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Abstract

Globally, healthcare-associated infections (HAI) are the most frequent adverse outcome in healthcare delivery. Although bacte-
rial biofilms contribute significantly to the incidence of HAI, few studies have investigated the efficacy of common disinfectants 
against dry-surface biofilms (DSB). The objective of this study was to evaluate the bactericidal efficacy of seven Environmental 
Protection Agency (EPA)-registered liquid disinfectants against DSB of Staphylococcus aureus and Pseudomonas aeruginosa. 
We hypothesized that overall, there will be significant differences among the bactericidal efficacies of tested disinfectants by 
product type and active ingredient class. We also hypothesized that depending on the species, higher bactericidal efficacies 
against DSB will be exhibited after 24 h of dehydration compared to 72 h. Wet-surface biofilms of S. aureus and P. aeruginosa 
were grown following EPA-MLB-SOP-MB-19 and dehydrated for 24 and 72 h to establish DSB. Seven EPA-registered disinfect-
ants were tested against dehydrated DSB following EPA-MLB-SOP-MB-20. Overall, quaternary ammonium plus alcohol, sodium 
dichloro-s-triazinetrione and hydrogen peroxide products were more efficacious against DSB than quaternary ammoniums for 
both tested species. While there was no significant difference in the log

10
 reductions between 24 and 72 h S. aureus biofilms, 

significantly higher log
10

 reductions were observed when products were challenged with 24 h P. aeruginosa DSB compared to 
72 h P. aeruginosa DSB. Species type, active ingredient class and dry time significantly impact disinfectant efficacy against DSB 
of S. aureus or P. aeruginosa.

INTRODUCTION
Healthcare-associated infections (HAI), a result of diverse interactions among modern healthcare practices, hospital environments 
and growing antibiotic resistance, among other factors, pose a crucial threat to human well-being [1]. Globally, the acquisition of 
HAI is the most frequent and adverse outcome in healthcare delivery [2]. In the USA, approximately 633 300 patients are affected 
by 687 200 HAI [3] with more than 72 000 deaths every year [4]. In Europe, about 4.5 million HAI occur yearly in acute care 
hospitals [5] with approximately 135 000 deaths [6]. In low- and middle-income countries (LMIC), the density of HAI in adult 
intensive care units is estimated at 47.9 per 1000 patient days, which is higher than rates in the USA and Europe [7]. Comparing 
HAI incidence rates in developed and LMIC, the pooled incidence is seven out of 100 patients in developed economies and ten 
out of 100 in LMIC [8].

The prevalence of HAI has been associated with biofilm formation by bacteria [9] as bacterial biofilms are more persistent and 
‘resistant’ to disinfection than planktonic bacteria [10]; allowing biofilms to present an increased infection risk. Even higher 
infection risk is presented by dry-surface biofilms (DSB) [11], which are harder to inactivate than wet-surface biofilms (WSB) 
and planktonic bacteria [12], as desiccation induces the production of denser extracellular polymeric substances (EPS) [13]. The 
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National Institute of Health (NIH) of the USA estimates that about 80 % of all chronic infections are due to biofilm formation [9]. 
Bacterial biofilms are comprised of microbial cells adhered to a surface and to each other, forming a micro-colony encased in a 
polysaccharide dominant matrix [14]. In addition to the cells inhabiting the biofilm, DNA, proteins and biosurfactants are also 
prevalent [15]. Persistence of bacterial biofilms on environmental surfaces is due to their ability to adhere to common surfaces 
and produce EPS [16]. The EPS forms a matrix that presents a major barrier to removal from surfaces in healthcare facilities as 
it shields underlying bacterial cells from direct contact with disinfectants used for their inactivation [17, 18]. Biofilm thickness 
likely influences several factors such as the disinfectant ability to penetrate the biofilm matrix [19], the water-binding characteristic 
of the EPS matrix [14], and pH differences among various layers of biofilms [20]. While WSBs could vary in terms of thickness 
compared to artificially produced DSB or DSB collected from environmental samples, a depth of 31 µm of laboratory-developed 
DSB models represents a reasonable compromise between the thickness of biofilms collected from hard surfaces (i.e. 26.5 µm) 
and soft clinical surfaces (i.e. 45.6 µm) [21]. Considering biofilm thickness also influences biofilm architecture, this may result in 
aggregation of organic acids leading to the deactivation or reduced performance of disinfectants [20]. While these laboratory-
grown models offer a closer representation of clinical biofilms, there is still limited work evaluating the efficacy of disinfectants in 
removing biofilm formed on dry clinical surfaces at different dehydration time points under near room-temperature conditions.

DSB are particularly widespread on surfaces in healthcare facilities [12, 22, 23]. In a recent study, Ledwoch et al. detected DSB 
on 95 % (58/61) of environmental samples collected from hospitals in Wales [24]. The samples investigated included commodes, 
clipboards and sanitizing bottles [24]. DSB have also been detected on indwelling catheters [25]. Although multi-species DSB 
have been detected on a range of surfaces in healthcare facilities, major HAI pathogens as S. aureus [24] and P. aeruginosa are 
reportedly predominant [26, 27].

While DSB are widespread on surfaces in healthcare facilities, prolonged desiccation and starvation of bacteria in DSB leads to 
an overall increase in the percentage of protein content and slightly decreased carbohydrate content compared to WSB [21, 28]. 
Being the principal component of biofilms, this increase in the proportion of proteins may further contribute towards the 
reduced bactericidal efficacy of disinfectants against DSB [29]. Furthermore, metabolic changes resulting from cell-to-cell signal-
ling, nutrient recycling within the matrix and transformation of lysed cells may contribute towards the prolonged survival of  
biofilms [30].

In the current protocol used by the Environmental Protection Agency (EPA) for biofilm claims on disinfectants, WSB established 
with species of S. aureus and P. aeruginosa are the required test pathogens [31]. Under real-world conditions such as in healthcare 
facilities, disinfectants are relied on to inactivate bacteria on dry surfaces to curb HAI incidences [32], which are usually in 

Table 1. Active ingredients, concentrations, mode of use and contact times for disinfectants tested in this study

Disinfectant product* Disinfectant active ingredient(s)† Dilution at 
use

Active level at use‡ Label contact time 
(mins)§

CL|| 48.21 % sodium dichloro-s-triazinetrione RTU 4306 ppm 4

SH 0.39 % sodium hypochlorite RTU 0.39% 1

HP1 0.5 % hydrogen peroxide RTU 0.5% 1

HP2 0.5 % hydrogen peroxide RTU 0.5 % 1

QA1¶ 0.25 % n-alkyl (68 % C12, 32 % C14) dimethyl ethylbenzyl ammonium chloride
0.25 % n-alkyl (60 % C14, 30 % C16, 5 %

C12, 5 % C18) dimethyl benzyl ammonium chloride
55 % isopropanol

RTU 0.5 %**+55 % 2

QA2 0.76 % didecyldimethyl ammonium chloride
15 % isopropanol

7.50 % ethanol

RTU 0.76 %**+22.5 % 1

QT¶ 0.14 % n-alkyl (68 % C12, 32 % C14) dimethyl ethylbenzyl ammonium chloride
0.14 % n-alkyl (60 % C14, 30 % C16, 5 %

C12, 5 % C18) dimethyl benzyl ammonium chloride

RTU 0.28 % 3

*Abbreviated naming scheme for commercially available EPA-registered disinfectants used in this study.
†Ready-to-use (RTU) concentration.
‡Active ingredient concentration after dilution.
§Defined label contact time.
||Tablet, RTU concentration prepared following manufacturer guidelines.
¶Liquid expensed from RTU disinfectant wipes.
**Total quaternary.
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the form of DSB [21]. Despite widespread evidence that bacteria in healthcare environments are more likely to be encased in 
DSB, the standard test for disinfectant efficacy testing and registration with the EPA are conducted using planktonic bacteria 
or bacteria in wet biofilms, and very few studies have demonstrated bactericidal efficacy of disinfectants against DSBs [12, 33]. 
To the best of our findings, no studies have evaluated the bactericidal efficacy of disinfectants against DSB of S. aureus and P. 
aeruginosa established at different dehydration time points consistent with routine cleaning and disinfection schedules (daily or 
three times/week) recommended by the CDC [34]. In a previous study by our group, Nkemngong et al. developed a rapid model 
for establishing DSB of S. aureus and P. aeruginosa at different time points (24–120 h) and at mean log10 densities sufficient for 
disinfectant efficacy testing [13]. In this study, we evaluated the bactericidal efficacy of seven EPA-registered liquid disinfectants 
against DSB of S. aureus and P. aeruginosa after 24 and 72 h of dehydration following EPA-SOP-MB-20 [35]. We hypothesized that 
overall, hydrogen peroxide, sodium dichloro-s-triazinetrione and quaternary ammonium compounds plus alcohol (quaternary 
alcohol) disinfectants will be more bactericidal against DSB than quaternary ammonium disinfectants based on our prior work 
[36]. We also hypothesized that overall, we will observe higher bactericidal efficacies against 24 h DSB compared to their 72 h 
counterparts.

METHODS
Bacterial species and disinfectants tested in this study
DSB of S. aureus ATTC-6538 and P. aeruginosa ATCC-15442 were established on borosilicate glass coupons (1.27±0.013 cm; 
Biosurface Tech) following Nkemngong et al. [13]. These species were selected as they are the standard bacterial species of choice 
for disinfectant efficacy testing [31]. They are also the standard EPA species for registering disinfectants with claims against  
WSB [35].

DSB establishment on borosilicate glass coupons
Initially WSB were established following EPA-MLB-SOP-MB-19 through batch and continuous stir tank reactor (CSTR) phases 
[35]. The batch medium was 3.0 g l−1 Tryptic Soy Broth (TSB) for S. aureus and 300 mg l−1 TSB for P. aeruginosa. A 500 ml batch 
medium held in a CDC biofilm reactor (Biosurfaces Technologies, Bozeman, MT, USA) was inoculated with 1 ml of an overnight 
culture of S. aureus or P. aeruginosa. The batch phase lasted 24±2 h within the CDC biofilm reactor (Biosurfaces Technologies, 

Fig. 1. Overall disinfectant efficacy against DSB of S. aureus and P. aeruginosa by dry times, i.e. 24 h (dark bars) and 72 h (light bars). Letter a Tukey 
grouping for disinfectant efficacy against S. aureus DSB only. Letters c, d Tukey grouping are for disinfectant efficacy against DSB of P. aeruginosa only. 
Bars with the same letters are not statistically different. Error bars represent standard deviation.
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Bozeman, MT, USA) mounted on a magnetic hot plate stirrer (Talbays, Thorofare, NJ, USA) set at 60±5 r.p.m. at 36±1 °C for 
S. aureus or 125±5 r.p.m. at 21±2 °C for P. aeruginosa. CSTR medium in 20 l of sterile distilled water had a final concentration 
of 1.0 g l−1 TSB for S. aureus and 100 mg l−1 TSB for P. aeruginosa. CSTR medium was continuously pumped through the CDC 
biofilm reactor for 24±2 h for both species.

After WSB were established through the batch and CSTR phases, rods from the CDC biofilm reactor; each holding three boro-
silicate glass coupons were dehydrated for 24 and 72 h at 25 or 21 °C for S. aureus and P. aeruginosa, respectively. Dry times and 
dehydration temperatures were informed by Nkemngong et al. [13].

Disinfectant efficacy testing against DSB of S. aureus and P. aeruginosa
At each dehydration time point (24 and 72 h), disinfectants (Table 1) were tested against DSB following EPA-MLB-SOP-MB-20 
[35]. At each dry time and for each disinfectant product, three coupons with DSB of S. aureus or P. aeruginosa were harvested 
into sterile 50 ml conical tubes. Coupons (n=3) after 24 and 72 h of dehydration served as negative controls; controls were 
treated with 4 ml of PBS with a 1 min contact time. At each of the dry times, three harvested coupons (technical replicates) were 
independently treated with 4 ml of each disinfectant (Table 1). At the label-defined contact time of each disinfectant product and 
PBS, 36 ml of neutralizing buffer (1L H2O+5.2 g Difco neutralizing buffer; Becton, Dickinson and Company Sparks, MD, USA) 
was added to each treated coupon to stop the disinfectant action. Treated coupons were vortexed and sonicated to release DSB 
from coupons into solution as described by Nkemngong et al. [13]. Post disinfectant treatment, DSB of S. aureus or P. aeruginosa 
were vacuum-filtered onto filter membranes (Pall Corporation, NY, USA), whereas negative controls were spread plated following 
EPA-MLB-SOP-MB-20 [35]. Eight biological replicates were completed for QA and QT products and five biological replicates 
for CL, SH and HP products as informed by Lineback et al. [36].

Statistical analysis
Log10 reductions resulting from the treatment of coupons with DSB were calculated and used for statistical analyses. Specifically, 
mean bacterial log10 densities per coupon were calculated for disinfectant and PBS-treated coupons. Mean log10 densities per 
disinfectant-treated coupon were normalized against the mean log10 densities of control coupons to determine log10 reductions. 

Fig. 2. Disinfectant efficacy against DSB of S. aureus (dark bars) and P. aeruginosa (light bars) by active ingredient class, i.e. CL, SH, HP, QA and QT. 
Letters a, b Tukey grouping are for disinfectant efficacy against S. aureus DSB only. Letters c, d Tukey grouping are for disinfectant efficacy against 
DSB of P. aeruginosa only. Bars with the same letters are not statistically different. Eight biological replicates were completed for QA and QT products 
and five biological replicates for CL, SH and HP products; three coupons (n=3) were used per control and treatment. Error bars represent standard 
deviation.
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The least-squares method of the PROC GLIMMIX procedure was used to analyse and compare mean log10 reductions (n=70 per 
species; N=140; α=0.05) among the seven tested disinfectant products (CL, SH, HP1, HP2, QA1, QA2 and QT). The same test was 
used to statistically compare mean log10 reductions by active ingredient class (CL, SH, HP, QA and QT), and dehydration time 
points (24 and 72 h). Pair-wise comparisons among products, species and dry times were completed with Tukey adjustments. All 
statistical procedures were completed using SAS version 9.4 (SAS Institute, Cary, NC).

RESULTS
Bactericidal efficacy against S. aureus DSB varied by product type and active ingredient class

The average log10 densities of S. aureus DSB per coupon pre-treatment after 24 and 72 h dry times were 7.64±0.76 and 7.0±0.89, 
respectively. Overall, there were significant differences among the product types and active ingredient classes (P<0.05; Figs 1 and 
2). Irrespective of the dry time (24 or 72 h), the log10 reduction for 0.76 % quaternary ammonium+22.5 % alcohol (QA2; 6.11±1.30), 
0.5 % H2O2 (HP2; 6.18±1.72), 0.5 % H2O2 (HP1; 6.34±1.15), 0.39 % NaOCl (SH; 6.45±0.87), 0.4306 % Na dichloro-s-triazinetrione 
(CL; 6.57±1.11) and 0.5 % quaternary ammonium+55 % alcohol (QA1; 6.61±0.80) were significantly higher than 0.28 % quaternary 
ammonium (QT; 4.85±0.86) (P<0.05; Fig. 3). However, there were statistically insignificant differences among the mean log10 
reductions per coupon for QA1, QA2, CL, SH, HP1 and HP2 (P>0.05; Fig. 3).

The mean log10 reductions per coupon by active ingredient class were: 4.85±0.86 for quaternary ammoniums (QT), 6.19±1.43 for 
hydrogen peroxides (HP), 6.36±1.10 for quaternary alcohols (QA), 6.45±0.87 for sodium hypochlorite (SH), and 6.57±1.11 for 
Na-dichloro-s-triazinetriones (Fig. 2). Comparing the products by active ingredient class, QA, CL, SH and HP products were more 
bactericidal than the QT product (P<0.05; Fig. 2). There were no statistically significant differences in the bactericidal efficacies 
between QA and CL, QA and SH, QA and HP; CL and SH, CL and HP; SH and HP, when disinfectants were challenged with S. 
aureus DSB (P>0.05; Fig. 2).

Fig. 3. Disinfectant efficacy against DSB of S. aureus (dark bars) and P. aeruginosa (light bars) by disinfectant product type (CL, SH, HP1, HP2, QA1, QA2 
and QT). Letters a, b Tukey grouping are for disinfectant efficacy against S. aureus DSB only. Letters c, d Tukey grouping are for disinfectant efficacy 
against DSB of P. aeruginosa only. Bars with the same letters are not statistically different. Eight biological replicates were completed for QA and QT 
products and five biological replicates for CL, SH and HP products; three coupons (n=3) were used per control and treatment. Error bars represent 
standard deviation.
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Mean log10 reductions for P. aeruginosa DSB were higher for oxidizing agents compared to quaternary 
ammonium products
The mean log10 density of P. aeruginosa DSB per coupon pre-treatment was 7.08±0.75 after dehydration for 24 h and 72 h. Overall, 
there were significant variations in log10 reductions by product type and active ingredient class (P<0.0001; Figs 2 and 3). Regardless 
of the dry time (24 or 72 h), there were significantly higher log10 reductions for HP1 (5.97±1.23) and HP2 (6.30±1.26) as compared 
to QA1 (4.20±0.71), QT (3.82±0.53) and SH (3.23±1.53) (P<0.05; Fig. 1). Similarly, CL (5.79±1.40) and QA2 (5.85±0.87) had 
significantly higher log10 reductions against P. aeruginosa DSB than QA1, QT and SH (P<0.05; Fig. 3). However, there were no 
statistically significant differences among QA1, QT and SH (P˃0.05; Fig. 3). There were also no statistically significant differences 
in the bactericidal efficacies of HP1, HP2, CL and QA2 (P˃0.05; Fig. 3).

Among the active ingredient classes investigated, there were statistically significant differences among CL, HP, SH, QA and QT 
(P<0.0001; Fig. 2). Overall, HP products resulted in a significantly higher bactericidal efficacy than QT and SH products (P<0.05; 
Fig. 2). Similarly, CL and QA products had significantly higher mean log10 reductions than QT and SH products (P<0.05; Fig. 2). 
However, there were no differences between QT and SH, CL and HP, HP and QA, and QA and SH products (P˃0.05; Fig. 2).

Dry time does not significantly impact disinfectant efficacy against S. aureus DSB, unlike P. aeruginosa DSB
Mean log10 densities of S. aureus DSB per control coupon after 24 and 72 h of dehydration were 7.64±0.76 and 7.00±0.89, respec-
tively. Regardless of the bacteria species, the mean log10 reductions per coupon for 24 h old DSB were 6.91±0.83 (QA1), 6.73±0.94 
(HP1), 6.70±1.23 (CL), 6.52±1.70 (HP2), 6.52±1.06 (SH), 6.41±1.38 (QA2) and 4.77±0.80 (QT; Fig. 4). However, the average 
log10 reductions per coupon for 72 h old DSB were 6.44±1.10 (CL), 6.39±0.86 (SH), 6.30±0.67 (QA1), 5.95±1.31 (HP1), 5.83±1.87 
(HP2), 5.80±1.35 (QA2) and 4.92±0.97 (QT; Fig. 4). On average, the bactericidal efficacies for all tested disinfectants against S. 
aureus DSB at 24 and 72 h dehydration time points were 6.30±1.27 and 5.89±1.21, respectively. There was no significant difference 
between the average log10 reductions per coupon of S. aureus DSB at 24 h compared to 72 h (P>0.05; Fig. 1).

On the other hand, average log10 densities of P. aeruginosa DSB per coupon pre-treatment were 7.40±0.75 and 6.77±0.61 after 24 
and 72 h dry times, respectively. While the mean log10 reductions per coupon for all tested disinfectants after 24 and 72 h were 
5.50±1.45 and 4.65±1.63, respectively, there were no significant differences between the average log10 densities per coupon after 
24 h and 72 h of dehydration (P>0.005). Mean log10 reductions for each product after 24 and 72 h of drying, respectively, were as 
follows: QA2 (6.55±0.94, 5.50±0.62), HP2 (6.53±1.40, 6.06±1.20), HP1 (6.36±1.12, 5.59±1.30), CL (6.20±1.08, 5.39±1.67), QT 

Fig. 4. Disinfectant efficacy against DSB of S. aureus by product type (QT, SH, QA1, QA2, HP1, HP2 and CL) at 24 h (dark bars) and 72 h (light bars) 
dehydration time points. Letters a, b Tukey groupings are for each product type only. Bars with same letters are not statistically different. Coupons (n=3) 
with DSB of S. aureus were dehydrated for 24 and 72 h at 25 °C. Error bars represent standard deviation.
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(4.21±0.58, 3.56±0.46), QA1 (4.85±0.77, 3.86±0.54) and SH (3.82±1.09, 2.65±1.80 (Fig. 5). Overall and regardless of the product 
type or active ingredient class, significantly higher bactericidal efficacies against DSB of P. aeruginosa were recorded after 24 h as 
compared to 72 h of dehydration (P<0.05; Fig. 1).

Higher bactericidal efficacy against S. aureus DSB than P. aeruginosa DSB
Overall, there were statistically significant differences in mean log10 reductions between S. aureus and P. aeruginosa (P<0.05; 
Fig. 2). Regardless of drying time and product type, the mean log10 reductions for S. aureus and P. aeruginosa were 6.096±1.251 and 
4.941±1.505, respectively. Although product and active ingredient dependent, significantly higher log10 reductions were observed 
when some of the tested disinfectants were challenged with S. aureus compared to P. aeruginosa (P<0.05; Figs 2 and 3).

DISCUSSION
In this study, we employed a rapid DSB model previously developed by our group for disinfectant efficacy testing [13] and evalu-
ated the bactericidal efficacy of seven EPA-registered disinfectants against 24 and 72 h old DSB of S. aureus and P. aeruginosa. 
Although there are few studies that have developed a rapid in vitro DSB model [21, 23], there is no clear standard for how many 
days or the conditions to establish a DSB. A study by Ledwoch et al., utilized a sedimentation protocol to develop DSB based 
on alternating hydrated and desiccation phases over a period of 12 days [23]. However, desiccation temperatures as high as 
37 °C utilized by this study may not represent clinical settings. Additionally, dynamic systems such as a CDC biofilm reactor are 
increasingly investigated for their ability to introduce fluid shear and thus affecting the distribution and utilization of nutrients 
and oxygen into the depths of biofilms compared to the static systems such as well assays. A similar study by Almatroudi et al., 
developed semi-dehydrated model of S. aureus resulting in an average of log10 7.13±0.04 c.f.u./coupon on polycarbonate coupons 
using a CDC biofilm reactor [21]. However, this study also utilized temperatures (i.e. 35 °C) at which micro-organisms readily 
colonize surfaces and form biofilms. Keeping in consideration, we established DSB of S. aureus and P. aeruginosa at 25 and 21°C, 
respectively, to more closely represent conditions for the formation of DSB on dry contaminated hard non-porous surfaces in 
healthcare facilities. In addition, our study evaluated the bactericidal efficacy of disinfectants against DSB of S. aureus and P. 
aeruginosa established at different dehydration time points consistent with routine cleaning and disinfection schedules (daily or 
three times/week) recommended by the CDC.

We found that mean log10 densities per coupon from this study were comparable to the ranges previously reported by Nkemngong 
et al. [13]. We also found that irrespective of drying time, CL, SH, HP and QA disinfectants were significantly more bactericidal 
against DSB of S. aureus than QT disinfectants. Moreover, when DSB of P. aeruginosa were challenged with disinfectants, CL and 
HP were significantly more bactericidal than SH and QT disinfectants. Overall, we demonstrated that prolonged dehydration 

Fig. 5. Disinfectant efficacy against DSB of P. aeruginosa by product type (QT, SH, QA1, QA2, HP1, HP2 and CL) at 24 h (dark bars) and 72 h (light bars) 
dehydration time points. Letters a, b Tukey groupings are for individual products only. Bars with the same letters are not statistically different. Coupons 
(n=3) with DSB of P. aeruginosa were dehydrated for 24 and 72 h at 21 °C. Error bars represent standard deviation.
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had varied effects on the bactericidal efficacy of disinfectants against DSB of S. aureus or P. aeruginosa. Specifically, we found 
that there were no significant differences in the bactericidal efficacies of disinfectants against 24 and 72 h DSB of S. aureus. There 
was however, a significantly lower log10 reduction against 72 h DSB of P. aeruginosa compared to 24 h DSB of the same species.

Product type and active ingredient class significantly impact disinfectant efficacy against S. aureus DSB
There were significant differences among products, with QA1, QA2, CL, SH, HP1 and HP2 being more bactericidal than QT. 
In a related study against S. aureus WSB, Lineback et al., demonstrated that a sodium hypochlorite and five hydrogen peroxide 
disinfectant products were significantly more bactericidal than two quaternary ammonium compounds [36]. This could be 
explained by the production of reactive oxygen species (ROS) by hydrogen peroxide disinfectants. The production of ROS results 
in more necrotic death compared to quaternary ammonium compounds due to DNA damage [37]. Comparatively, quaternary 
ammonium compounds mainly rely on a positively charged N-atom to bind to cell membranes, creating ‘pores’ for n-alkyl side 
chains to transverse the cell membrane resulting in lysis and leakage of cytoplasmic contents [38, 39]. Considering the presence 
of a denser EPS in DSB compared to WSB, the EPS in DSB may present a significant barrier for quaternary ammonium prod-
ucts compared to sodium dichloro-s-triazinetrione, sodium hypochlorite and hydrogen peroxides with an ‘oxidative’ mode of 
action against bacteria. Moreover, strong oxidizers such as sodium dichloro-s-triazinetrione, sodium hypochlorite and hydrogen 
peroxides have low molecular weight active ingredients that when compared to larger molecules such as quaternary ammonium, 
can more easily bypass the cell membrane to damage internal cellular components [37]. Quaternary alcohol products may have 
resulted in significantly higher bactericidal efficacies owing to the ‘rapid’ bactericidal mode of action of alcohol [40].

We also found that the mean log10 reductions between HP1 and HP2; QA1 and QA2 were comparable when disinfectants were 
challenged with S. aureus DSB. Our findings are consistent with Lineback et al., who reported no significant differences among 
the bactericidal efficacies of five hydrogen peroxide products tested against S. aureus WSB [36]. Similarly, in a recent study 
that evaluated the bactericidal efficacies of six disinfectant wipes against S. aureus ATTC-6538 inoculated on hard-non-porous 
surfaces, Voorn et al., reported no significant differences in the bactericidal efficacies among three hydrogen peroxide products 
or three quaternary alcohol products [41]. However, we found that quaternary alcohol products were overall more bactericidal 
than quaternary ammonium products without alcohol. This suggest that the defined percentage of alcohol added to quaternary 
ammonium compounds influences the bactericidal efficacy as alcohol confers a rapid and more potent (tuberculocidal) action 
against bacteria [40].

HP and CL products are more bactericidal against P. aeruginosa DSB than SH, QT and QA products
Overall, CL, QA2, HP1 and HP2 had significantly higher log10 reductions against P. aeruginosa DSB than QA1, QT and SH. 
Our findings are similar to those of West et al. who demonstrated that hydrogen peroxide-based disinfectants are overall, more 
bactericidal against P. aeruginosa allowed to dry on a Formica disc than quaternary ammonium disinfectants [42]. In another 
study, Tote et al. found that hydrogen peroxides had a stronger antibiofilm activity against 1 day old P. aeruginosa biofilms as 
they were biologically active against both viable P. aeruginosa cells and their EPS matrix unlike isopropanol disinfectants [43]. 
The high efficacy of HP1 and HP2 compared to SH against DSB could be explained by the relatively low concentration (0.39 %) 
of sodium hypochlorite in SH as in a 2018 study, Lineback et al. compared the bactericidal efficacies of 0.5 % hydrogen peroxide 
and 1.312 % sodium hypochlorite disinfectants against WSB of P. aeruginosa and found no difference in their efficacies [36]. The 
same intrinsic factor of a relatively low sodium hypochlorite concentration in SH may also account for the higher bactericidal 
efficacy of CL compared to SH as demonstrated in a study by Tiwari et al., 0.60 % sodium hypochlorite resulted in a superior 
bactericidal efficacy against clinical isolates of S. aureus biofilms [44]. These reports suggest that although sodium hypochlorite 
is generally more bactericidal than quaternary ammoniums owing to their mode of action, the degree of disinfection is largely 
concentration dependent.

Although QA2 had a higher quaternary ammonium and lower alcohol content (0.76 % quat+22.5 % alcohol) than QA1 (0.5 % 
quat+55 % alcohol) (Table 1), QA2 demonstrated a significantly higher kill against P. aeruginosa DSB than QA1. This suggests 
that the synergistic effect of quaternary ammonium compounds and alcohol in QA1 formulation may not be sufficient alone, as 
in the case of QA1. Moreover, in a 2018 study by Wesgate et al., the authors reported that quaternary ammonium formulations 
with side alkyl chains in the C12-16 range, as is the case for QA1, were more adsorbed to different wipe material types than other 
formulations [45]. Consequently, and considering that wipes were ‘wringed’ to dispense disinfectant liquid from QA1, the 
quaternary ammonium compound in QA1 may have been more adsorbed to the wipe material than QA2, resulting in an overall 
lower final disinfectant liquid concentration in QA1 than QA2 [45].

Bactericidal efficacy varies by species after prolonged dehydration
Our study found differences in the overall bactericidal efficacy of disinfectants against DSB of S. aureus and P. aeruginosa after 
prolonged dehydration for 24 and 72 h. While there was no significant difference in log10 reductions between 24 and 72 h DSB of S. 
aureus, the reverse was true for DSB of P. aeruginosa as 72 h DSB of P. aeruginosa were harder to kill than their 24 h counterparts. 
In a previous study by our group, we found that 100 % of P. aeruginosa DSB established at a dehydration temperature of 21 °C 
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were encased in EPS while this was true for only 92 % of S. aureus DSB established at 25 °C [13]. The consistent presence of EPS 
on DSB of P. aeruginosa at various dehydration time points from 24 to 120 h, as previously demonstrated by our group, suggested 
that older DSB of P. aeruginosa developed using our model may be encased in more EPS; making them harder to kill [13]. This 
is consistent with previous studies that have demonstrated the presence of a thick EPS matrix as a major factor for reduced 
bactericidal efficacy in biofilms compared to planktonic bacteria [29]. Moreover, previous studies [21, 46] have also suggested 
that unfavourable conditions such as dehydration may trigger bacterial biofilms to produce more EPS. While this may be true 
for P. aeruginosa DSB as evidenced in our previous study [13], the same may not be the case for S. aureus DSB. However, the 
presence of planktonic bacteria on the surface of biofilms does not ‘disqualify’ them from being biofilms considering that mature 
bacterial biofilms shed planktonic cells, and this could explain the occasional lack of a visible EPS in 8 % of the coupons as imaged 
by our previous study by Nkemngong et al. [13]. More EPS production translates into a thicker barrier for disinfectants to bypass 
before contact with underlying bacteria. Additionally, a thicker EPS matrix may also result in a pH gradient, which can impact 
bactericidal efficacy [20]. These factors could account for the reduced bactericidal efficacy against 72 h DSB of P. aeruginosa 
compared to 72 h DSB of S. aureus.

P. aeruginosa DSB are harder to inactivate than S. aureus DSB
Our data delineate statistically significant higher average log10 reductions when disinfectants were treated against S. aureus DSB 
compared to P. aeruginosa DSB. Overall, the low bactericidal efficacy of disinfectants against biofilms is often linked to the EPS 
matrix [47]. The reduced efficacy of disinfectants, regardless of the product type, observed with Gram-negative P. aeruginosa can 
be partially explained by the presence of alginate [48], Psl, Pel [49] and extracellular DNA (eDNA) [50] as important components 
of the biofilm matrix characteristic of P. aeruginosa. Specifically, the overproduction of alginates by P. aeruginosa mutants results 
in the formation of larger microcolonies than wild-type species [51]. This suggests the role for alginates in decreased susceptibility 
to antimicrobials [52] compared to non-alginate-producing bacteria such as S. aureus [49]. Pel, on the other hand, plays a vital 
role in cell-to-cell interactions within these biofilms [53] and in the biofilm maturation [50]. A spike in alginate and carbohydrate 
production during biofilm formation and maturation confers an overall increase in the net negative charge of the EPS matrix, 
enhancing the electrostatic attractions between the EPS matrix and positively charged antimicrobials as quaternary ammonium 
compounds [47]. This limits the diffusion of cationic antimicrobials through the EPS matrix, thus shielding the underlying 
bacteria from direct antimicrobial contact [47]. However, the cell wall of Gram-positive bacteria such as S. aureus is essentially 
composed of peptidoglycan and teichoic acid and substances with high molecular weight can traverse the cell wall [54]. This 
may explain the higher log10 reductions observed against S. aureus DSB compared to P. aeruginosa DSB exposed to quaternary 
alcohol and quaternary ammonium products.

Our results suggest that comparatively higher mean log10 reductions are achieved when sodium hypochlorite was challenged 
with S. aureus compared to P. aeruginosa DSB. This could be due to the act that negatively charged disinfectants as sodium 
hypochlorite destroy the cellular activity of bacterial proteins [55] and are capable of increased penetration of outer cell layers 
even in an unionized state [54]. Similarly, hydroxyl free radicals from HP-based products specifically target sulfhydryl groups, 
double bonds [56] and destroy bacterial lipids, proteins, and DNA.

Our results support previous findings that DSB are harder to kill than planktonic bacteria; all the products tested in this study 
are EPA registered, indicating high levels of efficacy against planktonic bacteria of S. aureus and P. aeruginosa. To reduce patient 
safety risks in healthcare facilities, it is critical to conduct baseline disinfectant efficacy testing for product registration using 
bacteria biofilms as DSB that best mimic healthcare environments.

We acknowledge that the scope of our study is limited as we did not investigate the bactericidal efficacy of the tested products 
against mixed culture bacterial biofilms common on dry contaminated hard-non-porous surfaces in healthcare facilities. We also 
acknowledge that our study is limited to reference strains recommended by US EPA for disinfectant efficacy testing. Inclusion 
of clinical isolates in our future work will expand existing knowledge about biofilms found in these clinical settings and their 
response to disinfection. We also acknowledge that our study did not specifically investigate disinfectant efficacy against DSB of 
S. aureus and P. aeruginosa subjected to longer hours of dehydration as this could impact the efficacy levels of commonly used 
disinfectants. A wider range of disinfectant active ingredients could have also been investigated. We also acknowledge that the 
surface material plays a major role in bacterial cell attachment, biofilm formation and EPS production. We selected borosilicate 
glass coupons as this is the representative surface material type recommended by the US EPA for biofilm development. Our future 
goals are to conduct similar studies utilizing wider range of surface material types found. However, we also acknowledge that our 
study has set a solid foundation for future investigations of DSB of S. aureus and P. aeruginosa.

CONCLUSION
Although it is generally agreed that DSB pose a severe challenge for the disinfection of hard non-porous surfaces in healthcare 
facilities and are a significant contributor to the incidence of HAI, the success of any disinfection regime is dependent on multiple 
intrinsic and extrinsic factors. Our study definitively demonstrated that significant kill levels of the DSB of major healthcare 
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pathogens that cause HAI can be achieved although this is highly dependent on the choice of disinfectant as hydrogen peroxides, 
and Na dichloro-s-triazinetrione were more bactericidal than quaternary ammoniums without alcohol. We also demonstrated that 
for a less hardy pathogen such as S. aureus, the age of the DSB does not present a challenge for the overall efficacy of disinfectants 
unlike for P. aeruginosa where 72 h DSB were harder to inactivate than their 24 h counterparts. It is therefore critical for healthcare 
stakeholders to consider these factors in efforts to reduce HAI rates.
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