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Breast milk is a complex biological fluid that is rich in nutrients and bioactive agents that support the healthy growth and
development of the newborns. Human milk oligosaccharides (HMOs) are unconjugated glycans that constitute an important
component of the protection conferred by breast milk on the neonate. HMOs may act locally on the neonatal intestine by acting as
signalling molecules and directly interacting with the host cells. Although fucosylated and sialylated HMOs have little nutritional
value, they exert important prebiotic as well as immunomodulatory effects on the infant gut. However, there is heterogeneity in the
quantity and quality of HMOs in breast milk produced by mothers under influence of the genetic and environmental factors.This
review encompasses the salient aspects of HMOs such as composition, function, structural diversity, and functional impact on the
growth and survival of newborns. In this review, the current knowledge on HMOs is contextualised to discuss the gaps in scientific
understanding and the avenues for future research.

1. Introduction

Human milk is considered as the “gold standard” of infant
nutrition during the first few months of human life. The
composition of human milk is unique and it is adapted
for the infant’s immature digestive and immune systems.
Human milk protects infants from infection and inflam-
mation, promotes development of immunity, and facilitates
organ maturation [1]. Humanmilk oligosaccharides (HMOs)
are a part of functional ingredients of the breast milk. HMOs
are complex glycans that are found in high concentrations
and with unique structural diversity. HMOs are the third
most abundant components of milk after lactose and lipids
[2].

2. Structure of HMOs

Although HMOs are of various types and carry out diverse
functions, they have a basic structural blueprint (Figure 1).
Five monosaccharides represent the building blocks of
HMOs, namely, glucose, galactose, N-acetylglucosamine,
fucose, and N-acetylneuraminic acid [3]. A proportion of
35-50% of fucosylated, 12-14% of sialylated, and 42-55% of
nonfucosylated neutral HMOs has been reported in term
breast milk [4]. In colostrum, transitional and mature milk
HMO concentrations may exceed up to 20 g/L and drop to
5-12 g/L [5].

Although the synthetic oligosaccharides such as galac-
tooligosaccharides (GOS) and fructooligosaccharides (FOS)
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Figure 1: Structural blueprint of HMOs. The glucose, galactose,N-
acetylglucosamine, fucose, and N-acetylneuraminic acid molecules
are the building blocks for HMOs.

and pectin-derived acidic oligosaccharide (pAOS) have been
introduced into the infant formula, they are structurally
different from the HMOs. Fructose or its polymers as well as
galacturonic acid and its homo- or heteropolymers are not
found in human milk. Fucosylated and sialylated oligosac-
charides are important HMOs that are yet to be synthesized
[2]. However, the European Food Safety Authority (EFSA)
and the U.S. Food and Drug Administration (FDA) have
independently confirmed the safety of 2-fucosyllactose (2-
FL) and lacto-N-neotetraose (LNnT) for administration to
babies through infant formulas.

2.1. Types of HMOs. HMOs are classified into three types [6]:

(i) Neutral or fucosylated HMOs: these HMOs con-
tain fucose at the terminal position. Examples: 2’-
fucosyllactose (2’-FL) and lactodifucopentose.

(ii) Neutral N-containing or nonfucosylated HMOs:
these HMOs contain N-acetylglucosamine at the
terminal end. Example: lacto-N-tetraose.

(iii) Acidic or sialylatedHMOs: theseHMOs contain sialic
acid at the terminal end. Example: 2’-sialyllactose.

3. Variation in HMOs

The total HMO concentration decreases within the first 3
months, but the level of some HMOs may increase [5]. More
than a hundred different HMOs have been identified so far,
but not every woman synthesizes the same set of oligosac-
charides due to the role of various factors [2]. It is of
clinical interest to understand how the multifactorial web of
causation may influence the quantity and quality of HMOs in
the breast milk.

3.1. Secretor Status and Lewis Blood Group. Significant bio-
logical variation is evident in specific HMO structures such
as 2-FL and lacto-N-fucopentaose I and II (LNFP I and
LNFP II) in mature term breast milk. The variation in 𝛼1-2-
fucosylated HMOs is dependent on the mother’s genes that
encode for fucosyltransferase (FUT) enzymes, which in turn
are determined by the secretor (Se) status and Lewis (Le)
blood group [7]. Abundant levels of 2’FL, LNFP I, and other
𝛼1-2-fucosylated HMOs are present in the milk of secretor
mothers. However, fucosyltransferase 2 (FUT2) enzyme and
𝛼1-2-fucosylated HMOs are absent in nonsecretors [3]. The
LIFE cohort study of German mothers demonstrated that
2’FL together with LNFP I and II are reliable proxies to
define FUT 2 and 3 status, respectively. The changes in
maternal FUT polymorphisms were the determinants of
HMO variation with time [8].

3.2. Duration of Lactation. The HMOs vary in structure and
composition over the course of lactation. A cross-sectional
study of Chinesemothers reported that they produced unique
types of HMOs during the different stages of lactation,
independent of the mode of delivery and geographical loca-
tion [9]. The overall HMO concentration decreases across
lactation, but the direction of the change varies among
specific HMOs. A study of HMOs inmilk samples of German
women from days 3 to 90 postpartum indicated that the
levels of 2’FL and LNFP I reduced with increasing duration of
lactation, whereas levels of 3-fucosyllactose (3FL) increased
in Se+ and Le+ women [10]. Therefore, the activity of Se-
and Le-independent fucosyltransferases (FUT3, 4, 5, 6, 7, or
9) may increase across lactation [11]. However, the major
small neutral HMOs and their isomers varied the least across
lactation [12].

3.3. Gestation Period. The total HMO concentration in milk
of women who deliver preterm is greater than of those
who deliver at term [13]. A mass spectrometric analysis of
the fucosylation and sialylation in HMOs in serial milk
specimens of women delivering preterm and term indicated
that lacto-N-tetraose (LNT) was more abundant and more
variable in preterm milk than in term milk. Moreover, the
concentration of 2-FL was not consistent across lactation for
mothers with preterm delivery [14].Thus, the fucosylation of
HMOs in preterm milk may be unpredictable [11].

3.4. Maternal Health. HMO concentrations were signifi-
cantly lower in women with a body mass index (BMI) of 14
to 18 than in women with a BMI of 24 to 28 [3]. The
ATLAS cohort study of European mothers indicated that the
prepregnancy BMI and gestational weight gainmay influence
individual HMO levels. However, the effects of these on the
HMO concentrations were small [15]. Gestational diabetes
mellitus did not impact the level and composition of total
HMOs [16].

4. Function of HMOs

The multifarious functions of HMOs are as follows: (i) they
act as prebiotics and stimulate the colonization of beneficial



International Journal of Pediatrics 3

T cell

CD4+ T cell

CD8+ T cell

Immune-modulatory effects

Innate immunity

Brain development
Th2 → Th1
Allergies, Asthma

Gut maturation
Direct effect on enterocytes
Glycome-modifying

Antiadhesive effects
Respiratory, gastrointestinal,
urogenital tract

Prebiotic effects

Anti-inflammatory effects

Altered glycome

Altered gene
expression

Toxin Bacteria

Virus Cell, Parasite

Figure 2: Potential benefits for breast-fed neonates.HMOsmay serve as prebiotics, immune-modulators, and signallingmolecules to enhance
the gut immunity of newborns.

microbes, (ii) they exert direct defence mechanisms against
pathogens and protect infants from infections, (iii) they act as
signalling molecules and interact directly with the host cells,
(iv) they act as anti-inflammatory and immune-modulators,
and (v) they act as nutrients for neurological development of
infants (Figure 2) [5].

4.1. Role of HMOs as Prebiotics. The complex oligosaccha-
ride mixture within HMOs attracts both mutualistic mucus
adapted species and HMO-adapted bifidobacteria to the
infant intestine [17]. Several in vitro studies have reported
that bifidobacterial species can grow on HMOs [5].This type
of commensal feeding is one of the key factors influencing
gut microbiota composition and development of immunity
in infants [18]. Most of the HMOs are unabsorbed into
the gut, where certain bacteria ferment them into short
chain fatty acids creating an acidic environment. The low
pH environment in the gut favours the growth of other
strains of beneficial bifidobacteria [19]. HMOs do not allow
the growth of potentially harmful bacteria by favouring the

growth of Bifidobacterium species (Figure 3) [2]. Evidence
suggests that breast-fed infants have a higher abundance of
beneficial bifidobacteria compared with formula-fed infants
[18].

The genomic study of Bifidobacterium longum subsp.
infantis indicated that it is adapted for utilisation of theHMOs
in the infant gut.The conservation of gene clusters inmultiple
isolates confirms the genomic mechanisms for this infant
associated phylotype [20]. B. longum subsp. infantis equally
incorporates type 1 and type 2 HMOs, while other bifidobac-
terial species have preferential use for type 1 HMOs. The
predominance of type 1 structures found in HMOs and the
conservation of galacto-N-biose (GNB)/lacto-N-biose (LNB)
pathway in bifidobacteria indicate that they have coevolved
with humans [21]. Mass spectrometry-based glycoprofiling
of the HMO consumption behavior revealed a specific pref-
erence for fucosylated oligosaccharides by B. longum subsp.
infantis and Bacteroides vulgatus [22]. Small-mass HMOs,
mainly secreted in the colostrum and during the first month
of lactation, are preferred by B. longum biovar infantis ATCC
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Figure 3: Type of gut microbiota in (a) absence of HMOs and (b) presence of HMOs. The growth of beneficial bifidobacteria is favoured by
HMOs over that of pathogens in the gut.

15697, which possesses fucosidase and sialidase activities
[23]. A randomized controlled trial of healthy term infants
indicated that formulae supplemented with two HMOs, 2’FL
and LNnT, may shift the gut microbiota composition towards
that of breast-fed infants [24, 25]. Infants fed by nonsecretor
mothers are late in the establishment of a bifidobacteria-laden
gut ecosystem [26]. Child and mothers’ secretor status have
an impact on children’smicrobiota composition at 2 to 3 years
of age [27].

4.2. Antiadhesive Antimicrobial Properties of HMOs. HMOs
are the major constituent of an innate immune system
whereby the human milk protects the infant from enteric
and other pathogens [28–30]. HMOs prevent the attachment
of pathogens by serving as soluble glycan receptor decoys
(Figure 4). HMOs directly reduce microbial infections by
acting as antiadhesive antimicrobials and indirectly keep the
pathogens in check by providing competitive advantage to
nonpathogenic commensals [2]. HMOs may mimic struc-
tures of viral receptors and block adherence to target cells,
thus preventing infection [31].

The sialylated fraction of HMOs showed a strong inhib-
itory capacity for hemagglutination mediated by enterotoxi-
genic Escherichia coli (ETEC) and uropathogenic Escherichia
coli (UPEC) [32]. HMOs show a high efficiency in blocking
the lectins that contribute to virulence of Pseudomonas
aeruginosa [33]. Inhibition of the attachment of Strepto-
coccus pneumoniae and Haemophilus influenzae to human
pharyngeal or buccal epithelial cells is attributed to HMO

fraction of the breast milk [34]. Jantscher-Krenn et al.
demonstrated through in vitro studies that HMOs reduced
the attachment and cytotoxicity of Entamoeba histolytica
to intestinal epithelial cells [35]. Specific HMOs inhibit
the binding of Campylobacter jejuni to the intestinal H-2
antigens [36]. The sialyl Lewis X and B receptors on porcine
milk proteins prevent the colonisation of Helicobacter pylori
[37].The physiological concentrations of HMOs significantly
reduce the gp120 binding of Human Immunodeficiency
Virus (HIV)-1 virus to the dendritic cell-specific ICAM3-
grabbing nonintegrin (DC-SIGN) on human dendritic cells
by more than 80% [38]. DC-SIGN is selective in its recog-
nition of specific types of fucosylated glycans and subsets of
oligomannose- and complex-type N-glycans among HMOs
[39]. Lewis X motif present in human milk can bind to
DC-SIGN and thereby prevent the capture and subsequent
transfer of HIV-1 to CD4+ T lymphocytes [40].

4.3. Effect of HMOs on Intestinal Epithelial Cells. The inter-
action of HMOs with pathogenic microbes prevents their
attachment to the intestinal epithelial cells [7]. HMOs act
directly on the intestinal epithelial cells and modulate their
gene expression leading to changes in cell surface glycans and
other responses (Figure 5). A study demonstrated that HMOs
reduce cell growth and initiate differentiation and apoptosis
in cultured human intestinal epithelial cells [2].

HMOs, especially disialyllacto-N-tetraose, contribute to
protection from necrotising enterocolitis [41]. HMOs are
effective at influencing various stages of intestinal epithelial
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Figure 4: Adhesion of pathogens to gut wall in (a) absence of HMOs and (b) presence of HMOs. The adhesion of the pathogens to the gut
wall is prevented by HMOs that serve as decoy.
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Figure 5: Gut epithelial cells in (a) absence of HMOs and (b) presence of HMOs.The interactionwith HMOs leads to altered gene expression
and growth of the intestinal epithelial cells.

cells during the gastrointestinal development in vitro [42].
HMOs inhibited intestinal cell proliferation and altered cell
cycle dynamics by affecting corresponding regulator genes
and mitogen-activated protein kinase signaling [43]. Acidic
HMOs serve contribute to the lower incidence of inflamma-
tory diseases such as necrotizing enterocolitis in breast-fed
infants [44].

4.4. Impact of HMOs on Immune Cells. HMOs exert anti-
inflammatory effect by reducing the platelet-neutrophil com-
plex formation that contributes to a reduction in the neu-
trophil beta-2 integrin expression [44]. Specific HMOs serve

as anti-inflammatory components by inhibiting the leukocyte
rolling and adhesion to endothelial cells under dynamic
conditions [45]. AcidicHMOs affect cytokine production and
activation of cord blood derived T cells in vitro [46]. HMOs
help in developing the immune system, potentially leading to
a more balanced Th1/Th2 response (Figure 6).

Acidic HMOs may modulate postnatal allergen-specific
immune responses by suppression of Th-2 type responses
in atopy-prone individuals [47]. A randomized controlled
trial reported that the healthy term infants fed formulas
supplemented with 2’-FL reduced the cytokine levels similar
to those of a breast-fed reference group [48]. Infants born
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Figure 6: T-cell response in (a) absence of HMOs and (b) presence of HMOs. The modulation of the immune system by the HMOs leads to
a more balanced T-cell response.

by C-section and having a high hereditary risk for allergies
might have a lower risk to manifest IgE-associated eczema at
2 years when fed breast milk with FUT2-dependent HMOs
[49].

4.5. Growth and Survival by HMOs. A randomized con-
trolled study of healthy term infants reported that the formu-
las supplemented with 2’-FL were well tolerated, and 2’-FL
absorption profiles were similar to those of breast-fed infants.
There were no significant differences in weight, length, and
head circumference between infants fed human milk or 64.3
kcal/dL formulas from birth to 4months of age [50]. Another
randomized controlled trial of healthy infants indicated that
the formula with 2’FL and LNnT is safe, well-tolerated and
supports age appropriate growth [51]. A cohort study of
healthy mothers and infant pairs reported that the relatively
substantial variation inHMOs between the high and low 2'FL
clusters do not impact infant growth of either sex up to 4
months of age [52]. A study of Gambian mothers and infants
indicated that theHMO, 3 -sialyllactose, was a good indicator
of infant weight-for-age [53]. A study of Zambian HIV+
mothers and infants demonstrated that breastfeeding was
protective against mortality only in HIV exposed, uninfected
children with high concentrations of fucosylated HMOs [54].

5. The Journey Ahead

HMOs represent the next frontier in neonatal nutrition as
they constitute amajor component of the immune-protection
conferred by breast milk upon vulnerable infants. Progress
in clinical research has deemed supplementary provision of
HMOs an attractive alternative for newborns who cannot
be breast-fed. Although there have been significant break-
throughs in our knowledge about the HMOs, there are many
key questions that need to be answered. Basic science should
dictate the specific choice of HMOs and clinical data should
justify the need for supplementing the infant formulas with
them. Clinical research could be directed towards addressing

pertinent queries such as which are the specific HMOs, in
what quantity and for how long should they be administered.
Basic research has hitherto laid a firmgroundwork for clinical
research on HMOs, which in turn has engendered new
questions about their clinical implications.

“Science never solves a problem without creating ten more.”
George Bernard Shaw
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