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Internal Target for Real-Time Tumor
Tracking
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Abstract
Purpose: This work proposed a nearest neighbor estimation method to track the respiration-induced tumor motion. Methods:
Based on the simultaneously collected motion traces of external surrogate and internal target during the modeling phase prior to
treatment, we first obtain the nearest neighbors of the current surrogate in external space. Subsequently, the concurrent targets
in internal space are determined and used to estimate the current target position. The method was validated on 71 cases that
were from 3 open access databases. In addition, to evaluate the method’s estimation and prediction accuracy, we compared the
method with other works. Results: Except for 2 cases, the nearest neighbor estimation achieved the root-mean-square error of
<3 mm. The comparison indicated that the method had better estimation accuracy than polynomial model and good prediction
performance. Discussion: The 2 exceptive cases were further analyzed for failure causes. We inferred that one was because of
the lack of estimating new target in our method, and the other one was because of the mistake during data collection. Accordingly,
the potential solutions were suggested. Besides, the method’s estimation for surrogate outliers, effects of modeling length,
calibration, and extension were discussed. Conclusion: The results demonstrated nearest neighbor estimation’s effectiveness.
Except for this, the method imposes no restrictions on the modality of the pretreatment target images and does not assume a
specific correspondence function between the surrogate and the target. With only 1 critical parameter, this nearest neighbor
estimation method is easy to implement in clinical setting and thus has potential for broad applications.

Keywords
nearest neighbor estimation, respiration, moving tumor, real-time tumor tracking, radiation treatment

Abbreviations
2D, 2 dimension; 3D, three dimension; 4D, four dimension; US, ultrasound; CDS, continuous dynamical system; CT, computed
tomography; NNE, nearest neighbor estimation; PC, principal component; MRI, magnetic resonance imaging; RMSE, root-mean-
square error; ROI, region of interest; RPM, real-time position management; SVR, support vector regression.

Received: August 17, 2017; Revised: April 20, 2018; Accepted: June 12, 2018.

Introduction

By delivering a targeted high dose of radioactive rays, radio-

therapy kills malignant cells (eg, tumors) while sparing the

surrounding health tissues. Therefore, accurate target location

is of great importance in radiotherapy. Although modern med-

ical imaging technologies, for example, computed tomography

(CT), are used to assist physicians to locate the target prior to

treatment, real-time target tracing images during the treatment

are typically unavailable. In these cases, the motion induced by
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patients’ spontaneous respiration during treatment will

adversely affect therapy accuracy and efficiency, particu-

larly when the target locates in the thorax or abdomen. As

previously reported, the scale of induced motion typically

exceeds 20 mm,1,2 which can significantly deteriorate the

target coverage and increase the radiation damage to sur-

rounding normal structures.

To address this problem, respiratory motion is estimated and

compensated in real time during treatment. Studies concerning

the respiratory motion model have been conducted in the past

years.3-10 Conventionally, such respiratory motion models

comprise data from 2 spaces, that is, the internal target space

and the external surrogate space. In the modeling phase prior to

treatment, 2 types of data are simultaneously collected and the

correlation between them is modeled, whereas in the estimating

phase, only external surrogate data are collected, and the inter-

nal motion of the target is estimated based on the surrogate

combined with the model.

According to the correspondence between the target and the

surrogate, the model can be classified as direct or indirect: In

direct models, the location of internal targets is estimated as an

explicit polynomial,11-17 B-spline function11,18-24 or derivative

of the concurrent surrogate.14,25-27 This type of model is simple

and easy to implement. However, its estimation accuracy

greatly depends on the selected explicit function of correla-

tion/correspondence. Moreover, the underlying assumption of

this type models that the correlation between the internal and

external data can be determinately and constantly defined by

the selected function is not necessarily valid. Cyberknife Sys-

tem (Accuray Inc, Sunnyvale, California) introduced by

Schweikard et al28 is a typical application of direct models.

In this system, an infrared tracking system combined with

external markers, that is, infrared emitters, is used to obtain

the external surrogate data, and a stereo X-ray camera system

combined with internal markers of gold fiducials are used to

obtain the internal target data. The correlation between the

target and the surrogate is fitted as a linear, quadratic, or con-

strained fourth-order polynomial. According to Hoogeman et

al,16 the Synchrony Respiratory Tracking System (a subsystem

of the Cyberknife robotic treatment device) has accuracy rang-

ing from 0.2 to 1.9 mm in the superior–inferior direction, 0.1 to

0.9 mm in the left–right direction, and 0.2 to 2.5 mm in the

anterior–posterior direction. However, to keep up with varia-

tions in the respiratory pattern, the system needs updating para-

meters of correspondence function during treatment, and thus

introduces nontherapeutical radiation that may be detrimental

to patients.

Indirect correlation models3,25,29,30 do not directly relate the

internal target to the external surrogate through an explicit

function. Instead, the motions of both the internal target and

the external surrogate are correlated with a set of parameters

optimized by maximizing the match between the estimated

surrogate and the real surrogate.25 The indirect model is more

robust as long as the modeling phase takes into account suffi-

cient information concerning breathing cycles,31 and its esti-

mation accuracy is comparable to that of the direct model when

the selected parameters construct a complete description of the

motion. For example, King et al29 tracked liver motion using a

surface-based statistical shape model. By registering informa-

tion from preoperative CT or magnetic resonance images

(MRIs) to physical space, which was intraoperatively acquired

using a 3-dimensional (3D) ultrasound (US) system, this model

resulted in an approximately 5-mm root-mean-square error

(RMSE). Zhang et al further considered the deformable beha-

vior of the entire region of interest (ROI). Based on principle

component analysis combined with the motions of sparser sur-

rogates, that is, fiducial markers or the diaphragm, they pro-

posed to reconstruct the motion field embracing all voxels in

ROI and estimate 3D deformable motions. It was reported that

a median error magnitudes <2.63 mm can be achieved.32

Most current models, as introduced above, require a prior

assumption about the pivotal parameters depicting the respira-

tory motion or the definite correspondence function, whether

explicit or implicit. However, such assumptions may be easily

violated by great interindividual or interfraction variations.25

Herein, we present an indirect model based on a nearest neigh-

bor estimation (NNE) method using 2 types of tracking data

collected from the external surrogate space and the internal

target space. In this method, no specific correspondence func-

tion between the surrogate and the target was assumed a priori.

The only 2 assumptions are that the trajectories of the surrogate

and the target are continuous, bounded, and intercorrelated, and

the system is a quasi-determinate system with memory of the

past. Subsequently, based on the synchronization principle and

nearest neighbor principle, estimation rules are constructed

with careful consideration of different situations involving the

current surrogate. The proposed method has been validated on

several open access databases.

Notably, in the presented study, only a single-target point,

which is typically the tumor center defined by the physician

prior to treatment, is concerned for the estimation of motion.

During treatment, this point is used as a reference point whose

movement is followed by the treatment beam, similar to the

Cyberknife and TrackBeam33 (a multileaf collimator-based

beam tracking system; Initia Ltd, Petah Tikva, Israel) systems.

Considering the deformability of human tissues, other models

based on the motion field for the entire ROI have also been

proposed.32 Indeed, the motion field method is intriguing. Nev-

ertheless, this method imposes a high demand on the instru-

ment to identify the trajectory of each voxel in the entire ROI.

Such instruments are typically unavailable in most hospitals in

China. Therefore, the proposed NNE method is more applica-

ble to the commonly used instruments (eg, Cyberknife) in Chi-

nese hospitals.

The rest of the manuscript is organized as follows: Details

of the NNE method are described in the second section. Vali-

dation experiments and results are presented and analyzed in

the third section. In the fourth section, we further discuss the

exceptive cases in which NNE method fails and suggest

potential solutions. The study’s conclusions are presented in

the fifth section.
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Methods

The proposed NNE method is applicable to the case in which

both the external and the internal signals are sequences of

positions in real space. In this situation, the correspondence

model is a mapping from external space to internal space.

Considering the topological ductility of human soft tissues and

the limited range of respiratory motion, it is reasonable to

assume that (1) trajectories of the surrogate and the target are

continuous, bounded and intercorrelated and (2) the system is a

quasi-determinate system with memory of the past. Therefore,

it is not difficult to infer that if the surrogate travels to a loca-

tion near to a certain past one, the target will also travel to the

neighborhood of the target at that time. Thus, based on the

synchronized surrogate and target data collected simultane-

ously in the modeling phase, we construct the following rules

in estimation phase:

Denoting the surrogate and the target in modeling phase as

ui ¼ (uxi, uyi, uzi)
T, (i ¼ 1,2, . . . , N) and vi ¼ (vxi, vyi, vzi)

T,

(i ¼ 1,2, . . . , N), respectively, we construct a one-to-one map-

ping set as C:¼ {(ui, vi) | i ¼ 1,2, . . . , N} by aligning in time.

For a current u0j during the estimating phase, we provide 3

different estimating rules according to different situation of

u0j location relative to the surrogate cloud in modeling phase:

(i) In the case that u0j is inside the cloud, we first search in

surrogate space for M nearest neighbors of u0j and con-

struct a subset Fj � C as,

Fj :¼ fðut; vtÞj kut � u0jk � E and t 2 f1; 2; � � � ;Ngg; ð1Þ

in which k k is the Euclidean distance and E equals to the

Mth nearest distance between ui and u0j. Subsequently, vts in

Fj are used to estimate the location of current internal target

v0j as.

~v0j ¼
1

M

X
ðut ;vtÞ2Fj

vt: ð2Þ

(ii) In the case that u0j lies outside the cloud, whereas the

previous u0j�1 is in the cloud, we search for the neigh-

bors of uj
0
�1 and construct Fj�1 � C as

Fj�1 :¼ fðut; vtÞj kut � u0j�1k � E and t 2 f1; 2; � � � ;Ngg;
ð3Þ

and correspondingly, the estimation of v0j is modified as

~v0j ¼
1

M

X
ðut ;vtÞ2Fj�1

vtþ1: ð4Þ

(iii) In the case that both u0j and u0j�1 lie outside the sur-

rogate cloud in the modeling phase, we project the

original 3D surrogate space into a 2-dimension (2D)

singular subspace. That is, given the N�3 matrix U ¼

[u1,u2, . . . ,uN]T representing the surrogate cloud in

modeling phase, U can be decomposed as

U ¼
X3
p¼1

spIpðrpÞT ; ð5Þ

in which Ip 2 RN and rp 2 R3 are left- and right-singular vec-

tors, respectively, and s denotes the singular value sorting as

s1 > s2 > s3. By ignoring the direction with the minimal s,

that is, r3, we project both U and u0j onto a 2D subspace with

orthogonal bases r1, r2. That is, by multiplying u0j and U by r1

and r2, we obtain u0j
2D and U2D. Subsequently Fj � C will be

constructed as

Fj :¼ fðu2Dt ; vtÞj ku2Dt � u0t
2Dk � E and t 2 f1; 2; � � � ;Ngg

ð6Þ

in which k k is the Euclidean distance in the projected

2D subspace. Finally, v0j is estimated in the same way as in

Equation 2.

Rules (2) and (3) aim to address the situation in which the

current surrogate u0j during the estimation phase is out of the

motion range during the modeling phase. Specifically, rule (2)

addresses the outlier using a temporal correlation when the dis-

turbance is occasional, whereas rule (3) addresses more persis-

tent disturbances. Specifically, when outliers continually appear,

this rule suggests that there may be an overall shift, that is, the

surrogate may be drifted by an external force that is irrelevant to

breathing or internal motion. Since the variance in the cloud

along the minimum singular vector direction is minimum, an

interruption along this direction makes the surrogate more easily

to step out of the cloud compared to the other 2 directions.

Therefore, we compress the original 3D surrogate space into the

2D singular subspace (the 2D subspace comprising 2 orthogonal

vectors with 2 primary singular values) to filter out the shift.

To determine whether a surrogate point is inside or outside the

cloud, we defined the corresponding range for each direction as

½umin þ 0:1� s; umax � 0:1� s�, in which umin and umax are the

minimum and maximum values of the modeling surrogates,

respectively, along the corresponding direction, and s is their stan-

dard deviation along the same direction. Only when a surrogate

point falls into range in all 3 directions is the surrogate labeled

inside the cloud; otherwise, the surrogate is labeled as an outlier.

This method is referred to as the NNE method. Taking

M ¼ 4 for example, this method is illustrated in Figure 1. This

method has no specific restrictions on the modality of the tra-

cing data. Thus, any tracking device, for example, US imaging

or X-ray imaging, can be used prior to treatment.

In addition, there is only 1 critical parameter, that is, M. To

select an appropriate M, several independent variables, includ-

ing the respiratory rates, sampling rates, and the modeling

phase duration, must be considered. When the sampling rates

are less than 100 times the respiratory rates, we suggest that M

is set less than the total number of breath cycles in the modeling

duration, which implies roughly 1 neighbor in each cycle. For

example, as to respiratory rate 15/minute, sampling rate 15 Hz,

Zhang et al 3



and modeling duration 5 minutes, M should be <75 and represent

a trade-off between fit goodness and noise tolerance. When the

sampling rates are higher, we suggest a higher M to take into

account more than 1 point labeled as neighbors in 1 breath cycle.

Validation Experiments and Results

Data and Setting Descriptions

The proposed NNE method was applied to 3 open access data-

bases shared on the website of the Institute of Robotics and

Cognitive Systems at the University of Lübeck.8,34,35

Database I. This database includes 7 sets of 3-dimension bimo-

dal liver motion traces induced by spontaneous breathing col-

lected from 6 humans (all males, aged 23-30). In each set, 1

external marker and 1 internal marker are employed to label

the external surrogate and the internal target, respectively. The

external traces were recorded using the infrared tracking

system, and the internal traces were simultaneously obtained

by 4-dimensional (4D) US imaging. These 2 types signals were

aligned in time with sampling or resampling rates of

17.5*21.3 Hz by the data provider. All signals in this database

are 6*7 minutes in length.

Figure 1. Illustrations of the proposed nearest neighbor estimation method with 3 estimating rules (A-C). Empty circles represent modeling

phase clouds in corresponding spaces, empty triangles indicate clouds whose nearest neighbors are sought, solid circles indicate the neighbors,

and asters represent the final estimations for current targets. (A) Rule (1) applied when the current surrogate u0j lies inside the surrogate cloud of

the modeling phase. (B) Rule (2) applied when the current surrogate u0j lies outside the surrogate cloud of the modeling phase, while its previous

point u0j� 1 lies inside the surrogate cloud. (C)** Rule (3) applied for the situation in which u0j and u0j � 1 both lie outside the surrogate cloud.

In this case, the 2D subspace is constructed using the first and second singular vectors of the surrogate cloud in modeling phase. *For a clearer

vision, the x, y, and z-axes have been modified to different scales. **In this situation, the surrogate cloud is exactly the same as those in (A) and

(B), whereas the axes have been rotated to the direction of 3 singular vectors. Additionally, the new x, y, and z-axes have been modified to

different scales for a clearer vision effect.
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Database II. This database includes 2 sets of 3-dimensional

bimodal liver motion traces induced by a simulated respiration

collected from a pig in 2 sessions. In each set, 6 external mar-

kers labeled 6 potential external surrogates and 4 implanted

gold fiducials marked 4 potential internal targets (Please refer

to the study by Ernst8 for detailed position information.) The

external traces were recorded using the infrared tracking sys-

tem, and the internal traces were simultaneously obtained

through X-ray imaging. Both types of signals had been aligned

in time with sampling or downsampling rates of 15 Hz. The

data set no. 1 is approximately 10 minutes in length and the

data set no. 2 is 2 minutes in length.

Database III. This database includes 8 sets of 1-dimensional

bimodal liver motion traces induced by free breathing col-

lected from 8 humans (4 females and 4 males, aged 21-31).

In each set, 2 external markers, placed at the lower end of the

sternum and next to the navel, respectively, labeled 2 poten-

tial surrogates, and 1 internal marker tracked the internal tar-

get. Traces of surrogates were obtained using infrared

tracking, and the trace of the target was simultaneously

obtained through 4D US imaging. The provider aligned all

signals in time with sampling or resampling rates of 17 Hz.

Because the data provider provided the first principal compo-

nents (PCs) of the traces, the motion traces were assumed to

be in 1 dimension, thus only estimating rules (1) and (2) in the

methods section were applied to this database. All signals are

15*20 minutes in length.

To simulate the modeling phase and estimating phase in real

applications, each original consecutive series were segmented

into 2 sections. The first sections were used to construct one-to-

one mapping sets for modeling phase, and the second sections

were used for estimation and verification. For signals longer

than 6 minutes, the modeling length was fixed to 5 minutes,

while for shorter signals, the series were segmented into 2

sections with equal length. For the number of neighbors, that

is, M was set as 5*20 in the presented study.

Evaluation Measurements

Defining the estimation error at time index j as

ej ¼ k~v0j � v0jk; ð7Þ

in which v0j represents the actual value and ~v0j is the correspond-

ing estimation, we investigate the median (denoted as e(50)), the

75th percentile (denoted as e(75)), the 95th percentile e(95), and

99th percentile e(99) of the estimation errors.

Considering that the motion scale may vary from target to

target, we also investigate the motion scale for each target,

defined as
r ¼ max

j1 6¼j2
ðkv0j1 � v0j2kÞ; ð8Þ

in which j1 and j2 represent 2 different time indices, thus v0j1
and v0j2 represent 2 arbitrary and different points in the estimat-

ing phase.

In addition, to obtain an overall evaluation for the entire

estimating duration, we also calculate the commonly used

RMSE for each data, defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L

XL
j¼1

e2j

vuut ; ð9Þ

where L denotes the number of the data points upon which the

estimation was performed.

Finally, assuming that a 5-mm error is unacceptable,36-38 we

define the false ratio f as

f ¼
#

1�j�L
ðej � 5mmÞ

L
; ð10Þ

in which # represents the number.

Results

Results for Databases I and II

In databases I and II, 3D traces were given, so the estimation

errors were calculated in 3D. The results for database I are

listed in Table 1.

Notably, in database II, for each data set, there are 6 surro-

gates and 4 targets. We made all potential combinations

between surrogates and targets, obtaining 48 (2 � 6 � 4)

implementations in total for database II. The results for data-

base II are presented in Table 2.

As shown in Tables 1 and 2, except for nos. 4 and 5 in

database I, the proposed method performs well in general, since

RMSEs in 3D are <3 mm and false ratios are <0.06, and the

values for the 75th percentile are much less than the motion

scales, suggesting that the estimation can greatly improves the

therapy accuracy. Further investigations of 2 exceptions are

provided in the “Discussion” section.

In addition, Table 2 shows that the estimation error varies

from surrogate to surrogate, even for the same target. For

example, for data no. 1, estimations from surrogate no. 3, 5,

and 6 are much better than those from no. 1, 2, and 4, indicating

that the placement of the surrogate affects estimation effi-

ciency. To obtain a better target estimation, the surrogate

Table 1. Estimation Errors’ Statistics for Databases I.a

No.

e(50),

mm

e(75),

mm

e(95),

mm

e(99),

mm

r,

mm

RMSE,

mm f

1 1.49 1.86 2.60 3.64 13.10 1.62 0.0008

2 1.22 1.66 2.46 2.91 14.29 1.53 0.0016

3 0.71 1.22 1.79 2.17 32.48 1.02 0.0000

4a 1.57 2.68 18.39 23.38 44.36 6.80 0.1326

5a 3.26 5.94 9.68 14.41 34.86 5.05 0.3697

6 0.70 0.86 1.22 1.65 8.50 0.76 0.0000

7 1.22 2.18 3.99 5.17 22.46 2.00 0.0152

Abbreviations: RMSE, root-mean-square error.
aThese 2 cases are not as good as the others. Further investigation will be given

in the discussions section.
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should be placed at a position close to the target or whose

motions are more correlated with those of the target.

Results for Database III

In database III, the traces were shown in 1 dimension (the first

primary component), thus the estimation errors were calculated

in 1 dimension, and estimation rule (2) in the Methods section

was not applied. In this database, for each data set, there are 2

surrogates and 1 target, thus all potential combinations between

surrogates and targets were made, generating 16 (8 � 2 � 1)

implementations in total for database III. All 16 results for

database III have been listed in Table 3.

As shown in Table 3, on one hand, except for 4 cases, all the

RMSEs are <3 mm and the false ratios are <0.06, and with the

values for the 75th percentile far less than the motion scales, the

estimation can greatly improve the therapy accuracy.

On the other hand, the number of exceptions (4) is more than

that in databases I and II (2). We attributed this phenomenon to 2

reasons: (1) This database only provided 1-dimension tracings,

thus the information is not as sufficient as in databases I and II.

(2)According to the data providers,35 in these experiments, after

2 minutes of freely breathing, the patients were told to produce

breathing artifacts by coughing, sneezing, harrumphing, or

speaking every 15 seconds; nevertheless, the modeling phase

and the estimation phase do not necessarily contain the same

type of artifacts. Thus, the proposed method still performs well

on this database. The results of Database I*III (i.e. Table 1*3)

were also plotted in a supplementary figure.

Comparison with other methods

In this subsection, we compare the proposed NNE with several

other methods that have been applied to the human free breath-

ing data, that is, databases I and III. In Table 4, we compared

the results of the presented study with those of the polynomial

and the support vector regression (SVR)-based methods for

database I.13 Since Ernst et al13 only listed the results for the

first PC of the estimated target tracings, we processed in the

same way for a better comparison. The best estimation has been

printed in bold for each data set.

Table 2. Estimation Errors’ Statistics for Databases II.

Data Sur Tar

e(50),

mm

e(75),

mm

e(95),

mm

e(99),

mm

r,

mm

RMSE,

mm f

1 1 1 1.87 3.33 4.74 5.18 13.26 2.60 0.0254

2 1.84 3.59 5.02 5.48 11.92 2.74 0.0530

3 1.80 3.22 4.56 4.98 13.06 2.50 0.0086

4 1.87 3.25 4.53 4.95 14.25 2.52 0.0077

2 1 1.57 2.85 4.31 4.77 13.26 2.28 0.0030

2 1.55 3.00 4.55 4.95 11.92 2.39 0.0084

3 1.49 2.77 4.18 4.58 13.06 2.20 0.0005

4 1.57 2.78 4.16 4.58 14.25 2.23 0.0007

3 1 0.85 1.33 1.81 2.38 13.26 1.06 0.0000

2 1.03 1.55 2.07 2.56 11.92 1.25 0.0000

3 0.78 1.24 1.75 2.45 13.06 1.01 0.0000

4 0.80 1.30 1.79 2.52 14.25 1.04 0.0000

4 1 1.84 2.99 4.05 4.52 13.26 2.34 0.0005

2 1.87 3.25 4.34 4.76 11.92 2.48 0.0047

3 1.78 2.91 3.98 4.39 13.06 2.28 0.0000

4 1.86 2.88 3.91 4.30 14.25 2.28 0.0000

5 1 0.74 1.09 1.55 2.28 13.26 0.49 0.0000

2 1.01 1.29 1.65 2.14 11.92 1.09 0.0000

3 0.68 0.99 1.48 2.29 13.06 0.88 0.0000

4 0.70 1.01 1.53 2.54 14.25 0.92 0.0000

6 1 0.83 1.44 2.30 2.82 13.26 1.21 0.0000

2 1.03 1.49 2.61 2.92 11.92 1.36 0.0000

3 0.82 1.38 2.09 2.76 13.06 1.16 0.0000

4 0.83 1.40 2.13 2.95 14.25 1.19 0.0000

2 1 1 0.28 0.52 0.78 0.97 10.68 0.41 0.0000

2 0.28 0.54 0.94 1.28 12.30 0.47 0.0000

3 0.30 0.59 0.91 1.17 12.25 0.47 0.0000

4 0.30 0.55 0.88 1.16 11.51 0.46 0.0000

2 1 0.58 0.92 1.38 1.72 10.68 0.75 0.0000

2 0.56 0.87 1.27 1.53 12.30 0.70 0.0000

3 0.61 0.95 1.36 1.60 12.25 0.76 0.0000

4 0.55 0.86 1.26 1.47 11.51 0.69 0.0000

3 1 0.43 0.82 2.06 2.67 10.68 0.90 0.0000

2 0.45 0.92 1.95 2.34 12.30 0.88 0.0000

3 0.47 0.94 2.11 2.67 12.25 0.95 0.0000

4 0.47 0.89 1.99 2.46 11.51 0.89 0.0000

4 1 0.34 0.56 0.89 1.19 10.68 0.47 0.0000

2 0.35 0.59 1.02 1.34 12.30 0.52 0.0000

3 0.38 0.65 1.01 1.39 12.25 0.53 0.0000

4 0.37 0.60 0.98 1.34 11.51 0.52 0.0000

5 1 0.47 0.84 1.83 2.15 10.68 0.83 0.0000

2 0.48 0.91 1.50 1.76 12.30 0.75 0.0000

3 0.51 0.96 1.72 2.04 12.25 0.82 0.0000

4 0.48 0.88 1.43 1.72 11.51 0.73 0.0000

6 1 0.60 1.04 2.08 2.34 10.68 0.97 0.0000

2 0.61 0.99 1.60 1.82 12.30 0.84 0.0000

3 0.66 1.06 1.90 2.14 12.25 0.94 0.0000

4 0.60 0.96 1.60 1.77 11.51 0.83 0.0000

Abbreviations: RMSE, root-mean-square error; Sur, surrogate; Tar, Target.

Table 3. Estimation Errors’ Statistics for Databases III.

Data Sur

e(50),

mm

e(75),

mm

e(95),

mm

e(99),

mm

r,

mm

RMSE,

mm f

1 1 0.59 1.02 1.83 2.48 11.95 0.91 0.0000

2 1.09 1.75 2.71 3.34 11.95 1.46 0.0002

2 1 1.01 1.78 3.44 4.67 25.23 1.66 0.0057

2a 1.77 3.27 6.56 9.00 25.23 3.13 0.1185

3 1a 1.49 3.26 6.28 8.99 29.10 3.01 0.1067

2a 5.62 7.61 10.15 12.36 29.10 6.30 0.5838

4 1 1.53 2.60 4.00 5.07 12.47 2.14 0.0111

2 2.31 3.34 4.84 5.78 12.47 2.76 0.0398

5 1a 5.66 7.46 9.54 10.65 22.72 6.06 0.5843

2 1.93 3.09 4.75 7.32 22.72 2.64 0.0382

6 1 1.31 2.25 4.45 6.87 24.73 2.22 0.0323

2 1.05 1.92 4.30 6.22 24.73 1.98 0.0280

7 1 0.89 1.78 2.99 5.46 30.47 1.65 0.0145

2 0.55 0.97 1.85 3.22 30.47 1.06 0.0038

8 1 0.87 1.65 3.40 5.20 28.42 1.61 0.0121

2 0.51 0.91 1.65 2.42 28.42 0.86 0.0001

Abbreviations: RMSE, root-mean-square error; Sur, surrogate.
aThese 4 cases are not as good as the others.
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As shown in Table 4, the proposed NNE method performs

better than the polynomial model and equally well compared to

the SVR model for all patients except patient no. 4. However,

the NNE method is much easier to implement in the clinical

settings than SVR model. In term of time complexity, NNE is

of the order less than square of the sample size, O(N2), while

SVR is of the order cube of the sample size, O(N3). For a

typical sample length of N ¼ 1022, NNE takes 1.608 seconds

to build the model and estimate target motion, compared to

79.748 seconds for SVR (with the grid search method provided

by Faruto)39,40 on Matlab 2013a (Windows 7, CPU 3.10 GHz).

We also compared the performances of the NNE method

and those proposed in study by Durichen et al41 on database

III. To maintain consistency with study by Durichen et al,41 we

predicted the subsequent no. 1*5 sampling points based on

modeling of the first 30 seconds. Only minor modifications of

the methods are needed. Specifically, we first searched M

(M ¼ 5) nearest neighbors of the last point of the modeling

phase in the surrogate space, and the subsequent no. 1*5

samples of their concurrent target were used for predictions.

Root-mean-square errors across patients are listed in Table 5,

and the best prediction is indicated in bold. Thus, the proposed

NNE method resulted in the best prediction accuracy compared

to the others.

Discussion

Detailed Investigation of 2 Failure Cases in Database I

Since database I provides the complete 3D tracings, we provide

a more detailed investigation for data no. 4 and 5 to character-

ize the poor performances and suggest potential solutions in

this section.

Estimation error of the 2 cases. In Figure 2, the estimation errors

for data no. 4 and 5 were plotted versus time. As shown in

Figure 2, although the method in the presented study fails in

both cases, these situations are not exactly the same. For no. 4,

small errors and large errors alternately appear, suggesting that

the performance is not always bad and the performance dete-

riorates only in certain occasions. As to no. 5, although the

error maximum is not the greatest, for most part of time the

error exceeds 3 mm, suggesting that the proposed method is

completely unsuitable for this case. We further investigate why

the NNE method does not perform well in these 2 cases.

Analysis for the failure causes. The greatest estimation error for

data no. 4, occurring at exactly 18.0577 seconds referencing to

the first point in estimation phase, is illustrated in Figure 3A.

From this figure, we inferred that the error of data no. 4 was

because of a fairly new state which wasn’t recorded in the

modeling phase.

As shown in Figure 3A, although the current surrogate lies

inside the surrogate cloud in modeling phase, the concurrent

actual target lies outside the modeling target cloud. In the case

that data quality is guaranteed, since both the current surrogate

Table 4. The RMSE (mm) Comparison for Database I.a

Data ID The NNE Method Polynomial13 SVR13

1 1.0749 1.2323 1.0562

2 0.9846 1.1589 1.0405

3 0.8046 1.2553 0.8854

4 4.3218 3.3128 1.8003

5 2.0687 2.2053 1.9107

6 0.5813 0.8307 0.5316

7 1.5221 1.7896 1.7746

Abbreviations: NNE, nearest neighbor estimation; RMSE, root-mean-square

error; SVR, support vector regression.
aOnly results of the first principal component were given in this table, and the

minimum RMSE for each data is printed in bold.

Table 5. RMSE (mm) Over All Patients in Database III for Subse-

quent No. 1*5 Samples Predictions.a

No. NNE DP-wLMS41 SVR-wLMS41 MTGPSE-best
41 MTGPSE-NLML

41

1 0.339 2.148 1.854 1.854 2.465

2 0.775 2.168 1.862 1.860 2.465

3 0.885 2.223 1.889 1.871 2.468

4 1.180 2.305 1.946 1.892 2.482

5 1.368 2.391 1.999 1.931 2.510

Abbreviations: DP, dual-polynomial model; MTGP, multitask Gaussian Pro-

cess; NLML, negative logarithmic marginal likelihood; NNE, nearest neighbor

estimation; RMSE, root-mean-square error; SE, squared-exponential; SVR,

support vector regression; wLMS, wavelet-based least mean squares

algorithm.
aThe minimum RMSE for each data is printed in bold.

Figure 2. Estimation error versus time for data nos. 4 and 5 in data-

base I. The x-axis represents time and y-axis represents estimation

error in 3D space. The black dotted line denotes the preferable 3-mm

threshold. Note that the beginning of the estimating phase is set as 0

seconds.
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and estimated concurrent target are close to the end of corre-

sponding clouds, it is likely that an extreme event occurred;

therefore, we consider this case as extrapolation. Intrinsically,

the proposed NNE is an interpolation method, suggesting that

the estimation for the current state is always the interpolation of

the former similar states in the modeling phase. Therefore, for a

current state without sufficient similar former states, the perfor-

mance will deteriorate. Indeed, for a new state in surrogate

space, the presented method involves the rules (2) and (3) in the

Methods section to generate the surrogate cloud in the modeling

phase. This method works when the new surrogate state reflects

interruptions and the target still lies in target cloud in modeling

phase. However, the method fails when the target to estimate is

rather new for the modeling target cloud. In other words, the

proposed method shows the insufficiency in extrapolating or

expecting a new state far from previous states. Most poor per-

formances for data no. 4 result from this type of situation.

A representative example for great estimation error occasion

for data no. 5 is illustrated in Figure 3B. This event occurs at

12.8504 seconds after the first data point in estimation phase.

For good visualization, the target space in Figure 3B has been

rotated to directions of singular vectors, denoted as PC1, PC2,

and PC3, and axes have been adjusted to the same scale. Deno-

tations are exactly same as those in Figure 1. Gray markers in

the bottom of the target box represent the projection onto the

2D principle component subspace. In addition, since the esti-

mation and the actual target are both hidden in the cloud, we

add arrow annotations to point them out.

From Figure 3B, we inferred that the reason of the error for

no. 5 was the mistake during data collection. It is because that,

in the target space of Figure 3B, there are several holes in the

target cloud. Even in the projected 2D principle component

subspace, the estimated value (~v0j2D) and the actual value

(v0j2D) are separated by some hollow structures. In addition,

the error in PC1 direction is much less than that in PC2 direc-

tion. This is not common for a continuous dynamical system

(CDS) with only 1 driving force (ie, breathing). Besides, in

such a CDS, 2 correlating signals (surrogate and target) are

supposed to have a descending correlation along with the

decreasing singular value (s), because s refers to the variance

in motion component along its corresponding PC direction.

Table 6 shows that s2 of data no. 5 is the greatest among all

s2 s; however, its rtar2�sur1 is disproportionately low. It is very

evident when comparing the data no. 5 with no. 2. It suggests

that the target’s motion in PC2 direction might result from

other attributions beyond respiratory motions. Therefore, we

inferred that the target space had been shifted along PC2 direc-

tion during the experiment, likely reflecting the nonstatic US

Figure 3. Illustration of 2 representative cases with greatest estimation errors. A, is at 18.0577 seconds for data no. 4 and (B) is at 12.8504

seconds for data no. 5. Denotations are exactly same as those in Figure 1.
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probe or rotation of the templates, as the data providers previ-

ously reported.8

Finally, we suggest a few potential solutions to improve

the performance. In addition to guarantee the quality of

the data, we also suggest: (1) including more potentially

extreme events in modeling phase, for example, asking the

patient to breathe deeply several times in modeling phase so

that there are cases of extrapolation as least as possible and

(2) employing an explicit extrapolation correspondence

function which will work when the current surrogate

approaches the boundary of the cloud. Nonetheless, the pro-

posed NNE method can achieve a desirable good perfor-

mance, and further modification should be a trade-off

between performance and efficiency.

Estimation of Surrogate Outliers

The proposed NNE method provides solutions to estimate the

internal target motion when the surrogate runs outside its prior

motion range, that is, rules (2) and (3) in Methods section.

Herein, to demonstrate the performance of NNE on the surro-

gate outliers, we plot in Figure 4 a representative example of

rule (3). By using rule (3), we pulled the outliers back to the

modeling cloud.

This event occurs at 35.7380 seconds after the first point

of estimation phase for data no. 2 in database II. In this

example, the current surrogate u0j and its previous surrogate

u0j�1 are both outliers. By ignoring the motion component

along the direction of the minimum singular vector, the

current surrogate falls in the motion range of modeling

phase. As shown in Figure 4, the estimation error

e35:7380s ¼ jj~v
0
35:7380s � v035:7380sjj is 0.2 mm, suggesting a good

estimation.

Effects of Modeling Length and Number of Neighbors

In clinical application, the length of the modeling phase is quite

important. Although we use 5 minutes in most cases of this

research, it does not mean that 5 minutes is obligatorily

required. We also tried different length in the data except for

those of only 2 minutes long. We present the result in the

Figure 5. According to Figure 5, except for data no. 2 in data-

base I, although the modeling length affects the results,

the effect is not that great. It is more evident in Figure 6.

The maximum RMSE variation is <3 mm for most instances.

For the data no. 2 in database I, the high RMSE is brought

Table 6. Normalized Singular Value for Database I.a

Data No.

Target Surrogate Correlation

s1 s2 s1 rtar2-sur1

1 0.705 0.177 0.880 �0.03

2 0.649 0.248 0.835 �0.89

3 0.871 0.096 0.786 �0.04

4 0.800 0.119 0.786 �0.14

5 0.647 0.300 0.892 �0.09

6 0.719 0.195 0.729 0.37

7 0.803 0.154 0.885 �0.14

as1 and s2 are the normalized singular value along PC1 and PC2. rtar2-sur1 is the

linear correlation coefficients between the target PC2 and the surrogate PC1.

“PC” is the principal component.

Figure 4. Illustration of the nearest neighbor estimation method applied to a target estimation at 35.7380 seconds for the combination of

surrogate 3 and target 2 of data no. 2 in database II. Denotations are exactly same as those in Figure 1.
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by the extreme values in 2*5 minutes. For further investi-

gation, we tried various modeling phases as Table 7 listed.

As seen, even under the same modeling length, the RMSE

was greatly reduced when taking the 4 to 5 minutes into

modeling. This further proves that the 4 to 5 minutes

includes the “extreme states.”

In fact, the modeling phase including enough information

is what really matters. Therefore, in practical use, we would

suggest the patient to breathe as deeply as possible in the

modeling phase. After that, 40 breath cycles are considered

statistically reliable.

The number of neighbors (M) is another important para-

meter in our method. To examine its influence on the model

performance, we tried different M in our model. The result is

presented in Figure 7. It showed that, for most data, the results

were not that sensitive to M <100.

Figure 5. A, Root-mean-square error with different modeling length, (B) a zoomed in image with the RMSE of 0*7.5 mm.

Figure 6. The maximum RMSE variation (D) when modeling length varies from 1 to 5 minutes. RMSE indicates root-mean-square error.
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Calibration and Extension of the NNE Method

For a good performance of the NNE method, one should ensure

that the surrogate signal in the estimating phase is comparable

to what is in the modeling phase. The camera should be fixed,

and the patient should remain motionless as long as possible.

However, the practical radiation treatment typically takes time.

It is necessary to apply a calibration to avoid the accumulated

drifts. Considering the Real-time Position Management (RPM)

system (Varian Medical Systems, Palo Alto, California) as an

example, we can place an extra RPM marker block at a rela-

tively static location that is hardly affected by respiration, for

example, the shoulder of the patient, as the reference box. In the

modeling phase, the 3D coordinates of the reference box are

recorded. Subsequently, at the beginning of the estimating

phase, or whenever the experimenter thinks necessary, the

location of the reference box is acquired and is compared to

the original one. If there is a discrepancy, a transformation

matrix between the 2 locations of the reference box is calcu-

lated and treated as the transformation matrix between the 2

different relative coordinates. Thus, the trajectories in the

modeling phase and in the estimating phase become compara-

ble. In the entire procedure, the reference box and the detecting

box are fixed on the patient; however, the patient’s position

relative to the camera is not strictly restricted.

The NNE method introduced in the presented study can be

extended to nonlocation surrogates. Considering the bellows

system, which outputs the respiratory parameters, as an exam-

ple, we can replace the current surrogate space with a state

space, constructed based on different respiratory parameters,

or phase space, constructed using the delay embedding method.

Accordingly, the estimation rule needs modification to refer to

the trajectory features in state space. This will be investigated

in subsequent studies.

Future Work

Our future work involves the following 2 problems.

Limitation of the current target motion imaging modalities. Cur-

rently, the most important target motion imaging modalities are

4D-CT2 and 4D-MRI.42 Because they cannot provide real-time

3D images as the 4D-US, our primary future work is to resolve

the problem of sparse sampling of the internal target.

One potential solution is the big data technique. We are now

collaborating with 3 hospitals to build a respiratory database of

4D-CT, 4D-MRI, and 4D-US images, mainly on the splanch-

nocoele. With these data, we would try machine-learning tech-

nique to construct the motion model and then realize the

interpolation. After that, the basic nearest-neighbor strategy

will be applied to correlate the surrogate and the target. Once

we solve the problem of sparse sampling of the internal target,

the basic idea of synchronization and motion continuity,

as presented in this manuscript, would still be the key to the

final destination.

Table 7. Root-Mean-Square Error With Various Modeling Phases for

No. 2 of Database I.

Modeling phase (modeling length ¼ 1 min) 4-5 min 0-1 min

RMSE 16.16 mm 15.24 mm

Modeling phase (modeling length ¼ 2 min) 3-5 min 0-2 min

RMSE 18.68 mm 21.43 mm

Modeling phase (modeling length ¼ 3 min) 2-5 min 0-3 min

RMSE 19.91 mm 28.77 mm

Modeling phase (modeling length ¼ 4 min) 1-5 min 0-4 min

RMSE 5.16 mm 30.9 mm

Abbreviations: min, minutes; RMSE, root-mean-square error.

Figure 7. The RMSE (root-mean-square error) of our model with different M (number of neighbors). The modeling length was 1 minute for no.

24*48 cases in database II and 5 minute for all of the others.
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Different surrogate–target correlations between deep and free
breath. The involved muscles for intentional deep breath and

free breathing are different. That may lead to surrogate–target

correlation difference between modeling phase and actual

treatment. In other words, it may result in a one-to-many

mapping. One potential solution is to increase the dimension

of data space. For example, by introducing an extra dimen-

sionality that distinguishes deep and free breath, we can turn

the target/surrogate space into a 4D space. Thus, the one-to-

many mapping in 3D space is unfolded in 4D space. As to the

extra dimensionality, we suggest using electromyography col-

lected from the surface of the representative muscle, which is

involved differently in deep or free breath, for example, inter-

nal intercostal muscles,43 sternocleidomastoid,44 and abdom-

inal muscles.45

Conclusions

In this article, we propose an NNE method to estimate the

current internal target position based on the concurrent exter-

nal surrogate. Specifically, nearest neighbors of the current

surrogate in surrogate cloud of modeling phase are first

obtained; subsequently, their synchronizing targets are deter-

mined and used for calculating the estimated value. Accord-

ing to verification results on several open access databases,

the NNE method is proved effective. Because the algorithm is

easy to implement, it has high potential in real-time tumor

tracking during radiotherapy. We also suggest potential solu-

tions to further improve the performance, including embra-

cing more deep breaths in the modeling phase, incorporating

an extrapolating function, and so on. However, these solutions

only constitute supplementary methods that should be

adopted with careful consideration of the trade-off between

performance and efficiency.

Further validation of the proposed method is needed, in

which more bimodal motion traces are simultaneously col-

lected from more patients.
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