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Abstract

Recent studies indicate that the adaptive immune system plays a role in Lewy body dementia 

(LBD). However, the mechanism regulating T cell brain homing in LBD is unknown. Here, we 

observed T cells adjacent to Lewy bodies and dopaminergic neurons in post-mortem LBD brains. 

Single-cell RNA sequencing of cerebrospinal fluid (CSF) identified upregulated expression of 

C-X-C Motif Chemokine Receptor 4 (CXCR4) in CD4+ T cells in LBD. CSF protein levels of the 

CXCR4 ligand, C-X-C Motif Chemokine Ligand 12 (CXCL12) were associated with neuroaxonal 

damage in LBD. Furthermore, we observed clonal expansion and upregulated Interleukin 17A 
expression by CD4+ T cells stimulated with a phosphorylated α-synuclein epitope. Thus, CXCR4-

CXCL12 signaling may represent a mechanistic target for inhibiting pathological interleukin-17-

producing T cell trafficking in LBD.

Summary:

The immune system is implicated in the neurodegenerative process of Lewy body dementia.

Lewy body dementia (LBD) encompasses two disorders characterized by abnormal deposits 

of α-synuclein in the brain: dementia with Lewy bodies (DLB) and Parkinson’s disease 

dementia (PDD). PDD is defined by changes in memory and behavior and afflicts patients 

in late stage Parkinson’s disease (PD) (1). The symptoms and cognitive profiles of DLB and 

PDD are highly similar (2). Several lines of evidence suggest involvement of the adaptive 

immune system in DLB (3) and PDD (4–6). Immune alterations have been reported in the 

peripheral blood of PD patients, including changes to lymphocyte activation (7–9). The 

involvement of CD4+ T cells in PD is supported by studies in mouse models (10–13) 

and in vitro culture systems (6). Moreover, recent studies have found that a defined set of 

peptides derived from α-synuclein act as antigenic epitopes and promote T cell responses 

in non-demented PD patients ex vivo (4, 5, 14). However, showing a role for T cells in 

the neurodegenerative process of LBD in vivo is lacking. Furthermore, the mechanism 

regulating T cell brain homing in LBD remains unknown.

Results

Neurodegeneration in LBD study subjects

To assess adaptive immunity in LBD, we integrated analyses of multiple cohorts consisting 

of healthy aged controls (n=162) and patients with clinical DLB and PD (collectively 

referred to as PD-DLB; n=148) (Fig. S1A, Table S1 and Data S1). Montreal Cognitive 

Assessment scores indicated reduced cognition in PD-DLB subjects (P = 8.6X10−5; Fig. 

S1B). Furthermore, proteomic analysis of cerebrospinal fluid (CSF) indicated increased 

levels of neurofilament light chain (NEFL; P = 0.0031; Fig. S1C). NEFL reflects neuronal 

damage in a variety of neurological disorders (12–14). Because PD has a long prodromal 

phase before dementia onset, we stratified patients as PD-not cognitively impaired (PD-NCI) 

or PDD (those with cognitive impairments and dementia). Compared to healthy subjects, 

patients diagnosed as PDD (P = 6.33X10−13) and DLB (P = 4.02X10−13) presented with 

lower cognitive scores than PD-NCI patients (P = 0.83; Fig. S1D). These data suggest 

increased neurodegeneration in our PDD and DLB subjects.
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T cells home to the LBD brain and reside in close proximity to α-synuclein deposits

We next examined post-mortem substantia nigra to localize and quantify T cells in LBD. 

Immunohistochemical analysis showed CD3+ T cells in close proximity to neuronal 

processes labeled by the dopamine enzyme tyrosine hydroxylase (TH) in the substantia 

nigra of PDD and DLB brains (Fig. 1A and S2A). Quantification of control (non-neurologic 

disease) and LBD substantia nigra indicated higher numbers of CD3+ T cells in LBD 

(Welch’s t-test, P = 0.006; Fig. 1B). We then probed LBD brains for α-synuclein to 

determine whether T cells localize to these protein deposits. Indeed, we found CD3+ T 

cells adjacent to α-synuclein deposits in LBD brains (Fig. S2B and C). Quantification of 

these cells revealed a higher percentage of CD3+ T cells localized to α-synuclein deposits 

in LBD substantia nigra (Welch’s t-test, P = 0.002; Fig. 1C). We also detected CD3+ T cells 

adjacent to Lewy neurites surrounding TH+ neurons in PDD (Fig. 1D and Fig. S3A and B) 

and DLB substantia nigra (Fig. S3C). CD3+ T cells were also found near α-synuclein+ Lewy 

bodies adjacent to vesicular glutamate transporter 1 (vGLUT1)+ glutamatergic neurons in 

the hippocampal CA2 region (Fig. S3D). Notably, CD3+ T cells were also bound to Iba1+ 

innate immune cells, which extended processes towards phosphorylated α-synuclein+ Lewy 

bodies in PDD (Fig. 1E) and DLB (Fig. S3E and F). In mice expressing human α-synuclein 

(Thy1-αSyn), CD3+ T cells were found adjacent to α-synuclein deposits in the midbrain 

(Fig. S4). Thus, T cells home to the LBD brain and reside in close proximity to α-synuclein 

deposits.

CXCR4 is upregulated in CD4+ T cells in LBD CSF

To uncover potential mechanisms of brain entry in LBD, we performed single-cell RNA 

sequencing (scRNAseq) (15, 16) of CSF cells isolated from age- and sex-matched healthy 

(n=11) and PD-DLB (n=11) subjects (Fig. S5A). Multidimensional reduction of scRNAseq 

data by t-distributed stochastic neighbor embedding (tSNE) revealed clusters of immune 

cells (Fig. 2A). Clusters expressed marker genes corresponding to each immune cell subtype 

(Fig. 2B) and were not specific to group or sex (Fig. S5B). Cell-type specific differential 

expression of PD-DLB vs. healthy CSF cell clusters revealed CD4+ T cells as the most 

transcriptionally altered immune cell subtype (Fig. 2C and Data S2). Highly differentially 

expressed PD-DLB CD4+ T cell genes included Janus kinase 1 (JAK1), a kinase essential 

for cytokine signaling, and the T cell activation gene Cluster Of Differentiation 69 (CD69) 

(Fig. 2D). The chemokine receptor gene C-X-C Motif Chemokine Receptor 4 (CXCR4) 

was also highly upregulated in PD-DLB CD4+ T cells (Fig. 2D). Moreover, CXCR4 and 

CD69 were highly expressed by the majority of CD4+ T cells (Fig. S5C). Quantification 

of individual subjects’ CD4+ T cell CXCR4 and CD69 expression revealed higher levels in 

PD-DLB vs. healthy CSF (Welch’s t-test, P = 0.03 and P = 0.025, respectively; Fig. S5D). 

Analysis of pathways containing CXCR4 indicated altered metabolic and catalytic activity 

and response to cytokine stimulus in CD4+ T cells in PD-DLB (Fig. S5E). Thus, enhanced 

CD4+ T cell cytokine signaling and activation can be observed in PD-DLB CSF.

The increase in activation of CSF CD4+ T cells in PD-DLB prompted us to determine 

whether clonally expanded (i.e. antigen-specific) cells were distinct in PD-DLB. To assess 

clonal expansion, we performed single-cell T cell receptor sequencing (scTCRseq) on the 

same CSF cells as above (Fig. 2E). Comparing RNA transcriptomes of clonal CD4+ T 
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cells from healthy and PD-DLB CSF by differential expression again showed increased 

expression of CD69 and CXCR4 in PD-DLB (Fig. 2F and G and Data S3). Clonal T cells 

were not specific to disease group or sex (Fig. S6A). Pathway analysis of differentially 

expressed clonal CD4+ PD-DLB T cell genes revealed regulation of cytokine-mediated 

signaling and intracellular signal transduction as the most altered pathways containing 

CXCR4 (Fig. S6B). We also detected higher expression of Killer cell lectin-like receptor 
subfamily B, member 1 (KLRB1), a marker of pro-inflammatory IL-17-producing (Th17) 

memory CD4+ T cells (17, 18) (Fig. 2F and Data S3). We also localized CD3+KLRB1+ T 

cells to phosphorylated α-synuclein deposits in the parenchyma of PDD brains (Fig. S6C). 

Thus, LBD may involve enhanced activation of pro-inflammatory CD4+ Th17 cells.

The CXCR4 ligand CXCL12 is associated with neurodegeneration in LBD

To determine if T cells express CXCR4 in the brain, we performed immunohistochemistry 

on PDD meninges, which revealed meningeal CD3+CXCR4+ cells (Fig. S7A). We noted 

localization of the CXCR4 ligand, C-X-C Motif Chemokine Ligand 12 (CXCL12) to 

CD3+CXCR4+ cells in the meninges (Fig. S7A). In mice, CXCL12 is expressed by 

cerebrovascular endothelial cells and promotes recruitment of CD4+ T cells (19). Within the 

PDD brain, CXCL12 localized to the cerebrovasculature (Fig. 3A), confirmed by co-staining 

PDD brains with the vascular marker Cluster Of Differentiation 31 (CD31; Fig. S7B). CD3+ 

T cells resided in the perivascular space adjacent to CXCL12+ vessels (Fig. 3A and Fig. 

S7C).

We next sought to determine whether levels of CSF CXCL12 were associated with cognitive 

impairment in PD. We measured CXCL12 in a cohort of age- and sex-matched healthy 

(n=84) and PD (n=79) subjects (Fig. S8A). This revealed higher levels of CSF CXCL12 in 

PD (Welch’s t-test, P = 0.036; Fig. 3B). We separated this PD cohort by clinical diagnoses 

as PD-NCI or PDD, which revealed lower cognitive scores in PDD subjects compared 

to healthy (P = 3.12X10−11) and PD-NCI (P = 7.67X10−10) subjects (one-way ANOVA 

(F (2,135) = 31.697, P = 5.18X10−12); Fig. S8B). NEFL levels also distinguished PDD 

from healthy (P = 1.00X10−4) and PD-NCI (P = 8.30X10−3) subjects (one-way ANOVA, 

(F (2,117) = 9.161, P = 0.0002); Fig. S8C). Age did not significantly impact CXCL12 

levels in this cohort (ANCOVA, (F (2,150) = 2.867, P = 0.071); Fig. S8D). We then 

correlated CXCL12 levels with neurodegenerative disease biomarkers, including ubiquitin 

carboxyl-terminal esterase L1, total tau, phosphorylated tau 181, amyloid-β, α-synuclein 

and NEFL (Fig. S8E). CXCL12 levels correlated most positively with NEFL in PDD (rs = 

0.40; P = 0.023), and these correlations were lesser in healthy (rs = 0.12; P = 0.394) and 

PD-NCI (rs = 0.17; P = 0.326) subjects (ANCOVA (F (2,114) = 3.484, P = 0.031); Fig. 

3C). Thus, dysregulated CXCR4-CXCL12 signaling is associated with neurodegeneration in 

LBD.

CXCR4 demarks CD4+ T cells that are unique to the CSF

Because peripheral T cells have been shown to be dysregulated in PD (4, 5, 14), we 

compared CD4+ T cells of the peripheral immune system and CSF. We performed 

scRNAseq on peripheral blood mononuclear cells (PBMCs) of the same subjects we 

analyzed by CSF scRNAseq and focused our analysis on CD4+ T cells (Fig. 4A). We 

Gate et al. Page 4

Science. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



uncovered CD4+ T cell populations that were unique to the CSF (referred to as CSF unique; 

Fig. 4B). We also identified upregulated CXCR4, CD69, and TSC22D3 as the primary genes 

defining CSF unique T cells (Fig. 4D). Quantification of individual subjects’ CSF unique 

CD4+ T cell CXCR4 and CD69 expression revealed higher levels in PD-DLB vs. healthy 

CSF (Welch’s t-test, P = 0.0218 and P = 0.0217, respectively; Fig. 4E). Thus, CXCR4 may 

regulate homing of CD4+ T cells to the LBD brain.

α-synuclein stimulation drives T cell clonal expansion and activation

Our immunohistochemistry results indicated close proximity of T cells with α-synuclein 

in LBD brains. This led us to investigate whether α-synuclein could drive T cell clonal 

expansion and activation. Several peptides derived from α-synuclein act as antigenic 

epitopes and promote T cell responses in PD PBMCs (4, 5). We incubated PBMCs from 

healthy (n=32) and PD (n=53) subjects with a pool of eight antigenic α-synuclein peptides 

and measured activation of CD3+ T cells by flow cytometry using co-expression of HLA-DR 

and CD38 (Fig. S9A). Surprisingly, control PD patient T cells in the absence of stimulation 

exhibited higher percentages of HLA-DR+CD38+ T cells than healthy subjects (Welch’s 

t-test, P = 0.006; Fig. S9B and C). This suggests higher baseline levels of peripheral T cell 

activation exists in PD patients in vivo. We also detected higher levels of T cell activation 

following stimulation with the α-synuclein peptide pool (Welch’s t-test, P = 0.002; Fig. 

S10C). We confirmed increased activation of PD T cells following α-synuclein stimulation 

by measuring CD69 by flow cytometry (Welch’s t-test, P = 0.027; Fig. S9D).

To identify patient-specific antigenic α-synuclein peptides, we selected two PD patients who 

exhibited appreciable increases in T cell activation by the α-synuclein peptide pool (Fig. 

S9E). We then measured T cell activation in these subjects using individual α-synuclein 

peptides. This strategy revealed activation of T cells by the peptide DNEAYEMPSEEGYQD 

containing a phosphorylated serine residue at amino acid position 129 (Fig. 5A and B). 

HLA-DR+CD38+CD4+ T cells upregulated CXCR4 in response to peptide stimulation (Fig. 

5C). To determine transcriptional changes induced by this peptide, we sorted activated T 

cells from unstimulated and stimulated PBMCs (Fig. S10A). We then performed scRNAseq 

on HLA-DR+CD38+ T cells to interpret transcriptomic alterations (Data S4). Stimulated 

T cells had increased expression of Actin Gamma 1 (ACTG1) and Actin Beta (ACTB) 

(Fig. 5D), which regulate cytoskeletal control of antigen-dependent T cell activation (20). 

We also noted increased expression of Marker Of Proliferation Ki-67, suggesting increased 

proliferation of stimulated T cells (Fig. 5D).

Th17 cell involvement in the degeneration of neurons in LBD

Notably, we also detected higher expression of Interleukin 17A (IL17A) in cells stimulated 

with α-synuclein (Fig. 5D). IL17A encodes the pro-inflammatory cytokine IL-17, which is 

secreted by Th17 cells (21). To determine whether IL17A-expressing cells were clonally 

expanded, we performed scTCRseq on stimulated and unstimulated cells. This revealed 

clonal populations from stimulated cells of both patients (Fig. S10B). We then plotted 

IL17A expression by tSNE and identified clonally expanded TCRs (clonotypes) from 

each subject (Fig. 5E). IL17A-expressing cells co-expressed CD4 and some clonotypes 

also expressed the Th17-associated cytokine gene Interleukin 22 (IL22; Fig. S10C). We 
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confirmed the presence of CD4+IL-17A+ T cells in the PDD substantia nigra, which were 

adjacent to TH+IL-17A+ neurons (Fig. 5F). We also detected higher levels of IL-17A 

immunoreactivity in LBD brains (Welch’s t-test, P = 0.007; Fig. 5G). Public datasets 

revealed lack of IL17A RNA expression in the brain, yet the gene encoding the IL17A 

receptor, IL17RA, was highly expressed in the midbrain (Fig. S11A), suggesting an external 

source of IL17A protein in neurons. Public histology data indicated an age-dependent 

accumulation of IL17A in neurons (Fig. S11B). Finally, to confirm IL17A antibody 

specificity, we pre-incubated antibodies with recombinant IL-17A, which ablated IL-17A 

immunoreactivity (Fig. S11C).

Discussion

In conclusion, these results implicate Th17 cell involvement in the degeneration of neurons 

in LBD. Notably, CXCR4 regulates cell migration (22), and antagonism of CXCR4 

modulates the pathogenicity of Th17 cells (23). Thus, our investigation of intrathecal 

immunity uncovered the CXCR4-CXCL12 signaling axis as a potential therapeutic target 

for LBD. Several CXCR4 antagonists are currently approved for clinical use to treat 

a wide variety of diseases (24–30). Given the safety, bioavailability and tolerability of 

CXCR4 antagonists (26), these drugs could be utilized to inhibit trafficking of pathological 

Th17 cells into the LBD brain. Finally, we identified an antigenic α-synuclein epitope 

that promoted expression of IL17A, a pro-inflammatory cytokine involved in autoimmune 

diseases (21). In animal models of neurodegenerative disease, Th17 cells play a direct 

role in neuronal loss (31, 32). Moreover, human Th17 cells have been shown to promote 

blood-brain barrier disruption and central nervous system inflammation via IL-17A (33). 

Thus, our study provides a mechanism for Th17 cell-mediated dopaminergic cell death via 

secretion of inflammatory IL-17A, thereby implicating autoimmunity in LBD (Fig. S12).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data and materials availability:

The scRNAseq datasets analyzed during the current study are available in the Gene 

Expression Omnibus repository under accession numbers GSE141578 and GSE161192.
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Fig. 1. 
T cells localize to dopaminergic neurons and α-synuclein deposits in the LBD brain. (A) 

Confocal images of parenchymal CD3+ T cells adjacent to TH+ neuronal processes in PDD 

and DLB substantia nigra. Scale bars = 10 μm. CD3+ T cells were detected in 6/7 LBD 

brains analyzed. (B) Quantification of parenchymal CD3+ T cells reveals higher numbers 

of T cells in LBD vs. healthy substantia nigra. Data are mean ± SEM. (C) Quantification 

of percent parenchymal CD3+ T cells adjacent to α-synuclein deposits in LBD brains. 

Cells determined to be adjacent to α-synuclein deposits were within 5μm distance. Data 

are mean ± SEM. (D) Confocal image of PDD substantia nigra showing a CD3+ T cell in 
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close proximity to an α-synuclein+ Lewy neurite. Scale bar = 10 μm. Similar results were 

observed in 6/7 LBD brains. (E) An Iba1+ innate immune cell in the PDD substantia nigra. 

Note the Iba1+ process appearing to contact the CD3+ T cell and α-synuclein+ Lewy body in 

PDD. Scale bar = 5 μm. Similar results were observed in 6/7 LBD brains.
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Fig. 2. 
Upregulated CXCR4 demarks CD4+ T cells in PD-DLB. (A) scRNAseq of CSF cells 

shows clusters of various types of immune cells by tSNE. (B) Marker expression of CSF 

immune cells used to classify clusters. (C) UpSet plot showing cell-type specific analysis 

of differentially expressed genes of PD-DLB vs. healthy CSF immune cells indicating 

the highest number of differentially expressed genes in CD4+ T cells. (D) Volcano plot 

showing differentially expressed genes of CD4+ T cells from LBD vs. healthy CSF. Note 

the increased expression of CXCR4 in LBD. (E) scTCRseq of CSF immune cells showing 
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clonal vs. non-clonal T cells plotted by tSNE. (F) Volcano plot of differential expression 

analysis of clonal CD4+ T cells showing increased expression of CD69, KLRB1 and 

CXCR4 in PD-DLB vs. healthy CSF. (G) Dot plot showing higher levels of CXCR4 and 

CD69 in PD-DLB vs. healthy CSF clonal CD4+ T cells.
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Fig. 3. 
CXCL12 is associated with neurodegeneration in LBD. (A) A PDD substantia nigra brain 

blood vessel showing localization of CXCL12 to the cerebral vasculature. Arrowheads 

indicate CD3+ T cells in the perivascular space. Asterisk indicates blood vessel lumen. Scale 

bar = 50 μm. Similar results were observed in 7/7 LBD brains. (B) Single molecule array 

measurement of CXCL12 indicating higher levels in PD vs. healthy CSF. Data are mean 

± SEM. (C) Regression analysis correlating CSF CXCL12 and NEFL levels in healthy, 

PD-NCI and PDD. Note the significant correlation of CXCL12 and NEFL in PDD but not 

PD-NCI or healthy CSF.
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Fig. 4. 
CXCR4 demarks CD4+ T cells that are unique to the CSF in LBD. (A) tSNE plot showing 

overlayed distribution of peripheral versus CSF CD4+ T cells from healthy, PD and DLB 

subjects. (B) tSNE plot showing clusters of CD4+ T cells that are unique to the CSF. (C) 

Hierarchical clustering of standardized z-scores comparing PD-DLB to healthy CD4+ T cells 

from PBMCs and CSF. Note the clustering of genes CXCR4, CD69 and TSC22D3 that 

demark CSF unique CD4+ T cells. (D) Volcano plot showing differential expression analysis 

comparing PD-DLB to healthy CSF unique CD4+ T cells. (E) Quantification of individual 

subjects’ CXCR4 and CD69 expression of PD-DLB versus healthy CSF unique CD4+ T 

cells showing higher expression of each gene in PD-DLB. Data are mean ± SEM.
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Fig. 5. 
Stimulation of LBD T cells with α-synuclein promotes IL-17A expression. (A) Heatmap 

showing fold change of T cell activation (% HLA-DR+CD38+ CD3+ T cells) between 

unstimulated and stimulated PBMCs. Cells were incubated with α-synuclein peptides 

known to be antigenic. Note that peptide DNEAYEMPSEEGYQD (p129) increased T 

cell activation in patients #1 and #2. (B) Flow cytometry plots of unstimulated and 

DNEAYEMPSEEGYQD (p129)-stimulated cells showing increased T cell activation (% 

HLA-DR+CD38+ CD3+ T cells) by the α-synuclein peptide. (C) Histograms showing 
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increased expression of CXCR4 in DNEAYEMPSEEGYQD (p129)-stimulated HLA-

DR+CD38+CD4+ T cells in both patients by flow cytometry. (D) Differential expression 

analysis of stimulated vs. unstimulated HLA-DR+CD38+CD3+ T cells shows increased 

expression of antigen-dependent T cell activation genes ACTG1 and ACTB, the proliferative 

gene MKI67, and the pro-inflammatory cytokine IL17A. (E) tSNE plots indicating overlap 

of cells expressing IL17A and clonally expanded T cells (clonotypes) from both patients. (F) 

Confocal images of control (non-neurologic disease) and PDD post-mortem brains showing 

CD4+IL-17A+ T cells adjacent to an IL-17A+TH+ neuron in the PDD substantia nigra. Scale 

bar = 10 μm. (G) Quantification of IL-17A immunoreactivity (IR) in the substantia nigra of 

control and LBD brains showing increased IL-17A in LBD. Similar results were observed in 

6/7 LBD brains. Data are mean ± SEM.
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