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Abstract: Conotoxins are short, cysteine-rich peptides of great interest as novel therapeutic leads
and of great concern as lethal biological agents due to their high affinity and specificity for various
receptors involved in neuromuscular transmission. Currently, of the approximately 6000 known
conotoxin sequences, only about 3% have associated structural characterization, which leads to
a bottleneck in rapid high-throughput screening (HTS) for identification of potential leads or threats.
In this work, we combine a graph-based approach with homology modeling to expand the library
of conotoxin structures and to identify those conotoxin sequences that are of the greatest value for
experimental structural characterization. The latter would allow for the rapid expansion of the known
structural space for generating high quality template-based models. Our approach generalizes to
other evolutionarily-related, short, cysteine-rich venoms of interest. Overall, we present and validate
an approach for venom structure modeling and experimental guidance and employ it to produce
a 290%-larger library of approximate conotoxin structures for HTS. We also provide a set of ranked
conotoxin sequences for experimental structure determination to further expand this library.

Keywords: conotoxins; protein structure determination; homology modeling; network analysis

1. Introduction

Toxins have for a long time been considered a rich natural source of therapeutic leads because
of their high specificity and binding affinity for various receptors involved in different biological
pathways [1,2]. The drug ziconotide, for example, is a potent analgesic derived from a toxin produced
by the aquatic cone snail species Conus magus [3]. The on-average smaller size of toxins–typically <100
amino acids along with a sizeable proportion <30 amino acids long [4]—means they can be employed
with relative ease in in silico high-throughput screening (HTS) to rationally identify candidates for
initial scaffolds interacting with a particular receptor of interest. Although traditional HTS has focused
largely on small molecules, the dwindling rate at which such drugs come to market has led to a need
to search for other spaces in which to identify ligands for binding with receptors of interest. Natural
products, in general, are expected to be a good source of potential therapeutic candidates, and the
computational advancements in various HTS strategies make it possible to apply approaches such as
docking to more than just small molecules [5–7]. Short toxins in particular are of interest because of
their pre-existing strong affinities for protein receptors, and software has been developed for in silico
screening of them [8]. In one recent study of note, for example, the authors employed a docking
approach to identify α-conotoxin BuIA, produced by species Conus bullatus, as a competitive agonist
for the lysophosphatidic acid receptor 6, a G-protein coupled receptor involved in the development
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of several cancers [9]. Aside from their therapeutic value, toxins such as these also pose a threat to
biosecurity. Rapid advances in synthetic biology have created challenges in determining the health
risks posed by natural toxins or modified toxins with even higher pathogenicity [10]. Thus, in tandem
with HTS for therapeutic design, it is necessary to simultaneously perform HTS for threat identification.
However, HTS approaches for any application are limited by the necessity of possessing a library of at
least low-resolution structures of potential toxin candidates: more structures mean a larger search space
and hence a higher likelihood of identifying good initial leads [11]. Thus, structural characterization
stands as a rate-limiting step for HTS for both therapeutic design and toxin threat characterization,
as identified sequences often far outnumber determined structures. Indeed, only about 3% of sequences
isolated from cone snail venom have corresponding experimentally-determined structures [12].

If the structures of proteins could be rapidly predicted strictly from their sequences, structural
determination would not be a bottleneck; however, structure prediction from sequence still remains
a challenging proposition [13]. Ab initio or de novo modeling approaches for obtaining protein
structure predictions by modeling essential folding physics are prohibitively expensive except for
small proteins of about 20–62 residues in size [14–17]. Even for proteins short enough to be de
novo modeled in isolation, such techniques can become expensive if a large number of different
structures are desired. Structure prediction for a query sequence becomes more tractable when
experimentally-resolved structures are available for evolutionarily related sequences: this is referred
to as homology modeling [18]. For typical proteins (at least 100 amino acids long), a useful rule of
thumb for building a homology model of a protein with unknown structure using a structurally
characterized protein as the template is that both proteins should share at least 25% sequence
identity [19,20]; however, this does not apply to shorter peptides, since the shorter the peptide,
the more likely a sequence identity of 25% is to have arisen due to random chance [21,22]. To apply the
homology modeling framework for shorter peptides, a reasonable heuristic instead becomes that the
alignment length and percent identity fall above the phenomenological curve introduced by Rost [23]
(see Equation (1) and Appendix A Figure A1). The relative steepness of the Rost curve for alignment
lengths of less than fifty amino acids provides an illustration of why, for peptides of such lengths, it is
important to use the actual functional form, rather than a static cutoff, to assess whether a pairwise
alignment contains sufficient information for homology modeling.

In this article, we employ a simple sequence graph-based algorithm for homology modeling
of related toxin sequences and use the resultant graph to suggest a set of sequences of interest for
experimental structural characterization. Network or graph theory is, broadly speaking, the study of
the ways in which different types of objects may be related to one another [24]. In essence, the basis
of such approaches is to consider a set of related objects as nodes in a graph and the relationships
between them as edges between those nodes. This is a versatile framework of thinking that has been
profitably employed in diverse domains in the biological sciences [25,26]: e.g., biological systems
modeling, in which nodes may be, for example, proteins, and edges may be chemical reactions [27,28];
elucidating allosteric pathways in proteins, in which nodes can be defined as residues, and edges as
inter-residue distances [29]; antibody design, in which nodes may be glycans and edges may be the
inverses of the spatial distance between them such that gaps in the network represent likely locations
for antibodies to dock on a glycosylated protein [30]; or biased sampling of cluster formation, in which
the nodes may be particles and edges may be physical contact between them [31]. Thus, for large
datasets, network analysis techniques can help wean out salient global attributes from an otherwise
confounding plethora of features. Because of the subject’s long history, casting biological problems in
the form of a graph allows for the immediate application of well-verified techniques.

Since sequences of proteins may be related in many different ways, including simple amino acid
identity and evolutionary relationships, it is no surprise that graph theory has a long and storied history
of usage for sequence-grouping tasks such as homology detection [32], structure prediction [33–35],
protein family identification [36,37], and even direct homology modeling [35]. For large heterogeneous
databases, it can be challenging to identify homologs and a number of sophisticated algorithms
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have been developed for such purposes; we instead focus on the problem of homology modeling
a set of cysteine-rich toxins known to be evolutionarily related. In our approach, we employ the
number and placement of cysteines within a sequence as a rough initial estimate of functional and
structural relatedness.

In the following sections, we present our graph-based approach and employ it to construct
sequence graphs and identify good libraries of templates for homology modeling. We demonstrate that,
despite the known relationship between the conotoxins, these libraries improve outcomes for structure
homology modeling over using a 25% flat cutoff (plus 5% padding). We use our sequence graphs
to construct a set of tables indicating sequences in which experimental structural characterization is
predicted to be most valuable in creating a broad structure library by using homology modeling. Finally,
we employ the graphs and libraries as part of a homology modeling procedure that results in a library
of low-resolution structures for the conotoxins that will be of use in future high-throughput studies.

2. Results

We initialize the algorithm (see Figure 1 for a schematic illustration of the procedure) by
separating a set of over 2000 known conotoxin sequences into databases containing four, six, eight,
and ten cysteines, respectively. For each database, we construct graphs of sequences (cf. Figure 2) in
which an edge between two nodes (i.e., sequences) represents a pairwise alignment that is of sufficient
length and percent identity to fall into the safe homology modeling zone above the Rost curve
(cf. Equation (1) and Figure A1). Some portions of the sequences have known structures, such that the
corresponding nodes are annotated with the relevant PDB ID(s). We employ the graphs thus generated
to iteratively add nodes with structures to a library of templates for homology modeling. We term this
set of sequences {Lex}, the set of existing structural library templates. Nodes are added to {Lex} in
a greedy manner, in order of highest node degree, such that the resulting library will contain enough
templates to homology model the maximum number of non-structurally-characterized sequences
possible but with minimal sequence overlap and retaining a number of non-library structures for
quality assessment. Since this is approximately the vertex-covering problem of a graph, we cannot find
a globally optimal solution, as that problem is NP-complete [38]. We halt the procedure once either we
have no further nodes with structures to add or there are no remaining sequences in a given connected
component of the graph that are not connected to at least one library template sequence, such that
all sequences in that component may be structurally characterized by homology modeling. We refer
to the set of sequences that may be homology modeled based on set {Lex} as set {C (Lex}) that are
covered by {Lex}. We next perform a similar procedure—but without the constraint of structure
annotation—on the nodes absent {Lex} to identify the sets {Lproj} that are of interest for experimental
structural characterization such that they cover the remaining set {C

(
Lproj}

)
. Note that it is possible

for nodes to belong to both {C (Lex}) and {Lproj}, and indeed, a small number do.
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Figure 1. Schematic of a simple graph-based algorithm for constructing a library of structural templates
for homology modeling. For each connected component in the graph of sequences, where an edge
represents the ability to homology model one sequence based on another, we employ a greedy
approach to find a good library of template structures that cover as much of the sequence space
as possible. For computation of the sequence set {Lproj} of interest for experimental characterization,
we skip consideration of the structures and run the algorithm on the subset with structure-associated
sequences removed.

In Figure 2, we present the sequence graphs for sets of conotoxin sequences with four, six, eight,
and ten cysteines, respectively. We specifically display {Lproj} (in green), the experimental structural
characterization of which would lead to coverage by homology modeling of the set {C

(
Lproj

)
}

(in magenta) that comprises sequences with no characterized structure and not covered by set {Lex}.
We also show the set {Lex} (in orange), which we employ to predict structures for the set {C (Lex)}
(in blue) by homology modeling. In Figure A2, we present the same sequence graphs, but we color
the nodes by relative sequence length instead of set occupation. A significant proportion of isolated
sequences (nodes with no connections that therefore cannot be homology modeled) are relatively
short (cf. the ring of small red nodes in Figure A2A and to a lesser extent in Figure A2B), which
demonstrates that a high proportion of isolated nodes may be characterized well through rapid
ab initio modeling rather than needing full experimental characterization, particularly for the four and
six cysteine sequences.

These figures are a graphical illustration of the sequence space of conotoxins that may be used
as a guide to experiment or to produce low-resolution structures for initial HTS. Specifically, out
of the 801 sequences with four cysteines, 61 (7.6% of total) currently have experimentally-resolved
structures. The graph-based approach selected 49 (6.1% of total) of these structures as comprising the
four cysteine template library (set {Lex}; blue circles in Figure 2A, while the 12 unselected structures
are represented in black), which allowed for homology modeling of 143 (17.9% of total) sequences
(set {C (Lex)}; orange circles in Figure 2A). This corresponds to an increase of over 230% (143/61)
for the number of structures employable for HTS over the original 61. The graph-based approach
indicated that seven sequences from {C (Lex)} (hybrid green/blue circles in the graph) and a further
74 sequences (81 overall—10.1% of total) would need to be characterized experimentally to allow for
homology modeling of the remaining 151 (18.9% of total). Of the 453 sequences assigned to {Lproj},
372 (82.1%) are isolated nodes with no edges; of these, 298 (80.1%) are shorter than 20 amino acids,
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and 353 (94.9%) are shorter than 30 amino acids in length and thus many of this remainder may be
rapidly modeled using ab initio techniques.

Figure 2. Graph of conotoxins containing (A) four cysteines, (B) six cysteines, (C) eight cysteines,
and (D) ten cysteines where nodes are sequences and edges exist between sequences with pairwise
alignments that have high enough length and percent identity to fall above the Rost curve with n = 5%
(Equation (1)). We show the set {Lex} of sequences added to the template libraries in orange, the set of
sequences corresponding to unselected structures in black, the set of covered sequences {C(Lex)} that
we homology model based on the templates included in the library in blue, and the set of projected
sequences {Lproj} in green in which structures are in need of characterization in order that the rest
of the sequences {C(Lproj)} in magenta may be homology modeled based on some template. Nodes
belonging to both {C(Lex)} and {Lproj} are displayed as half green, half blue. The sizes of the nodes
correspond to their degree; that is, the number of other sequences that they can be modeled based on
or used to model. Node locations and edge lengths were chosen for ease of visualization of separate
connected components. Visualization of the graphs was produced with Gephi 0.9.2 [39].

For conotoxins with six cysteines (cf. Figure 2B), 44 (4.0% of total) out of the 1113 sequences
currently have experimentally-resolved structures. The graph-based approach selected 30 (2.7% of
total) of these structures as comprising the six cysteine template library, which allowed for homology
modeling of 148 (13.3% of total) sequences. This corresponds to an increase of over 330% (148/44)
for the number of structures employable for HTS over the original 44. The graph-based approach
indicated that seven sequences from {C (Lex)} and a further 180 sequences (187 overall–16.8% of total)
would need to be characterized experimentally to allow for homology modeling of the remaining
509 (45.7% of total). Of the 419 sequences assigned to {Lproj}, 239 (57.0%) are isolated nodes; of these,
86 (36.0%) are shorter than 20 amino acids, and 163 (68.2%) are shorter than 30 amino acids in length.
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For conotoxins with eight cysteines (cf. Figure 2C), 2 (1.1% of total) out of the 190 sequences
currently have experimentally-resolved structures. These two structures were selected as comprising
the entire template library here, which allowed for homology modeling of a 17 (8.9% of total) sequences.
This corresponds to an increase of 850% (17/2) for the number of structures employable for HTS over
the original two. The graph-based approach indicated that one sequence from {C (Lex)} and a further
29 (30 overall—15.8% of total) would need to be characterized experimentally to allow for homology
modeling of the remaining 101 (53.1% of total). Of the 71 sequences assigned to {Lproj} sequences,
41 (57.7%) are isolated nodes, but of these, only 5 (12.2%) are shorter than 30 amino acids in length,
leaving a good proportion that would likely require experimental characterization to solve their
structures. Finally, there are no known structures corresponding to ten cysteine sequences so there
is no current coverage (cf. Figure 2D). The graph-based approach indicated that a further 9 of the
total 53 sequences (17.0%) would have to be characterized to allow for homology modeling of the
remaining 34 (64.2%). Of the 19 sequences assigned to {Lproj} (52.6%), 10 are isolated nodes, and of
these, none are shorter than 30 amino acids in length.

For characterization of the remaining structures, focusing efforts on the nodes of the highest degree
in the graphs is disproportionately rewarding, since a greater degree in the graph corresponds to the
ability to cover a greater number of sequences. In Tables 1–4, we present and rank the set of conotoxins
that are of greatest interest for experimental characterization, as availability of experimental structures
for these sequences (belonging to set {Lproj}) would allow homology modeling of the remainder of
the sequences (belonging to set {C

(
Lproj}

)
). Thus, we suggest that experimental structural resolution

begin with those sequences listed at the top of their respective tables and work downwards in order to
most rapidly and efficiently structurally characterize the sequence space of the conotoxins.

Table 1. List of sequences containing four cysteines in order of interest for experimental characterization,
based on the degree (sequence coverage) in alignment graphs (cf. Figure 2). Name or names of
sequences are taken from the Conoserver database [40]. Multiple names for the same sequence indicate
the same sequence is produced by different species or has different post-translational modifications.
Node degree corresponds to the number of sequences with pairwise alignments that are long enough
and have high enough percent identity to be homology modeled with the given sequence as a template.
Cysteines are highlighted in red to guide the eye. We note in the fourth column the pharmacological
family, although it is unknown for the majority of sequences, as it requires a separate experimental
determination in most cases.

Sequence Name(s) Degree Pharm. Fam.

AAKVKYSNTPEECCSNPPCFATHSEICG Li1.28 10 Unknown
GCCSDPRCAYDHPEIC Vc1.1[N9A] 10 alpha

GCCSNPVCHLEHSNAC MII [L15A] 8 Unknown
AALEDADMKTEKGFLSSIVGNLGTVGNLV–

GSVCCQITNSCCPED Pu5.7 7 Unknown
RAALEDADMKTEKGVLNAIFSNLGDLGNL–

VSSVCCKATTSCCPED Pu5.9 6 Unknown
AGLTDADLKTEKGFLSGLLNVAGSVCCKVDTSCCSNQ Lt5g 6 Unknown

GCCSNPVCALEHSNLC MII [H9A] 6 Unknown
VPAEQMMEELCPDMCNRGEGEIICTCVLRRHVVSPSIR Lt14.4 5 Unknown

TNEGPGRDPAPCCQHPIETCC Cal5b 5 Unknown
RPECCTHPACHVSNPELCS Mr1.8 4 Unknown

GCCSRPPCIANNPDLC TxIA 4 alpha
SPGSTICKMACRTGNGHKYPFCNCR Fe14.1 4 Unknown

GCCSLPPCALNNPDYC PnIA [A10L,sTy15Y] 4 Unknown
YAAVVNRASALMAQAVLRDCCSNPPCAHNIHCA Ec1.7 4 Unknown

NGRCCHPACGKHFSC Ac1.1b, CnIH, R1.1, Bt1.6, Mn1.2, C4.3 4 Unknown
NGRCCHPACGKYFSC Mn1.5 3 Unknown

GCCSRAACAGIHQELC LtIA [A4S] 3 Unknown
GCCSNPVCHLAHSNAC MII [E11A,L15A] 3 Unknown

GCCSHPACSGNNREYCRES O1.3 3 Unknown
GGCCSHPVCYFNNPQMCR Cr1.6 3 Unknown
GGGCCSHPACAANNQDYC Gly-AnIB 3 Unknown
DGCCSSPSCSVNNPDICGG Eb1.1, Qc1.18 3 Unknown
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Table 1. Cont.

Sequence Name(s) Degree Pharm. Fam.

LDPCCREPPCASTHTDICT Li1.4, Sa1.12 3 Unknown
NECCDNPPCKSSNPDLCDWRS Qc1.1b, LiC22 3 Unknown

DECCSNPSCAQTHPEVC Li1.24, Sa1.6 3 Unknown
GCCSHPACAGNNPHICS Li1.11 3 Unknown

SFRFIPGGIKEIACHRYCAKGIASAFCNCPDKRDVVSPRI G14.1 3 Unknown
VPPEPILEIICPGMCDEGVGKEPFCHCTKKRDAVSSRI Vc14.4 3 Unknown

GCCSYPPCNVSYPEICG Su1.6 2 Unknown
AANDKASVQIALTVQECCADSACSLTNPLIC Dd1.7, Li1.21 2 Unknown

TAFGLRLCCKRHHGCHPCGRT Cal1b 2 Unknown
AANAKLFDVGQSCCSAPLCALLYMVIC Sa1.7 2 Unknown

TVRDACCSDPRCSGKHQDLC Li1.16, Sa1.3 2 Unknown
NLQILCCKHTPACCT S5.3, Eb5.5 2 Unknown

ECPPWCPTSHCNAGTC Cl14c 2 Unknown
GIWCDPPCPKGETCRGGECSDEFNSDV Cal14.1a 2 Unknown

GMWDECCDDPPCRQNNMEHCPAS Lp1.7 2 Unknown
GRCCHPACGGKYFKC CnIJ 2 Unknown

IALIATRECCANPQCWSKNC Co1.3 2 Unknown
GCCSHPVCHARHPELC PeIA[A7V, S9H,V10A,N11R] 2 Unknown

DGCCSDPACSVNHPDICGG Qc1.7 2 Unknown
PPGCCNNPACVKHRCG Bu1.2 2 Unknown

LINTRCCPGQPCCRM Vc5.11 2 Unknown
NAAANDKASDVIPLALQGCCSNPVCHVDHPELCL Cn1.6 2 Unknown

GCCSHPVCHARHPALC PeIA[A7V, S9H,V10A,N11R,E14A] 2 Unknown
WDVNDCIHFCLIGVVGRSYTECHTMCT FlfXIVB 2 Unknown

NGRCCHPACAKYFSC Mn1.4b 2 Unknown
NGRCCHPACGGKYVKC Ac1.2 2 Unknown
GCCSYPPCFATNSDYC AuIA 2 alpha

DECCAIPLCAKIFPGRCP Pc1b 1 Unknown
AANLMALLQESLCPPGCYPSCTNCRYMFP Pu14.6 1 Unknown

GCCAIRECRLQNAAYCGGIY Ca1.2 1 Unknown
FLTQQSPRDFAKSVMQLLHYNWIDCCNYGVSDCCI Lv5.7 1 Unknown
APAELILETICPHMCGTGIGEPFCNCRNKRDVVSSRII Bt14.3 1 Unknown

EIVNIIDSISDVAKQICCEITVQCCVLDEE Vn5.5 1 Unknown
ECCEDGWCCTAAPLTAP Vc5.7 1 Unknown
CCPGWELCCEWDDWW Mr5.7 1 Unknown
GCCSFPACRKYRPEMCG Su1.2 1 Unknown

DDCCPDPACRQNHPELCST PuSG1.1 1 Unknown
APNVKDSKASGSCCDNPSCAVNNSHC Li1.32 1 Unknown

YHECCKNPPCRNKHPDLC Sa1.16 1 Unknown
GCCSNPACAGSNAHIC Li1.14 1 Unknown

GCCVYPPCAVNHPDICRG Qc1.9 1 Unknown
VMQLRYYNWIDCCFDGDCCN Qc5.3 1 Unknown

TGCCEYPYCAENNPELCG Co1.4 1 Unknown
SVEGVISTIKDFAVKVCCSVSLKFCCPTA Ts5.5 1 Unknown

SCCSDSDCNANHPDMCS Leo-A1 1 Unknown
SCCPQEFLCCLYLVK Lp5.1 1 Unknown
RCCHPACGKNYSC MI[del1G] 1 Unknown

QTPGCCWNPACVKNRC EIIA 1 Unknown
QGCCSYPACAVSNPDICGG Qc1.12 1 Unknown
PECCSDPRCNSTHPELCG Ai1.2 1 Unknown

NIQIICCKHTPKCCT Tx5.5 1 Unknown
NAWLTPEECCAAPACREMILEFCLAGEAFAAAL–

DGFRRLPYR Pu1.5 1 Unknown
KVYCCLGVRDDWCCAGQIQI Lt5i 1 Unknown

IINWCCLIFYQCCL Sr5.7 1 Unknown
YCCHPACGKNFDC SIA 1 alpha

GILELAKTVCCSATGISICC Tx5.13, Tr5.3, Vr5.1 1 Unknown
GGCCSRPPCILKHPEIC Qc1.13 1 Unknown

GCPADCPNTCDSSNKCSPGFP Cal14a 1 Unknown
GIRGNCCMFHTCPIDYSRFYCP Vt1.24 1 Unknown
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Table 2. List of sequences containing six cysteines in order of interest for experimental characterization,
based on the degree (sequence coverage) in alignment graphs (cf. Figure 2). Name or names of
sequences are taken from the Conoserver database [40]. Multiple names for the same sequence indicate
the same sequence is produced by different species or has different post-translational modifications.
Node degree corresponds to the number of sequences with pairwise alignments that are long enough
and have a high enough percent identity to be homology modeled with the given sequence as a template.
Cysteines are highlighted in red to guide the eye. We note in the fourth column the pharmacological
family, although it is unknown for the majority of sequences, as it requires a separate experimental
determination in most cases.

Sequence Name(s) Degree Pharm. Fam.

LPPCCSLNLRLCPAPACKYKPCCKS RIIIJ∆6-11 29 Unknown
QKGLVPSVITTCCGYDPGTMCPPCRCTNSCPKKPKKP S4.4 28 Unknown
QPWLVPSKITNCCGYNTMEMCPTCMCTYSCRPKKKKP Mn4.2 27 Unknown

DDECEPPGDFCGFFKIGPPCCSGWCFLWCA MaIr137, G6.2 20 Unknown
DCVAGGHFCGFPKIGGPCCSGWCFFVCA Vn6.8 20 Unknown

VCREKGQGCTNTALCCPGLECEGQSQGGLCVDN Mi010 20 Unknown
ECREQSQGCTNTSPPCCSGLRCSGQSQGGVCISN CaHr91 17 Unknown
TVDEACNEYCEERNKNCCGRTDGEPVCAQACL Vi6.7 15 Unknown

ECTRSGGACYSHNQCCDDFCSTATSTCV Eb6.22 15 Unknown
GCTPPGGACGGHAHCCSQSCNILASTCNA ABVIC 15 Unknown

TVGEECNEYCEQRNKNCCGKTNGEPVCAQACL Tr7.4 15 Unknown
TATEECEEYCEDEEKTCCGEEDGEPVCARFCL Ar6.24 14 Unknown

EACYNAGTFCGIKPGLCCSAICLSFVCISFDLIDVFSSP M6.2 13 Unknown
TTEECHEYCEDQNKNCCGLTDGEPRCAGMCL Tr7.3 13 Unknown

MTMGCTHPGGACGGHYHCCSQSCNTAANSCN MIL3-b (partial) 12 Unknown
VPEECEESCEEEEKTCCGLENGQPFCSRICW Ar6.28 12 Unknown
DECYPPGTFCGIKPGLCCSERCFPFVCLSLEF Ac6.2 12 Unknown

CLDAGEVCDIFFPTCCGYCILLFCA TxO1 11 omega
DCTPPDGACGFHYHCCSKFCITISSTCN MIL2-a 11 Unknown

CIDGGEICDIFFPNCCSGWCIILVCA Mr6.8 11 Unknown
TTAESWWEGECLGWSNGCTHPSDCCSNYCKGIYCDL Mr6.16 11 Unknown

GCTHPGGACGGHHHCCSLFCNTAANACN MIL3-f 11 Unknown
CLGSGETCWLDSSCCSFSCTNNVCF Vn6.15 11 Unknown

CLDAGEMCDLFNSKCCSGWCIILFCA Mr6.1 10 Unknown
SCGEEGEGCYTRPCCPGLKCIGTAHGGLCREE Pu6.7 10 Unknown
GCLEVDYFCGIPFVNNGLCCSGNCVFVCTPQ Pn6.7 10 Unknown

SIAGRTTTEECDEYCEDLNKNCCGLSNGEPVCATACL Ts6.7 10 Unknown
DGCYNAGTFCGIRPGLCCSEFCFLWCITFVDS MVIA, Cn6.1 10 delta

NCCNGGCSSKWCRDHARCC SIIIA[del1] 9 Unknown
KTTAESWWEGECYGWWTSCSSPEQC–

CSLNCENIYCRAW TsMEKL-03 8 Unknown
RHGCCKGPKGCSSRECRPQHCC TIIIA 8 mu

DCGEQGQGCYTRPCCPGLHCAAGATGGGSCQP Conotoxin-1 8 Unknown
CLAGSAPCEFHRGYTCCSGHCLIWVCA Cal6.1d 8 Unknown
KTTAESWWEGECRTWYAPCNFPSQC–

CSEVCSSKTGRCLTW Vn6.5 7 Unknown
CRPPGMVCGFPKPGPYCCSGWCFAVCLPV MaIr193 7 Unknown

CTPGGEACDATTNCCFLTCNLATNKCRSPNFP ABVIL 7 Unknown
WWEGECRGWSNGCTTNSDCCSNNCDGTFCKLW Vn6.3 7 Unknown

WWWGGCTWWFGRCSTDSECCSNSCDQTYC–
ELYRFPSRY Vc6.26 7 Unknown

YECYSTGTFCGINGGLCCSNLCLFFVCLTFS CnVIA, St6.2 7 delta
CCSRDCWVCIPCCPNGSA Lv3-IP01 7 Unknown

VCVDGGTFCGFPKIGGPCCSGWCIFVCL Ar6.2 6 Unknown
ECIEGSEPCEVFRPYTCCSGHCIIFVCA Cal6.1h 6 Unknown

CCSQDCWVCIPCCPN Eu3.2 6 Unknown
CCSQDCSVCIPCCPN Co3-IP02, Ts3-IP07, Vr3-IP08, Rt3-IP03, Ca3-IP02, Ec3-IP03 6 Unknown

CYDSGTSCNTGNQCCSGWCIFVSCL Tx6.3 6 Unknown
CTVDSDFCDPDNHDCCSGRCIDEGGSGVCAIVPVLN Ar6.19 6 Unknown
FPCNPGGCACRPLDSYSYTCQSPSSSTANCEGNECVS–

EADW Cl9.4 6 Unknown
GPPCCLYGSCRPFPGCSSASCCRK PIIIF [Y17S,N18S,L20S] 5 Unknown

DCQEKWDYCPVPFLGSRYCCDGFICPSFFCA Da6.6, Tx6.6 5 Unknown
CCGVPNAACHPCVCNNTC OIVA [K15N] 5 Unknown

CTPRNGYCYYRYFCCSRACNLTIKRCL Ml6.2 5 Unknown
CCSQDCRVCIPCCPN Ts3.1 5 Unknown

QCTPVGGSCSRHYHCCSLYCNKNIGQCLATSYP Ar6.17 5 Unknown
CLNDGDDCDTGDDCCSGLCIFDEYFSYCDDSDP–

YYDDYDEYYY Mi029 5 Unknown
SCGNLHESCSAHRCCPGLKCIGTAHGGLCRE Pu6.15 (partial) 5 Unknown
VKPCSEEGQLCDPLSQNCCRGWHCVLVSCV Da6.2 5 Unknown

FAVIFTCTPPGSHCTGHSDCCSDFCSTMSDVCQ Co6.1 4 Unknown
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Table 2. Cont.

Sequence Name(s) Degree Pharm. Fam.

WWDGECRLWSNGCRKHKECCSNHCKGIYCDIW VeG52 4 Unknown
CTPCGPDLCCEPGTTCDTVLHHTRFGEPSCSY Fla6.16 4 Unknown

CCGKPNAACHPCVCNGSCS G4.1 4 Unknown
MGYILPALSQQTCCVRPWCDGACDCCVDS Co3-D01 4 Unknown

MKLMLSALRQQECCKPSTCDGGCYHCC Lv3-YH04 4 Unknown
SCGNLHESCSAHRCCPGLMCFTLPTPICIW Pu6.17 4 Unknown
CIPQFDPCDMVRHTCCKGLCVLIACSKTA Pn6.3 4 Unknown

STSCMEAGSYCGSTTRICCGYCAYFGKKCIDYPSN SO5 4 omega
GGCTPCGPNLCCSEEFRCGTSTHHQTYGEPACLSY Ca6.2 4 Unknown

CLGFGEACLMLYSDCCSYCVALVCL Ep6.1 4 Unknown
CIEQFDPCEMIRHTCCVGVCFLMACI King-Kong 1 4 Unknown

TCSPAGEVCTSKSPCCTGFLCTHIGGMCHH LvVIA 2 4 Unknown
CTPSGGACYVASTCCSNACNLNSNKCV M1 4 Unknown

CCGVPNAACHPCVCTGKC PeIVA 4 alpha
ATDCIEAGNYCGPTVMKICCGFCSPFSKICMNYPQN Ac6.5 4 Unknown

GCTPRNGACGYHSHCCSNFCHTWANVCL LvVID 3 Unknown
DVCELPFEEGPCFAAIRVYAYNAKTGDCEQLTY–

GGCEGNGNRFATLEDCDNACARY Cal9.1d 3 Unknown
KFCCDSNWCHISDCECCY Tx3h 3 Unknown

GCGYLGEPCCVAPKRAYCHGDLECNSVAMCVN Mr2 3 Unknown
ECTPPEGACNHPSHCCEDFCDRGRNRCM At6.7 3 Unknown

WWEGDCTDWLGSCSSPSECCYDNCETYCTLW Lt7b 3 Unknown
CRSSGSPCGVTSICCGRCYRGKCT SVIA 3 omega

CKAESEACNIITQNCCDGKCLFFCIQIPE Pn6.5 3 Unknown
CKSPGTPCSRTMRDCCTSCLSYSKKCR G6.12 3 Unknown
CTPPSGYCYHPYYCCSRACNLTRKRCL At6.2 3 Unknown
PCKTPGRKCFPHQKDCCGRACIITICP P2a 3 Unknown
CVPYEGPCNWLTQNCCDELCVFFCL Gm6.3 3 Unknown

SKQCCHLPACRFGCTPCCW Mr3.4 3 Unknown
CCKYGWTCWLGCSPCGC PnIVB 2 mu

EIILHALGTRCCSWDVCDHPSCTCC Vr3-T05 2 Unknown
CNNRGGGCSQHPHCCSGTCNKTFGVCL VxVIA, MgJ42 2 Unknown

CAGIGSFCGLPGLVDCCSGRCFIVCLP Bt6.4, ErVIA 2 Unknown
CCHWNWCDHLCSCCGS Mr3.8 2 Unknown

CCQAACSPWLCLPCC Eu3.3, Bt3.3 2 Unknown
CIPFLHPCTFFFPDCCNSICAQFICL VcVIC 2 Unknown

CTQSSEFCDVIDPDCCSGVCMAFFCI Vc6.40 2 Unknown
CTVNGVVCDPGNHNCCSGSCLDDEDTPVCGIHV–

EIQHVHMLS Pu6.23 2 Unknown
CCDDSECDYSCWPCCMF Gm3-WP04 2 Unknown

DAINVAPGTSITRTETDQECIDTCKQEDKKCCG–
RSNGVPTCAKICL Di6.11 2 Unknown

CLAPQRWCSMHDDSLHDDNCCKTCIILWCS Pu6.20 2 Unknown
CIVGTPCHVCRSQSKSCNGWLGKQRYCGYC Im9.11 2 Unknown

CCDRPCSIGCVPCCLP Ca3-VP01, Cp3-VP05 2 Unknown
YWTECCGRIGPHCSRCICPGVVCPKR Bu25 2 Unknown

WFGHEECTYWLGPCEVDDTCCSASCESKFCGLW RVIIA 2 Unknown
QCEDVWMPCTSSHWECCSLDCEMYCTQI Mr6.29 2 Unknown

QCPYCVVHCCPPSYCQASGCRPP Vc7.4 2 Unknown
QGCCNVPNGCSGRWCRDHAQCC MIIIA 2 mu

TCSSSSDCPTGQECCPDKLDEPEGSCANECIIT Pu6.37 2 Unknown
SCSDDWQYCEYPHDCCSWSCDVVCS Vc6.12 2 Unknown

TCNTPTRYCTLHRHCCSLHCHKTIHACA Pu6.30 2 Unknown
TTSTRKCKGPLVFCPENHECCSKFCDFIDIPLRYCSTP Br7.9 2 Unknown

MTKHCTPPEVGCLFAYECCSKICWRPRCYPS ABVIE 2 Unknown
VCCPFGGCHELCLCCD MrIIIF 2 Unknown
RCCISPACHDDCICCIT S3-I05 2 Unknown
RCCISPACHEECYCCQ S3-Y01 2 Unknown

VSIWFCASRTCSTPADCNPCTCESGVCVDWL Lt9a variant 2 2 Unknown
QCLPPLSLCTMDDDECCDDCILFLCLVTS Ar6.5 2 Unknown

STDDCSTAGCKNVPCCEGLVCTGPSQGPVCQPLA Vn6.18 2 Unknown
GCCDPQWCDAGCYDGCC Qc3-YDG01 2 Unknown

GCWLCLGPNACCRGSVCHDYCPS Cal6.4c 2 Unknown
GCSDFGSDCVPATHNCCSGECFGFEDFGLCT Pu6.25 2 Unknown

STDCNGVPCQFGCCVTINGNDECRELDC Mr6.23 2 Unknown
RCCTWQECDGNCHCCQ Cp3-H02 2 Unknown
RCCVHPACHDDCICCIT Bt3-I03, Vx3-I03 2 Unknown

WWGENDCSWTGPCTVNAECCLGVCDETC Tx7.31 2 Unknown
GCCHPSTCHVRKGCSRCCS Tx3g, Vt3-SR01 2 Unknown

SSDEECVGLSGYCGPWNNPPCCSWWECEVYCAVPGPSF Mi034 2 Unknown
SCCNAGFCRFGCTPCCY Tx3e, Vt3-TP01, Ec3-TP01-2 2 Unknown

TCDPYYCNDGKVCCPEYPTCGDSTGKLICVRVTD Im6.7 1 Unknown
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Table 2. Cont.

Sequence Name(s) Degree Pharm. Fam.

TCLEIGEFCGKPMMVGSLCCSPGWCFFICVG Pc6b 1 Unknown
CGGYSTYCEVDSECCSDNCVRSYCTLF TxVIIA 1 gamma

GCCCNPACGPNYGCGTSCSRPSEP S1.7 1 Unknown
TRGCKSKGSFCWNGIECCGGNCFFACVY Cl6.6b 1 Unknown

CFESWVACESPKRCCSHVCLFVCT Pn6.6 1 Unknown
WREGSCTSWLATCTDASQCCTGVCYKRAYCALWE TxMEKL-022/TxMEKL-021 1 Unknown

YCSDSGGWCGLDPELCCNSSCFVLC Cl6.8 1 Unknown
YCSDDWQPCSHFYDCCKWSCNNGYCP Vc6.25 1 Unknown

CCDDSECSYSCWPCCY TxMMSK-02, Cp3-WP03, Vr3-WP04, S3-WP01, Rt3-WP01 1 Unknown
WRVDSECISFWGSCTVDADCCFNSCDETYGYC Tx7.30 1 Unknown

CCDWPCTIGCVPCCLP TsMMSK-021 1 Unknown
CCFWPMCRGCDCCYL Lv3-D02 1 Unknown
CCGPTACLAGCKPCCY Tx3-KP03 1 Unknown

CESYGKPCGIYNDCCNACDPAKKTCT Conotoxin-3 1 Unknown
VQPSECKLPAAKGPCKGKYRKVYFNNFKKQCRM–

FTYGGCGGNGNKFRNAKECYHKCAYGV conkunitzin-G1 1 Unknown
VCCSFGSCDSLCQCCD Mr3.16 1 Unknown
CCLWPECGGCVCCYL Lv3-V02 1 Unknown

TRGCKTKGTWCWASRECCLKDCLFVCVY Cl6.10 1 Unknown
CCSVSICQSPPVCECCA S3-E03 1 Unknown
CCVVCNAGCSGNCCS Ts3-SGN01 1 Unknown

SCSGSGYGCKNTPCCAGLTCRGPRQGPICL Vn6.16 1 Unknown
RCCIWPECGSCVCCL Cp3-V08 1 Unknown

SCGNLHEMCNYHLPCCRPWRCRASRTGTR–
CLNKPRYRPV Pu6.13 1 Unknown

RDCRPVGQYCGIPYEHNWRCCSQLCAIICVS PuIA 1 omega
GCCGSFACRFGCVPCCV MrIIIA 1 Unknown

GCCHLLACRMGCTPCCW Tx3-TP01 1 Unknown
GCCIEPLCYQYDCDCCRYL Cp3-D03 1 Unknown

ECSSPDESCTYHYNCCQLYCNKEENVCLENSPEV LtVIB 1 Unknown
ECRGYNAPCSAGAPCCSWWTCSTQTSRCF Vc6.10 1 Unknown

GCCPIGPCMQSVCSPCCP Vr3-SP01 1 Unknown
GMWGKCKDGLTTCLAPSECCSGNCEQNCKMW TxMEKL-011, LeD51 1 Unknown

GVWSECSDWLAGCSSPSECCSEKCDTFCRLW G6.8 1 Unknown
GWDTPAPCRYCQWNGPQCCVYYCSSCNYEEARE–

EGHYVSSHLLERQ Cal6.3a 1 Unknown
DECCEPQWCDGACDCCS LtIIIA 1 iota

KFILHALGQWQCCTMQWCDKACYCCE Vc3.4 1 Unknown
DDCTTYCYGVHCCPPAFKCAASPSCKQT Cal6.5a 1 Unknown

KTCQRRWDFCPGSLVGVITCCGGLICFLFFCV Om6.6 1 Unknown
LCPDYTEPCSHAHECCSWNCYNGHCTG Gla(3)-TxVI 1 Unknown

MQGKISSEQHPMFDPIEGCCTQSCTTCFPCCLI Lt3.6 1 Unknown
DCCSMSACVPPPACECC Mi3-E04 1 Unknown

DCCPLPACPFGCNPCCGWPALLSGPHQVMNNE Mr020 1 Unknown
DCCGVKLEMCHPCLCDNSCKNYGK PIVE 1 kappa

DAMQKSKGSGSCAYISEPCDILPCCPGLKCNEDFVPICL LtVIA 1 Unknown
NPKLSKLTKTCDPPGDSCSRWYNHCCSKLCTSR–

NSGPTCSRP LiCr95 1 Unknown
QCADLGEECYTRFCCPGLRCKDLQVPTCLLA Ar6.10 1 Unknown

QCCDSNSCEYPKCLCCN Tx3-L02, Vr3-L01, Vt3-L01, S3-L02 1 Unknown
CVEDGDFCGPGYEECCSGFCLYVCI Pu6.2 1 Unknown
QKCCGKGMTCPRYFRDNFICGCC CnIIIG 1 Unknown

QQCCPPVACNMGCEPCC TxMMSK-04, Vt3-EP01 1 Unknown
RCCGEGASCPVYSRDRLICSCC CnIIIE 1 Unknown

RCCISPACNDTCYCCQD Vr3-Y02, Vt3-Y01, Ts3-Y01 1 Unknown
CPNTGELCDVVEQNCCYTYCFIVVCPI Mr6.2 1 Unknown

RCCTGKKGSCSGRACKNLKCCA SxIIIA 1 mu
APWTVVTATTNCCGITGPGCLPCRCTQTC A4.4 1 Unknown
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Table 3. List of sequences containing eight cysteines in order of interest for experimental
characterization, based on the degree (sequence coverage) in alignment graphs (cf. Figure 2). Name
or names of sequences are taken from the Conoserver database [40]. Multiple names for the same
sequence indicate the same sequence is produced by different species or has different post-translational
modifications. Node degree corresponds to the number of sequences with pairwise alignments that
are long enough and have a high enough percent identity to be homology modeled with the given
sequence as a template. Cysteines are highlighted in red to guide the eye. We note in the fourth
column the pharmacological family, although it is unknown for the majority of sequences, as it requires
a separate experimental determination in most cases.

Sequence Name(s) Degree Pharm. Fam.

TDVCKKSPGKCIHNGCFCEQDKPQGNCCDSGGC–
TVKWWCPGTKGD Cal12.1p2 28 Unknown

GHVPCGKDGRKCGYHADCCNCCLSGICKPSTSW–
TGCSTSTVQLTR R11.10 18 Unknown

QCTPKNQICEEDGECCPNLECKCFTRPDCQSGYKCRP Vr15b 14 Unknown
CFPPGVYCTRHLPCCRGRCCSGWCRPRCFPRY Cp1.1 10 Unknown

QCTQQGYGCDETEECCSNLSCKCSGSPLCTSSYCRP Cap15a 9 Unknown
SCDSEFSSEFCEQPEERICSCSTHVCCHLSSSK–

RDQCMTWNRCLSAQTGN Gla-MrII, Eu12.4 9 Unknown
SRCFPPGIYCTPYLPCCWGICCGTCRNVCHLRF Em11.8 8 Unknown

DKWGTCSLLGKGCRHHSDCCWDLCCTGKTCVMT–
VLPCLFLSLIVRWT Mr11.1 6 Unknown

TCSLPGDGCIRDFHCCGHMCCQGNKCVVTVRRCFNFPY Pu11.5 6 Unknown
YDAPYCSQEEVRECQDDCSGNAVRDSCLCAYDPAGSP–

ACECRCVEPW Cal22d 5 Unknown
GTCSGRGQECKHDSDCCGHLCCAGITCQFTYIPCK Tx11.3 5 Unknown

GTCSYLGEGCKRDSDCCGHFCCGGKTCVITARPCKV Vc11.4 5 Unknown
RGVCSTPEGSCVHNGCICQNAPCCHPSGCNWANVCPG–

YLWDKN Cal12.2c 4 Unknown
TCSDLGQACVHESDCCAQMCCLNKKCAMTMPPCNFY Vc11.1 3 Unknown

CLSEGSPCSMSGSCCHKSCCRSTCTFPCLIP Ep11.12 2 Unknown
TCSNKGQQCGDDSDCCWHLCCVNNKCAHLILLCNL M11.2 2 Unknown

RCSDDTGATCSNRFDCCESMCCIGGHCVISTVGCP Im11.14 1 Unknown
CRLEGSSCRRSYQCCHKSCCIRECKFPCRWV Vi11.5 1 Unknown

TRSFADLPDDWGMCSDIGEGCGQDYDCCGDMCCDGQI–
CAMTFMACMF Vc11.6 1 Unknown

CLRDGQSCGYDSDCCRYSCCWGYCDLTCLIN Im11.1 1 Unknown
CNGRGEWCSTHRSCCDSGDVCCITTPVGPICTRGCSG–

RIIPQRRGAQLRHFF Pu11.9 1 Unknown
CRAEGTYCENDSQCCLNECCWGGCGHPCRHP BtX, Sx11.2 1 kappa

CTSEGYSCSSDSNCCKNVCCWNVCESHCRHPGKR Lt11.3 1 Unknown
CRSGKTCPRVGPDVCCERSDCFCKLVPARPFWRYRCICL Mr15.2 1 Unknown

DCPTSCPTTCANGWECCKGYPCVRQHCSGCNH De13b 1 Unknown
EGGYVREDCGSDCMPCGGECCCEPNSCIDGTCHHESSPN Mi045 1 Unknown

SCRNEGAMCSFGFQCCKKKCCMSHCTDFCRNP Vt11.3 1 Unknown
WPRLYDSDCVRGRNMHITCFKDQTCGLTVKRNGRLNC–

SLTCSCRRGESCLHGEYIDWDSRGLKVHICPKPWF Mr22.1 1 Unknown
MCLSLGQRCGRHSNCCGYLCCFYDKCVVTAIGCGHY Bt11.4 1 Unknown

ASICYGTGGRCTKDKHCCGWLCCGGPSVGCVVSVAPC Ca11.3 1 Unknown
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Table 4. List of sequences containing ten cysteines in order of interest for experimental characterization,
based on the degree (sequence coverage) in alignment graphs (cf. Figure 2). Name or names of
sequences are taken from the Conoserver database [40]. Multiple names for the same sequence indicate
the same sequence is produced by different species or has different post-translational modifications.
Node degree corresponds to the number of sequences with pairwise alignments that are long enough
and have a high enough percent identity to be homology modeled with the given sequence as a template.
Cysteines are highlighted in red to guide the eye. We note in the fourth column the pharmacological
family, although it is unknown for the majority of sequences, as it requires a separate experimental
determination in most cases.

Sequence Name(s) Degree Pharm. Fam.

DRDVQDCQVSTPGSKWGRCCLNRVCGPMCCPAS–
HCYCVYHRGRGHGCSC Cp20.1 19 Unknown

LHCYEISDLTPWILCSPEPLCGGKGCCAQEVCD–
CSGPACTCPPCL Lt15.6 5 Unknown

YNRQCCIDKTYDCLKKYRGRENTFASVCQQEAA–
VYCGAWDEAEGCCYGYSHCMSMYAQQSGLDVA–

HNGCKDRKCDNP Vc21.1 2 Unknown
QCTLVNNCDRNGERACNGDCSCEGQICKCGYRV–

SPGKSGCACTCRNA Ac8.1 2 Unknown
GCSGTCRRHRDGKCRGTCECSGYSYCRCGDAHH–

FYRGCTCTC Ca8c 2 Unknown
TCDPTPDCRTTVCETDTGPCCCPHGYNCQTTNS–

GRRACVLVCPHNCPP Pu19.1 1 Unknown
SGSTCTCFTSTNCQGSCECLSPPGCYCSNNGIR–

QRGCSCTCPGT G8.3 1 Unknown
GCTRTCGGPKCTGTCTCTNSSKCGCRYNVHPSG–

WGCGCACS GVIIIA 1 sigma
GCTISCGYEDNRCQGECHCPGKTNCYCTSGHHN–

KGCGCAC Tx8.1 1 Unknown

In Figure 3, we assess the quality of the template libraries (Tables A1–A3) constructed using
the graph-based approach employing the Rost cutoff, and compared with a set of template libraries
based on a static 25% rule-of-thumb cutoff. We perform two assessments: an “in-library” assessment,
and an “out-of-library” assessment. In the in-library assessment (Figure 3A,B), we construct homology
models for each structure in the library using the rest of the library as potential templates and
compute the backbone root-mean-square deviation (RMSD) between each modeled structure and
the corresponding experimental structure. Compared to the static cutoff, the Rost cutoff produces
modeled structures with lower RMSD: the mean RMSD employing the Rost cutoff has a downwards
shift from 4.0± 0.7 Å to 1.5± 0.2 Å for the four cysteine library and from 3.8± 0.6 Å to 2.1± 0.2 Å for
the six cysteine library. In the out-of-library assessment (Figure 3C,D), we construct homology models
for the known structures that were not employed as part of the template libraries (Figure 2, black
nodes), and compute the backbone RMSD between each modeled structure and the corresponding
experimental structure. The mean RMSD has a downward shift from 1.7± 0.1 Å to 1.0± 0.2 Å for the
four cysteine library and from 1.82± 0.09 Å to 1.4± 0.1 Å for the six cysteine library. The relatively low
RMSD for the in-library assessment demonstrates that the template libraries cover a substantial
proportion of the known sequence space, while the relatively low RMSD for the out-of-library
assessment demonstrates the utility of the homology-modeled structures as part of HTS [41]. Despite
the known relationships among the toxins, there is a statistically significant improvement (downwards
shift in the distribution, two-tailed Kolmogorov–Smirnov test with p < 0.05) for both in- and
out-of-library structures when using the Rost cutoff as compared to the 25% cutoff.
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Figure 3. Quality of graph-based template library selection criteria. Comparison of root-mean-square
deviation (RMSD) distributions from experimental structures for (A,B) structures within the libraries,
with each structure modeled by selecting from all other templates within the given library (“in-library”
assessment), and (C,D) structures outside the libraries modeled by selecting from all templates within
the given library (“out-of-library” assessment). For each homology modeled structure, we choose
the best fit to the experiment. The distributions produced by the simple 25% cutoff libraries are
shown in blue; the distributions produced by using the graph-based algorithm are shown in orange.
Distributionis are transparent for ease of viewing.

Finally, in Supporting File “finalmodels.zip”, we attach the set of structures computed by
homology modeling (see Figure 4 for a schematic of the procedure), corresponding to sequences in the
set {C (Lex)}, with the four, six, and eight cysteine library structures used as templates. Because we
divided the sequences into subsets based on the number of cysteines in a sequence, we are able to use
the cysteines aligned as an additional criterion during the homology modeling procedure. The average
PROCHECK G-factor, which is a log-odds score based on the likelihood of observing the given
distributions of φ-ψ and χ1-χ2 angles in proteins, is 0.086± 0.005 for the reported four cysteine models,
−0.103± 0.007 for the reported six cysteine models, and−0.2± 0.1 for the report eight cysteine models.
Since this score is not a relative measure and values above −0.5 are generally considered acceptable,
this provides evidence that the structures we have computed are physically reasonable. We further
assess the quality of the homology modeling protocol by using it to model each structure in the library
with templates selected from other structures in that library. The distribution of root-mean-square
deviation (RMSD) values of the top three models based on our ranking criteria (see Materials and
Methods for details) compared with each experimental structure is shown in Figure 5A,B. We see that
our method performs well [41]: the average RMSD in the four cysteine architecture is 2.00± 0.09 Å
with at least 80% of the models having less than 3 Å RMSD, and the average RMSD in the six cysteine
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architecture is 2.3± 0.2 Å with 75% of the models having less than 3 Å RMSD. Most of the higher RMSD
values are contributed by the flexible loops and coils. When we look at the RMSD distribution after
rejecting those atoms that cannot be structurally aligned, as in case of loops and coils, the distributions
improve significantly (Figure A3), with a mean of 1.55± 0.09 Å for the four cysteine architecture and
a mean of 1.2± 0.1 Å for the six cysteine architecture, with 100% of the models for both archtiectures
having less than 3.5 Å deviations. A second test for validating our method was performed by checking
the distribution of native contacts in the modeled structures (Figure 5C,D). Two pairs of residues
were defined to have a native contact if the distance between the Cα atoms in the native experimental
structure was less than 8 Å, and the pair was at least four residues apart (Cαi– Cαi+4). At least 60%
of the native structures were captured in our models, with the distribution means of 80%± 1% and
81%± 1% for the four and six cysteine architectures, respectively.

Figure 4. Schematic of procedure for producing homology modeled structures from library templates
for conotoxin sequences with unknown structure lying in the set {C (Lex)}. We employ a BLAST
alignment procedure and specifically force the cysteines to align to further refine the templates that
were originally chosen for inclusion using the graph-based Rost criterion. Graph inset of the eight
cysteine graph is an example. The inset consisting of an example alignment input figure was created
using the alignment obtained from BLAST [42] and visualized with Aliview [43].
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Figure 5. Quality of modeling criteria. (A,B) Distribution of root-mean-square deviation (RMSD) for
homology models compared with their corresponding experimental structures, without prior removal
of any structural alignment outliers. Each experimental structure present in the library was modeled
by selecting from all other templates in the library. The top three models for each structure based on
combined MODELLER DOPE and PROCHECK G-FACTOR scores are considered here. (A) Distribution
mean = 2.00 Å, standard deviation = 0.97 Å. (B) Distribution mean = 2.25 Å, standard deviation = 1.20 Å.
(C,D) Distribution of fraction of native contacts present in each of the homology modeled structures,
with respect to the experimental structure. Each experimental structure present in the library was
modeled by selecting from all other templates in the library. The top three models for each structure
based on combined MODELLER DOPE and PROCHECK G-FACTOR scores are considered here.
(C) Distribution mean = 0.797, standard deviation = 0.108. (D) Distribution mean = 0.805, standard
deviation = 0.097.

3. Discussion

By employing a conceptually simple heuristic approach that may also be used for analysis of other
short, disulfide-rich, evolutionarily-related peptides, we have constructed a set of sequence graphs that
allowed us to rank non-isolated sequences without corresponding characterized structures in an order
that would allow for the most rapid expansion of the conotoxin structure library. We constructed
template libraries for homology modeling of conotoxins based on the number of cysteines contained
in the sequence. We demonstrated that libraries constructed to account for the shorter lengths of
the conotoxins produce homology models that are more accurate than libraries constructed with
a static 25% cutoff. Currently, sufficient information is not available to homology model any sequences
containing more than eight cysteines, as experimental characterization has focused preferentially
on the shorter conotoxins. We employed our libraries to predict a set of structures from sequence
using homology modeling, allowing us to expand the library of conotoxin structures usable for HTS
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by about 290% overall, although a number of sequences remain without any associated structural
predictions. We assessed the quality of these structures through standard techniques to demonstrate
they are expected to be reasonably accurate and therefore may be employed for high-throughput
screening of conotoxins as novel therapeutics for new receptor targets. We note that of those
sequences that were isolated in our graphs—that is, had no edges—80% of those containing four
cysteines and 36% of those containing six cysteines were under 20 amino acids long, marking them
as good candidates for a high-throughput ab initio modeling procedure, rather than necessarily for
experimental characterization, as they will likely be tractable but will not contain any information
about other sequences.

For experimentalists interested in investigating the conotoxins we suggest in the table, we note that
the preponderance of peptide structures that we employed for the structure libraries were determined
with solution nuclear magnetic resonance (NMR). Maintenance of the tertiary fold of conopeptides,
particularly after their secretion into the extracellular environment, depends more on its disulfide
bonds and less on the presence of a hydrophobic core [44]. As such, compression artifacts on the
free/unbound structures of these disulfide-rich peptides can arise due to crystal packing forces in
X-ray studies, which has been observed in the literature [45]. It was also shown recently that solution
NMR structures of disulfide-rich peptides based primarily on nuclear Overhauser effects (NOEs) are
comparable to a crystallographic resolution of around 2.5 Å, while refinement with residual dipolar
couplings (RDCs) can improve this to around 1–1.5 Åresolution [46]. Solution NMR studies, therefore,
in addition to providing ensembles that inform on the conformational dynamics, can yield highly
appropriate and cost-effective structures compared to those obtained from X-ray or cryo-EM [47].

One important point about short, disulfide-rich peptides that we have not addressed in this work
is the existence of so-called “disulfide isomers.” Under certain environmental conditions, there is
experimental evidence suggesting that some toxins do not exist as a single set of “native” structures but
as a heterogeneous—perhaps metastable—ensemble populated with strikingly different conformations
corresponding to differing patterns of cysteine connectivity [48]. Although many conotoxins do have
a single thermodynamically stable native state as dictated by their sequence similarity, [49,50] or can
be stabilized in one through the use of dicarba or diselenide bonds [51,52], these disulfide isomers,
if kinetically or thermodynamically controlled, may be employed to expand the library of structures
for HTS. This represents an important area of future work.

Although we do not directly address the question of structure–function relationships in this
work, the graph-based method does suggest an interesting route forward. It has been shown that
in addition to strict structural contributions, conotoxin binding is also heavily related to surface
electrostatics [53], and, indeed, this concept was formalized (as “Protein Surface Topography”) and
employed by Kasheverov et al. [54] to design stronger-binding α-conotoxin mutants. Another
intriguing line of further study, therefore, might be to construct a graph on the basis of the Protein
Surface Topography similarities for those structures we have modeled in this work and compare and
contrast between that and sequence similarity.

4. Materials and Methods

4.1. Data Acquisition and Curation

For use in construction of the template libraries, we employed a set of 142 conotoxin structures
downloaded from the PDB [55], which we found by searching “conotoxin” on the PDB. We manually
removed several false positives, such as a crystal structure of the acetylcholine-binding protein that
was identified due to the title of the associated paper. We also manually removed several sequences
that were identical to natural conotoxin sequences but modified by the replacement of disulfide bonds
with dicarba bonds. We did not remove redundant sequences consisting of multiple characterization
methods and, in a few cases, structural isomers resulting from different disulfide-bond connections.
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In future, further work will be done to properly assess the likelihood of multiple stable or metastable
states, but we do not address this consideration further here.

For use in the analysis detailed in this article, we downloaded a set of 6255 peptide sequences
from the Conoserver [40] using the “Tools > Download Conoserver’s Data” command. We retained
only sequences containing four, six, eight, or ten cysteines. We removed anything with the word
“precursor” or “patent” in the name, as precursor sequences contain, in addition to the mature peptide
sequence that folds into the toxin, a signal sequence and N- and C-terminal pro-regions that are
cleaved in the endoplasmic reticulum and Golgi apparatus [56]. A manual inspection of sequences
labeled “patent” revealed that many were insufficiently characterized—for example, they noted only
the cysteine pattern or they mixed precursor and mature toxin sequences with no indication. We also
added to the sequence list any sequence that corresponded to one of the PDB structures that was
not already contained in the list. Once the set of all sequences was finalized, we split it into four
subsets corresponding to the number of cysteines contained. In the end we retained for analysis a total
of 801 unique sequences containing four cysteines, 1113 unique sequences containing six cysteines,
190 unique sequences containing eight cysteines, and 53 unique sequences containing ten cysteines.

4.2. Details of Library Template Selection Procedure

For each subset of sequences corresponding to a different number of contained cysteines, we
created an alignment graph as follows. For every sequence, we computed a pairwise alignment with
every other sequence, using the “PairwiseAligner” class in the “Align” module of the Biopython
package [57], in global mode, with a gap-open penalty of -10 and a gap-extend penalty of −0.5.
Employing the networkx Python package [58], we constructed a graph in which nodes represented
sequences and we placed an edge between two nodes whenever the percent identity of the
highest-percentage pairwise alignment of the two corresponding sequences was greater than [23],

prost = n + 480L−0.32(1+exp(− L
1000 )), (1)

where L is the length of the alignment in numbers of amino acid residues and we set n = 5 (%).
We constructed two different template libraries for each subset of sequences, one from the

pairwise alignment graph and one from a static 25%-identity cutoff (with n = 5 %). When creating the
graph-based libraries (see also Figure 1), we first identified all connected components in the graph.
For each connected component, we chose first the sequence with the highest node degree (number of
distinct edges) that corresponded to a structure in the set of 142 structures downloaded from the PDB,
added it to the library, and removed that sequence and all sequences it shared an edge with from the
graph. We continued this procedure until one of two criteria was satisfied: (i) there were no longer any
sequences in the connected component with corresponding structures or (ii) there were no longer any
sequences in the connected component without corresponding structures. These criteria corresponded
to the following two situations, respectively: (i) there were no other structures available for inclusion
in the library or (ii) the entire connected component was able to be homology modeled based on the
structures included in the library up until that point. For construction of the static sequence-identity
cutoff library, sequences within each data set were clustered and a representative sequence from
each cluster chosen by using the “sequence_db.filter” command of MODELLER version 9.20 (UCSF,
San Francisco, CA, USA) [59,60], which groups sequences together if their sequence identity is greater
than a specified cutoff value. The set of cluster representatives became a library of structures in which
between any pair the sequence identity was less than the specified cutoff value.

For computation of the homology modeled structures based on the library templates that were
used to assess and compare the quality of the two libraries, we used the “align2d” command followed
by the “automodel” procedure from MODELLER 9.20 with default parameters. We computed
five models for each sequence from each template (except for itself, in the case of library structures
being modeled based on other library structures). The best homology model was chosen as the
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one with the lowest backbone RMSD to the known or experimentally-resolved structure, using the
“align” command in PyMOL [61] that superimposes two structures via a structure superposition that is
constrained by a prior sequence alignment.

4.3. Homology Modeling Criteria

After assessing the quality of the template libraries, we used them to construct via homology
modeling a database of structures for those conotoxin sequences (set {C (Lex)} shown in blue
in Figures 2 and A2) that are covered by those libraries (set {Lex} given in orange in Figures 2 and A2).
The pipeline employed for building these homology-modeled structures is detailed here. A schematic
of this pipeline is given in Figure 4. The four cysteine (4C) subset included 143 such sequences
for which structures were computed by homology modeling from 49 library structure templates,
while the six cysteine (6C) subset included 148 sequences for which structures were computed by
homology modeling from 30 library structure templates. There was only one existing non-isolated
library structure template having eight cysteine (8C) architecture, and 17 sequences were modeled
from it, while no ten cysteine (10C) structures could be modeled, since to date there are no structures
of conotoxins containing 10 cysteines deposited in the PDB.

Alignment of each of the subject sequences was performed with those sequences that have
a structure present in the template library using BLAST [42]. BLOSUM62 substitution matrix [62] was
used with a gap-open penalty of −10 and a gap-extend penalty of −0.5. For each sequence, structures
were considered possible templates if they fulfilled the following criteria: (i) sequence identity of
≥70%; (ii) ≥ 70% of sequence length covered; (iii) E-value ≤ 1× 10−5. Additionally, we constrained
the cysteines in the sequence to be aligned in the following manner. If there was a one-position shift in
the sequence alignment that would allow the cysteines to align, the gap penalties at that position were
removed to enforce cysteine alignment. If a greater than one-position shift would be required to allow
the cysteines to align, such a template was not considered.

Structural homology modeling was performed using the MODELLER version 9.20 package [59,60].
Multiple templates were used to aid in the modeling process for those subjects where more than one
sequence satisfied the above-mentioned criteria. The models were further relaxed by several steps
of conjugate gradients and molecular dynamics with simulated annealing as recommended in the
thorough Variable Target Function Method (VTFM) optimization of MODELLER [63]. Due to the
alignment of cysteines from the template structures, the disulfide bonds could be constrained by
patches. Ten such models were generated for each subject sequence. Subjects 107 and 110 from 4C
architecture and subject 2 from 6C architecture did not correspond to any templates that satisfied all of
our above criteria. Nevertheless, we modeled these sequences based on the best sequence match.

We selected three top models for each subject based on the Discrete Optimized Protein Energy
(DOPE) score [64] and the PROCHECK G-factor [65]. DOPE, a typical criterion for assessing the quality
of a modeled structure, is an atomistic distance-dependent statistical potential calculated from a large
set of refined high resolution PDB structures. The PROCHECK G-factor is a log-odds score based
on observed distributions of the φ-ψ, and χ1-χ2 values measuring whether the model is physically
reasonable or if it contains unusual stereochemical configurations. In this study, we normalized the
DOPE and G-factor scores and used a combined product of probabilities to rank and sort the structures.
The top three models selected for each subject are reported in Supplementary File “finalmodels.zip”,
along with their DOPE, G-factor, MODELLER optimization function value (molpdf), GA341 scores [66],
and the Ramachandran plots for each of these models. All RMSD calculations were performed with
Pymol [61]. There is only one available non-isolated structure in the 8C extant library. This was used to
model all 17 subject sequences. The best three models for each sequence along with their assessment
scores are reported in the database.
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4.4. Quantification and Statistical Analysis

We use the Kolmogorov–Smirnov two-tailed test as implemented in the SciPy package [67] and
referred to by the “ks2samp” command to assess whether we may reject the null hypothesis of the
RMSDs of experimental structures from homology models based on different template libraries being
drawn from the same distribution. We employ a significance level of p = 0.05, meaning that we reject

the null hypothesis if the KS statistic D returned by the test is such that D > α
√

n+m
nm , where α = 1.224

for a significance level of p = 0.05, and n and m are the number of samples in each set, respectively.
The analysis is referred to in Section 2.

5. Conclusions

Overall, the work in this article presents a rational graph-based algorithm that we employ to
expand the repertoire of known conotoxin structures for application in a high-throughput manner as
part of the early stages of drug design. We expect that the libraries, the expanded set of structures,
and the ranking of sequences in terms of the degree of connectedness to other sequences will be
valuable resources improving the prospects of conotoxins as novel therapeutic leads and that our
approach may be employed for initial characterization of other sets of evolutionarily-related toxins.
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s1.

Author Contributions: Conceptualization, R.A.M., S.C., T.T., and S.G.; methodology, R.A.M., S.C., T.T., and S.G.;
software, R.A.M., S.C., and T.T.; formal analysis, R.A.M., S.C. and T.T.; investigation, R.A.M., S.C. and T.T.;
writing—original draft, R.A.M.; writing—review and editing, R.A.M., S.C., T.T., and S.G.; visualization, R.A.M.
and S.C.; supervision, S.G.; project administration, S.G.; funding acquisition, S.G. All authors have read and
agreed to the published version of the manuscript.

Funding: T.T. and S.G. were supported by the Functional Genomic and Computational Assessment of Threats
(Fun-GCAT) program of the Intelligence Advanced Research Projects Activity (IARPA) agency within the Office
of the Director of National Intelligence. S.C. and T.T. were also partially supported by the Center for Nonlinear
Sciences (CNLS) at LANL. R.A.M. gratefully acknowledges a Los Alamos National Laboratory Director’s
Postdoctoral Fellowship. Triad National Security, LLC (Los Alamos, NM, USA) operator of the Los Alamos
National Laboratory under Contract No. 89233218CNA000001 with the U.S. Department of Energy.

Acknowledgments: We thank Will Fischer for valuable discussions. This research used resources provided by the
Los Alamos National Laboratory Institutional Computing Program, which is supported by the U.S. Department
of Energy National Nuclear Security Administration under Contract No. 89233218CNA000001. The views and
conclusions contained herein are those of the authors, and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of the Office of the Director of National Intelligence
(ODNI), Intelligence Advanced Research Projects Agency (IARPA), Los Alamos National Laboratory (LANL),
Department of Energy (DOE), or the US Government.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

We provide tables of the template libraries for homology modeling and three supplementary
figures. Structures used as template libraries are provided in the supplementary data folder
“libraries.zip”. Homology modeled structures of conotoxins are provided in the supplementary
data folder “finalmodels.zip”, along with their scores and the associated Ramachandran plots. Python,
MODELLER, and Bash analysis scripts for preparation, graph construction, and further analysis will
be provided upon request.
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Figure A1. Rost’s phenomenological curve (Equation (1)) of minimum percentage identity for
homology modeling as a function of pairwise alignment length with n = 5% padding as employed
in this work. As the length of the alignment decreases, the minimum percent identity for homology
modeling increases, and there is a particularly rapid increase below alignments of about 25 amino
acids, where a fairly large proportion of toxins reside.

Figure A2. Graph of conotoxins containing (A) four cysteines, (B) six cysteines, (C) eight cysteines,
and (D) ten cysteines where nodes are sequences and edges exist between sequences with pairwise
alignments that have a high enough length and percent identity to fall above the Rost curve with
n = 5% (Equation (1)). Colors show the relative sequence lengths of each node, but the color scale
of each graph is independent of the others. The sizes of the nodes correspond to their degree; that is,
the number of other sequences that they can be modeled based on or used to model. Node locations and
edge lengths were chosen for ease of visualization of separate connected components. Visualization of
the graphs was produced with Gephi 0.9.2 [39].
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Table A1. List of conotoxins with corresponding PDB structure IDs [55] comprising the 4C library.
Name or names of sequences are taken from the Conoserver database [40]. Multiple names for
the same sequence indicate the same sequence is produced by different species or has different
post-translational modifications.

Name(s) PDB ID Sequence

EpI [sTy15>Y], EpI 1a0m GCCSDPRCNMNNPDYC
PnIB, PnIB [sTy15Y] 1akg GCCSLPPCALSNPDYC
CnIA 1b45 GRCCHPACGKYYSC
AuIB, Ac-AuIB, AuIB [ribbon isoform] 1mxp GCCSYPPCFATNPDC
ImI [R11E] 1e74 GCCSDPRCAWEC
ImI [R7L] 1e75 GCCSDPLCAWRC
ImI [D5N] 1e76 GCCSNPRCAWRC
TIA 2lr9 FNWRCCLIPACRRNHKKFC
MrIB, MrIB C-term amidated 1ieo VGVCCGYKLCHPC
EI 1k64 RDPCCYHPTCNMSNPQIC
GID, GID*, GID*-NH2, GID*[O16P] 1mtq IRDECCSNPACRVNNPHVC
SI 1hje ICCNPACGPKYSC
TXIX 1wct ECCEDGWCCXAAP
GI 1xga ECCNPACGRHYSC
Conkunitzin-S1 1y62 RPSLCDLPADSGSGTKAEKRIYYNSARKQ-

CLRFDYTGQGGNENNFRRTYDCQRTCL
PIA, PIA [R1ADMA] 1zlc RDPCCSNPVCTVHNPQIC
cMII-6 2ajw GCCSNPVCHLEHSNLCGGAAGG
PlXIVA 2fqc FPRPRICNLACRAGIGHKYPFCHCR
GI (SER12)-benzoylphenylalanine 2fr9 ECCNPACGRHYYC
GI (ASN4)-benzoylphenylalanine 2frb ECCYPACGRHYSC
OmIA 2gcz GCCSHPACNVNNPHICG
BuIA, BuIA[P6O], BuIA[P7O] 2ns3 GCCSTPPCAVLYC
ImI [P6A] 2ifi GCCSDARCAWRC
ImI [P6K], ImI [P6K] deamidated 2ifj GCCSDKRCAWRC
ImI, ImI [C2U,C8U], ImI [C2U,C3U,C8U,C12U],
ImI deamidated, A c-ImI, ImI [A9S], ImI
[C3U,C12U], ImI [P60], ImI [P6APro], ImI
[P6A(S)Pro], ImI [P6guaPro], ImI [P6betPro],
ImI [P6fluoPro], ImI [P6fluo(S)Pro], ImI
[P6phiPro], ImI [P6phi(S)Pro], ImI [P6benzPro],
ImI [P6naphPro], ImI [P6phi(3S)Pro], ImI
[P6phi(5R)Pro]

2bypF GCCSDPRCAWRC

CMrVIA [K6P], CMrVIA [K6P] amidated 2ih7 VCCGYPLCHPC
CMrVIA, CMrVIA amidated 2b5p VCCGYKLCHPC
Cyclic MrIA 2j15 NGVCCGYKLCHPCAG
RgIA [P6V] 2juq GCCSDVRCRYRCR
RgIA [D5E] 2jur GCCSEPRCRYRCR
RgIA [Y10W] 2jus GCCSDPRCRWRCR
RgIA 2jut GCCSDPRCRYRCR
Pc16a 2ler SCSCKRNFLCC
Midi 2lu6 CNCSRWARDHSRCC
TxIB 2lz5 GCCSDPPCRNKHPDLC
Li1.12, TxID 2m3i GCCSHPVCSAMSPIC
Ar1248 2m62 GVCCGVSFCYPC
Lo1a 2md6 EGCCSNPACRTNHPEVCD
LvIA 5xgl GCCSHPACNVDHPEIC
Exendin-4/conotoxin chimera
(Ex-4[1-27]/pl14a)

2naw HGEGTFTSDLSKQMEEEAVRC-
FIECLKGIGHKYPFCHCR

Bt1.8 2nay GCCSNPACILNNPNQC
TXIA(A10L) 2uz6 GCCSRPPCILNNPDLC
CnVA 3zkt ECCHRQLLCCLRFV
Cyclic Vc1.1 4ttl GCCSDPRCNYDHPEICGGAAGG
GIC 1ul2 GCCSHPACAGNNQHIC
PeIA, Bt1.4, PeIA[P6O], PeIA[P13O] 5jmeF GCCSHPACSVNHPELC
Pn10.1 5t6v STCCGYRMCVPC
LsIA, LsIA# 5t90F SGCCSNPACRVNNPNIC
VilXIVA 6efe GGLGRCIYNCMNSGGGLSFIQCKTMCY
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Table A2. List of conotoxins with corresponding PDB structure IDS [55] comprising the 6C library.
Name or names of sequences are taken from the Conoserver database [40]. Multiple names for
the same sequence indicate the same sequence is produced by different species or has different
post-translational modifications.

Name(s) PDB ID Sequence

conotoxin-GS 1ag7 ACSGRGSRCPPQCCMGLRCGRGNPQKCIGAHEDV
PIIIE, PIIIE [K9S], PIIIE [S17Y,S18N,S20L] 1jlo HPPCCLYGKCRRYPGCSSASCCQR

MVIIC, S6.6 1omn CKGKGAPCRKTMYDCCSGSCGRRGKC
TVIIA 1eyo SCSGRDSRCPPVCCMGLMCSRGKCVSIYGE
TxVII 1f3k CKQADEPCDVFSLDCCTGICLGVCMW
TxVIA 1fu3 WCKQSGEMCNLLDQNCCDGYCIVLVCT
EVIA 1g1z DDCIKPYGFCSLPILKNGLCCSGACVGVCADL
GIIIB 1gib RDCCTPPRKCKDRRCKPMKCCA
GVIA 1ttl CKSPGSSCSPTSYNCCRSCNPYTKRCY
PIVA 1p1p GCCGSYPNAACHPCSCKDRPSYCGQ
EIVA 1pqr GCCGPYPNAACHPCGCKVGRPPYCDRPSGG
PIIIA 1r9i QRLCCGFPKSCRSRQCKPHRCC

MVIIA[R10K] 1tt3 CKGKGAKCSKLMYDCCTGSCRSGKC
Am2766 1yz2 CKQAGESCDIFSQNCCVGTCAFICIE
MrIIIE 2efz VCCPFGGCHELCYCCD
FVIA 2km9 CKGTGKSCSRIAYNCCTGSCRSGKC

Im23a, Mr23a 2lmz IPYCGQTGAECYSWCIKQDLSKDWCCDFVKDIRMNPPADKCP
BuIIIB 2lo9 VGERCCKNGKRGCGRWCRDHSRCC

KIIIA, KIIA [W8dTrp] 2lxg CCNCSSKWCRDHSRCC
Ar1446 2m61 CCRLACGLGCHPCC
cGm9a 2mso SCNNSCQSHSDCASHCICTFRGCGAVNGLP
cBru9a 2msq SCGGSCFGGCWPGCSCYARTCFRDGLP
Mo3964 2mw7 DGECGDKDEPCCGRPDGAKVCNDPWVCILTSSRCENP
MfVIA 2n7f RDCQEKWEYCIVPILGFVYCCPGLICGPFVCV

cyclic PVIIA 2n8e CRIPNQKCFQHLDDCCSRKCNRFNKCVLPETGGG
conotoxin-muOxi-GVIIJ 2n8h GWCGDPGATCGKLRLYCCSGFCDSYTKTCKDKSSA

CnIIIC 2yen QGCCNGPKGCSSKWCRDHARCC
CcTx 4b1qP APWLVPSQITTCCGYNPGTMCPSCMCTNTC

Reg12i 6bx9 CCTALCSRYHCLPCC
MoVIB 6ceg CKPPGSKCSPSMRDCCTTCISYTKRCRKYY

Table A3. List of conotoxins with corresponding PDB structure IDS [55] comprising the 8C library.
Name or names of sequences are taken from the Conoserver database [40]. Multiple names for the same
sequence indicate the same sequence is produced by different species or has different post-translational
modifications.

Name(s) PDB ID Sequence

G11.1 6cei CAVTHEKCSDDYDCCGSLCCVGICAKTIAPCK
RXIA, RXIA[Btr33>W] 2p4l GPSFCKADEKPCEYHADCCNCCLSGICAPSTNWILPGCSTSSFFKI
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Figure A3. Distribution of root-mean-square deviation (RMSD) for homology models compared
with their corresponding experimental structures, after refinement involving the rejection of structural
alignment outliers. Each experimental structure present in the library was modeled by selecting from all
other templates in the library. The top three models for each structure based on combined MODELLER
DOPE and PROCHECK G-FACTOR scores are considered here. (A) Distribution mean = 1.55 Å,
standard deviation = 0.92 Å. (B) Distribution mean = 1.17 Å, standard deviation = 0.67 Å.
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11. Śledź, P.; Caflisch, A. Protein structure-based drug design: From docking to molecular dynamics. Curr. Opin.
Struc. Biol. 2018, 48, 93–102. [CrossRef] [PubMed]

12. Mansbach, R.A.; Travers, T.; McMahon, B.H.; Fair, J.M.; Gnanakaran, S. Snails In Silico: A Review of
Computational Studies on the Conopeptides. Mar. Drugs 2019, 17, 145. [CrossRef] [PubMed]

13. Huang, P.S.; Boyken, S.E.; Baker, D. The coming of age of de novo protein design. Nature 2016, 537, 320–327.
[CrossRef]

http://dx.doi.org/10.1016/j.phrs.2016.01.009
http://www.ncbi.nlm.nih.gov/pubmed/26826284
http://dx.doi.org/10.3390/toxins8040117
http://www.ncbi.nlm.nih.gov/pubmed/27104567
http://dx.doi.org/10.2174/0929867043363884
http://www.ncbi.nlm.nih.gov/pubmed/15578997
http://dx.doi.org/10.1016/j.cclet.2019.03.021
http://dx.doi.org/10.3389/fgene.2019.00368
http://dx.doi.org/10.3390/ijms20102383
http://dx.doi.org/10.1016/j.drudis.2018.05.006
http://dx.doi.org/10.1073/pnas.1703952114
http://dx.doi.org/10.1371/journal.pone.0189154
http://dx.doi.org/10.1080/10643389.2019.1579628
http://dx.doi.org/10.1016/j.sbi.2017.10.010
http://www.ncbi.nlm.nih.gov/pubmed/29149726
http://dx.doi.org/10.3390/md17030145
http://www.ncbi.nlm.nih.gov/pubmed/30832207
http://dx.doi.org/10.1038/nature19946


Mar. Drugs 2020, 18, 256 24 of 26

14. Pitera, J.W.; Swope, W. Understanding folding and design: Replica-exchange simulations of “Trp-cage”
miniproteins. Proc. Natl. Acad. Sci. USA 2003, 100, 7587–7592. [CrossRef] [PubMed]

15. Ensign, D.L.; Kasson, P.M.; Pande, V.S. Heterogeneity Even at the Speed Limit of Folding: Large-scale
Molecular Dynamics Study of a Fast-folding Variant of the Villin Headpiece. J. Mol. Biol. 2007, 374, 806–816.
[CrossRef]

16. Voelz, V.A.; Bowman, G.R.; Beauchamp, K.; Pande, V.S. Molecular Simulation of ab Initio Protein Folding for
a Millisecond Folder. J. Am. Chem. Soc. 2010, 132, 1526–1528. [CrossRef]

17. Sborgi, L.; Verma, A.; Piana, S.; Lindorff-Larsen, K.; Cerminara, M.; Santiveri, C.M.; Shaw, D.E.; de Alba, E.;
Muñoz, V. Interaction Networks in Protein Folding via Atomic-Resolution Experiments and Long-Time-Scale
Molecular Dynamics Simulations. J. Am. Chem. Soc. 2015, 137, 6506–6516. [CrossRef]

18. Dill, K.A.; MacCallum, J.L. The protein-folding problem, 50 years on. Science 2012, 338, 1042–1046. [CrossRef]
19. Baker, D.; Sali, A. Protein structure prediction and structural genomics. Science 2001, 294, 93–96. [CrossRef]
20. Xiang, Z. Advances in Homology Protein Structure Modeling. Curr. Protein Pept. Sci. 2006, 7, 217–227.

[CrossRef]
21. Krieger, E.; Nabuurs, S.B.; Vriend, G. Homology modeling. Methods Biochem. Anal. 2003, 44, 509–524.

[PubMed]
22. Kong, L.; Lee, B.T.K.; Tong, J.C.; Tan, T.W.; Ranganathan, S. SDPMOD: An automated comparative modeling

server for small disulfide-bonded proteins. Nucleic Acids Res. 2004, 32, W356–W359. [CrossRef] [PubMed]
23. Rost, B. Twilight zone of protein sequence alignments. Protein Eng. Des. Sel. 1999, 12, 85–94. [CrossRef]

[PubMed]
24. Van Steen, M. Graph Theory and Complex Networks—An Introduction; van Steen, Maarten: Lexington, KY,

USA, 2010; Volume 144.
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