016). In the present
study, we observed that in the F1 hybrids of RCC × BSB, the
inherited and expressed 45S rRNA genes were derived from the

TABLE 2 | The similarity comparisons of the DNA of 18S rRNA gene in RCC, BSB, F1 and F2 hybrids.

Similarity RCC BSB F1 F2

Pattern 1 Pattern 2 Pattern 1 Pattern 2

RCC 97% 100% 99% 100% 99%

BSB 97% 97% 97% 97%

F1 Pattern 1 99% 100% 99%

Pattern 2 99% 100%

F2 Pattern 1 99%

Pattern 2

RCC, Carassius auratus red var.; BSB, Megalobrama amblycephala; F1, allotetraploids; F2, autotetraploids.
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FIGURE 4 | The diagrammatic drawing of genotype and expression of 45S
rRNA gene at position 41, 486, 1124, and 1157. (A) The genotype and
expression of 45S rRNA gene in RCC. (B) The genotype and expression of
45S rRNA gene in BSB. (C) The genotype and expression of 45S rRNA gene
in F1 hybrids of RCC × BSB. (D) The genotype and expression of 45S rRNA
gene in F2 hybrids of RCC × BSB. For every pattern of each kind of fish, one
sample was used to present.

TABLE 3 | The frequency distribution of the 2 different genetic expression patterns
of 45S rRNA gene in the F1 hybrids.

Number Percent

Pattern 1a 23 76.67

Pattern 2a 7 23.33

Total 30 100

aPattern 1 inherits the single 45S rRNA gene of RCC, Pattern 2 inherits the single
45S rRNA gene of RCC but it occurs nucleotide variation. Pattern 1 and Pattern 2
express the single 45S rRNA gene of RCC.

TABLE 4 | The frequency distribution of the two different genetic expression
patterns of 45S rRNA gene in the F2 hybrids.

Number Percent

Pattern 1a 22 73.33

Pattern 2a 8 26.67

Total 30 100

aPattern 1 inherits the single 45S rRNA gene of RCC, Pattern 2 inherits the single
45S rRNA gene of RCC but it occurs nucleotide variation. Pattern 1 and Pattern 2
express the single 45S rRNA gene of RCC.

females, RCC. Thus, preferential expression evolved rapidly in
the initial generations. The F1 hybrids can successfully survive
in the first generation of RCC × BSB, but diploids hybrids
cannot, probably because of the incompatibility of paternal
genome (Qin et al., 2015). Polyploidization-associated genomic

changes have been found in F1 hybrids (Qin et al., 2016). Thus,
we speculate that tetraploidization facilitate rapid establishment
of nucleolar dominance in F1 hybrids. As reported, genetics
changes in the hybrids may have some relationship with the
unique nucleolar dominance patterns in the hybrid lineage (Xiao
et al., 2016). In Xenopus hybrids, nucleolar dominance appears
to be associated with a major non-Mendelian reduction in
the number of 45S rRNA gene copies rather than a specific
pattern of their expression. The loss of rRNA gene copies
in F1 hybrids was non-random with respect to the parental
species, with the transcriptionally dominant variant preferentially
removed from hybrid zygotes (Katarzyna et al., 2015). The
“epigenetic landscape” created by cytosine methylation and
various histone modification also can play an important role
in selective silencing of rRNA genes (Chen and Pikaard, 1997;
Olga et al., 2007). The specific molecular basis for choosing 45S
rRNA genes of RCC to express in F1 hybrids still needs further
exploration.

Four single nucleotide variations were observed in the
DNA sequences of 18S rRNA gene of F1 hybrids. Incomplete
homogenization of 18S ribosomal DNA sequences have been
reported in some studies (Mentewab et al., 2011; Chelomina et al.,
2016). Polyploidy and hybridization are the most often discussed
reasons for nucleotide variability in the rDNA sequences (Muir
et al., 2001; Liu et al., 2003). Thus, tetraploidization and
distant hybridization may be responsible for the appearance of
this nucleotide variation. Exosome mediated quality control of
misfolded pre-rRNAs following their polyadenylation (Kadaba
et al., 2006; Slomovic et al., 2006; Chekanova et al., 2007) as well
as the ‘non-functional rRNA decay’ leading to decreased stability
of the mature rRNA contained in fully assembled ribosomes and
ribosomal subunits (Lariviere et al., 2006). These mechanisms can
explain that cDNAs of the 18S rRNA gene in all the F1 and F2
hybrids were consistent with that of RCC, whether they belonged
to pattern 1 or 2. It was further confirmed by the digestion
products of the restriction enzyme in the complete ITS region. In
addition, we found an unrecognized band due to the NotI enzyme
in the cDNA of the complete ITS of F2 hybrids. Because the 5.8S
region in all parents and hybrids was conservation, the variant
restriction enzyme site existed in ITS region. The F2 hybrids were
produced through the elimination of BSB genetic material and an
autopolyploidization process. It is reasonable to assume that these
genomic changes cause variation of the cDNA of the ITS region
in the F2 hybrids.

Nucleolar dominance from the females was established in the
F1 hybrids and it was inherited in the F2 hybrids, suggesting
that tetraploidization can lead to rapid establishment of nucleolar
dominance in the hybrid origin’s tetraploid lineage. These results
extend the knowledge of nucleolar dominance in polyploidy
hybrid animals, which are of significance for the evolution of
hybrids in vertebrates.
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FIGURE S1 | Sequence alignment of 18S rDNA of pattern 2 in RCC, BSB, F1 and
F2 hybrids. Variable sites are shaded; asterisks mark position 12.

TABLE S1 | The primers are designed to examine the position 41, 486, 1124, and
1157 in F1 and F2 hybrids.

FILE S1 | (A) The sequencing peak figures of the PCR products amplified from
genomic of 18S rRNA gene. Only the position 41 and 2 upstream and
downstream nucleotides are showed. (B) The sequencing peak figures of the PCR
products amplified from genomic of 18S rRNA gene. Only the position 486 and 2
upstream and downstream nucleotides are showed. (C) The sequencing peak
figures of the PCR products amplified from genomic of 18S rRNA gene. Only the
position 1124 and 2 upstream and downstream nucleotides are showed. (D) The
sequencing peak figures of the PCR products amplified from genomic of 18S
rRNA gene. Only the position 1157 and 2 upstream and downstream nucleotides
are showed.
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