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Abstract

We investigated the spatial variation of vitreous oxygen consumption in enucleated porcine
eyes. A custom made oxygen source was fabricated that could be localized to either the
mid or posterior vitreous cavity and steady state vitreous oxygen tension was measured as
a function of distance from the source using a commercially available probe. The reaction
rate constant of ascorbate oxidation was estimated ex vivo by measuring the change in oxy-
gen tension over time using vitreous harvested from porcine eyes. Vitreous ascorbate from
mid and posterior vitreous was measured spectrophotometrically. When the oxygen source
was placed in either the mid-vitreous (N = 6) or the posterior vitreous (N = 6), we measured
a statistically significant decrease in vitreous oxygen tension as a function of distance from
the oxygen source when compared to control experiments without an oxygen source;
(p<0.005 for mid-vitreous and p<0.018 for posterior vitreous at all distances). The mid-vitre-
ous oxygen tension change was significantly different from the posterior vitreous oxygen
tension change at 2 and 3mm distances from the respective oxygen source (p<0.001).

We also found a statistically significant lower concentration of ascorbate in the mid-vitreous
as compared to posterior vitreous (p = 0.02). We determined the reaction rate constant,
k=1.61M"'s"+£0.708 M's™ (SE), of the oxidation of ascorbate which was modeled follow-
ing a second order rate equation. Our data demonstrates that vitreous oxygen consumption
is higher in the posterior vitreous compared to the mid-vitreous. We also show spatial varia-
tions in vitreous ascorbate concentration.

Introduction

The vitreous, while being the largest structure in the eye, has historically been regarded as pos-
sessing limited active functions for vision. It was thought to be required only to ensure a clear
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optical pathway for light and for maintaining intraocular pressure. However, ophthalmology
researchers over the past 25 years have expanded the body of basic and clinical science pertain-
ing to the vitreous in health as well as in disease[1,2]. Today, we know that the vitreous is essen-
tial for maintaining molecular and mechanical homeostasis of the eye.

One critical role of the vitreous involves oxygen homeostasis in the eye. Yu, Linsenmeier
and others performed measurements of intravitreal and intraretinal oxygen tension in various
species in health as well as disease conditions [3-7]. As the field of vitreous surgery developed,
Stefansson et al extensively studied intraocular oxygen before and after vitrectomy and showed
that oxygen gradients flatten out after vitrectomy[8]. It was initially suggested that the change
in oxygen diffusion coefficient, due to the change in vitreous fluid viscosity, explained the dif-
ferences in intraocular oxygen levels between vitrectomized and non vitrectomized eyes[9].
However, further studies showed that vitreous cavity fluid itself consumes oxygen in an ascor-
bate dependent manner[10,11]. The decrease in ascorbate concentration after vitrectomy
emphasized the active role healthy vitreous plays in maintaining the intraocular oxygen envi-
ronment. In addition, the non-homogenous nature of the vitreous humor suggests that it
might have site specific features[12]. This was supported by a recent investigation into the met-
abolic signature of the vitreous humor which indicated that ascorbate was unequally distrib-
uted across various topological areas within the vitreous[13]. Despite all these elegant studies,
the reaction kinetics of the intravitreal ascorbate reaction are not known and we also do not
fully understand the spatial and temporal characteristics of vitreous oxygen consumption. Fur-
ther study of oxygen consumption by the vitreous is required to fully understand these phe-
nomena and develop appropriate therapies to replace oxygen supply.

Intravitreal oxygen therapy has been proposed as a treatment for retinal ischemia[14]. For
these types of treatments, a better understanding of the spatial and temporal characteristics of
vitreous oxygen consumption is essential. In this paper, we take the first step towards that goal
by investigating the spatial dynamics of vitreous oxygen consumption in porcine cadaver eyes.
The reaction kinetics of the ascorbate-oxygen reactions are studied via measuring the decay of
oxygen tension in vitreous samples. The spatial characteristics of vitreous oxygen consumption
are studied through intravitreal oxygen measured from an oxygen source.

Methods

For the following experiments, we used fresh porcine cadaver eyes (Sierra Medical Science)
that were shipped and used for experiments at USC with 6 hours of harvesting. These speci-
mens included only the eyeball with minimal amounts of periocular adventitial tissue and typi-
cally did not include the muscle attachments or any other components of the orbit. Only whole
globes from 6 month old pigs were used for these studies. This ensured that the globes had
tully formed vitreous with high gel content and no liquefaction.

Oxygen Source Fabrication

A custom made device was used in order to create a constant focal source of oxygen within the
cadaver eye’s vitreous humor. The oxygen source device fabrication has two main steps: mold
fabrication and silicone casting. The mold was fabricated through negative dry film photoresist
(DuPont) laminated on a fresh silicon wafer. It was patterned via UV light exposure and devel-
oped. For the casting of silicone (MED4-4210, two-part, medical-grade, NuSil Technology
LLC) are mixed at a 10:1 ratio by weight, degassed under vacuum, and applied onto the pat-
terned mold. A hollow stainless steel tube is inserted through the neck of the oxygen source
device to ensure that air permeates through the base of the oxygen source device and only exits
through the tip of the oxygen source device. This semi-permeable oxygen source device acts as
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a conduit of air from the base to the tip and effectively acts as point source of oxygen within
the vitreous[15].

Intravitreal Oxygen Diffusion Measurements

In order to ensure visibility into the vitreous of the porcine cadaver eyes, the native cornea and
the lens were removed and replaced with a keratoprosthesis (Ocular Instruments). Next, the
custom made oxygen source shown in Fig 1 was placed so that the tip of the oxygen source
device was either located in the mid-vitreous or posterior vitreous. The location of the tip was
approximated by the length of the cannula inside the eye. The base of the oxygen source was
left outside the globe and exposed to atmospheric air. A schematic is shown in Fig 2. Next, a 23
gauge valved trocar (Alcon) was implanted 180° across the semi-permeable oxygen source.
This positioning allowed for placement of a commercially available oxygen measuring probe
(Oxford Optronix, OxyLab), here on referred to as oxygen probe, in proximity of the oxygen
diffuser. The 2 positions of the trocar are illustrated in Fig 2. We inserted the oxygen measuring
probe through the trocar and positioned it at various distances from the oxygen source. For
our control experiments, the oxygen source was removed after probe was positioned. At the
start of the experiment, the probe was positioned 0Omm from the surface of the oxygen source
tip. The eyes were then left in a dark environment for an hour for the oxygen diffusion to reach
steady state. After an hour, recordings were performed. At each distance location, oxygen ten-
sion is recorded for 1.5 minutes. In order to verify that the probe was 0 mm from the surface of
the oxygen source tip, we measured oxygen tension at the surface of the oxygen source tip and
ensured that it was equal to that of air. We used a micromanipulator (Edmund Optics, Linear
translational stage) to retract the probe to desired distances (0, 1, 2, 3, 4mm) away from the
oxygen source tip. The oxygen probe has a resolution of 0.lmmHg and an accuracy of £10%
when partial pressure of oxygen (pO,) is below 150mmHg and +20% when the pO, is above
150mmHg.

Vitreous Oxygen Consumption Rate Measurements

We dissected vitreous humor from several porcine cadaver eyes and placed them in a beaker.
Lens material, retinal tissue, and choroid tissue were carefully removed during the dissection
procedure. We used a magnetic stirrer to homogenize the vitreous for 5 minutes. This ensured
that the oxygen tension in the vitreous was equal to that of air (160mmHg). Vitreous samples
were collected with a vitrector (Alcon Constellation Vision System). The vitreous was then
transferred to a clear glass beaker and covered with a rubber stopper. The glass vial was tightly
sealed with a crimper (IVPACKS LLC). Care was taken to minimize the pocket of air within
the beaker. We introduced the oxygen probe through the rubber septum with an 18 gauge nee-
dle and recorded the decay of vitreous oxygen tension until oxygen tension reached 10mmHg.
This is representative of the physiological levels of oxygen in the vitreous. At the end of the
experiment, vitreous was again collected with a vitrector and the ascorbate concentration dif-
ferences in the samples were analyzed. In a few samples, ascorbate oxidase was added to the
vitreous sample. Ascorbate oxidase reduces ascorbate present in the vitreous, slowing down vit-
reous oxygen consumption.

Ascorbate Measurements

We carefully dissected out samples from the vitreous core and posterior vitreous of porcine
cadaver eyes. To ensure visibility into the vitreous, we removed the cornea, anterior lens cap-
sule and extracted the lens leaving the posterior lens capsule intact. We attached a 3cc syringe
to a vitrector (Alcon Constellation Vision System) and inserted it into the eye via a 23 gauge
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Fig 1. Oxygen source device. The base is 10mm in diameter and the ti is 4mm in diameter. The hollow
stainless steel tube connects the base to the tip. Only the base and tip are permeable to oxygen.

doi:10.1371/journal.pone.0149961.g001

trocar. With a cut rate of 5000 cuts per minute, we first aspirated 200 pul samples from the core
(Fig 3). Following that, samples from the posterior vitreous were aspirated. Care was taken to
not cut the retinal tissue.

We tested these samples in duplicate with an ascorbic acid assay kit (Sigma Aldrich
MAKQO75). In this assay, ascorbic acid concentration is determined using the Ferric Reducing/
Antioxidant and Ascorbic Acid (FRASC) assay. In this assay, Fe’* is reduced to Fe*" by antioxi-
dants present in the sample, which results in a colorimetric (593 nm) product. The addition of
ascorbate oxidase to parallel samples oxidizes any ascorbic acid present allowing for the mea-
surement of the ascorbic acid concentration. A freshly prepared standard curve was used for all
measurements. The specificity of this method for ascorbate has been previously validated using
gas chromatography-mass spectroscopy[10].

Results

In 6 eyes, the oxygen source was placed in the mid-vitreous (vitreous core) and in another 6
eyes it was placed in the posterior vitreous. Each of the control groups had 4 eyes. When the
oxygen probe was 0mm away from the oxygen source, it measured the pO, of air which was
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Keratoprosthesis Oxygen Probe

Oxygen Source Trocar

Fig 2. Ex vivo porcine eye preparation and intravitreal oxygen measurement methods. Left: Oxygen
source is positioned in the mid-vitreous and the oxygen probe is retracted in the direction shown by the arrow.
Right: Oxygen source is positioned in contact with the retinal tissue and the oxygen probe is retracted in the
direction shown by the arrow. The probe is positioned such that it stays in the posterior vitreous region. The
trocar is used to facilitate oxygen probe entry and retraction without creating any motion artefact. The dashed
lines indicate regions that are designated has mid vitreous and posterior vitreous.

doi:10.1371/journal.pone.0149961.g002

160mmHg. In the presence of an oxygen source, mid-vitreous pO, and posterior vitreous pO,
measurements are higher across all distances as compared to the control pO, measurements
(Fig 4). A two-sided, two-sample t-test was conducted to statistically compare pO, recordings
between experiments with an oxygen source and control experiments. When the oxygen
source was placed in the mid-vitreous, there was a statistically significant decrease in the oxy-
gen tension with distance from the oxygen source versus control; (p<0.005 at all distances

Fig 3. lllustration of vitreous regions that were biopsied for ascorbate measurements. (A) The site of
the mid-vitreous sample collection. (B) The site of the posterior vitreous sample collection.

doi:10.1371/journal.pone.0149961.g003
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Spatial Variation in Vitreous Oxygen Transport
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Fig 4. Comparison in oxygen diffusion kinetics between mid and posterior vitreous. Black Squares:
Oxygen tension with increasing distance from an oxygen source in the posterior vitreous. Red Circles:
Oxygen tension with increasing distance from an oxygen source in the mid-vitreous. Oxygen tension
recordings are higher in the mid-vitreous compared to the posterior vitreous as distance from the oxygen
source increases. Black Squares: Oxygen tension recordings with increasing distance from the probe in the
absence of any oxygen source in the posterior vitreous. Hollow Circles: Oxygen tension recordings with
increasing distance from the probe in the absence of any oxygen source in the mid-vitreous. Hollow Squares:
Oxygen tension recordings with increasing distance from the probe in the absence of any oxygen source in
the posterior vitreous. Please note that the open symbols are not clearly identifiable because they overlap in
the graph.

doi:10.1371/journal.pone.0149961.g004

0, 1,2, 3, 4mm). When the oxygen source was placed in the posterior vitreous, there was a sta-
tistically significant decrease in the oxygen tension with distance from the oxygen source versus
control as well; 0Omm (p<0.01), Imm (p = 0.01), 2mm (p<0.01), and 3mm (p = 0.018)
distances.

Opverall, oxygen tension recordings at all distances from the oxygen source were higher
when the oxygen source was placed in the mid-vitreous as compared to when it was placed in
the posterior vitreous (Fig 4). A two sided, two-sample t-test was conducted to compare pO,
recordings between mid-vitreous and posterior vitreous experiments with an oxygen source.
The mid-vitreous oxygen tension was significantly higher when compared to the posterior vit-
reous oxygen tension values at distances 2 and 3mm from the oxygen source (p<0.001).

We modeled our experimental system as a point-source of oxygen diffusing radially in
spherical coordinates. Using Fick’s laws of diffusion, we obtain Eq (1), where C is the concen-
tration of oxygen in M (Molar), r is distance away from the source in mm, and R is the rate of
oxygen consumption by the vitreous in Ms !, and D is the diffusion coefficient of oxygen in
water at 20°C (0.00197 mm?/s).

~—

dC Dd [ ,dC
Eﬁ@(f E)*R 4

Under steady state conditions, Eq (1) can be reduced to Eq (2). This assumption is valid
because experimentally, the oxygen tension at various distances at the time of measurement
(after 1 hour time lapse) was constant. Also based on the characteristic diffusion time constant,
the diffusion process would have reached steady state.

DL () __y o

r2dr r dr
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In order to determine an appropriate reaction rate equation for R, we measured the oxygen
consumption rate by the vitreous as described in the methods section and illustrated in Fig 5.

Over the course of ~5.5 hours, the oxygen content in vitreous humor decayed from
160mmHg to 0OmmHg. Water was used as a control and the oxygen tension of water remained
at baseline levels throughout the duration of the experiment.

The ascorbate concentration in the vitreous humor was measured before and after the
experiment described in Fig 5, using the assay described in the methods section. The ascorbate
content did not decrease by more than 5% of the initial value. A two-sided, paired, sample t-
test was conducted to determine if ascorbate content changed over the time during which vitre-
ous oxygen levels were found to decrease. We could not find a significant difference between
the ascorbate content before and after the experiment at o = 5%.

The reaction of ascorbate with oxygen is described in Eq (3). Eq (3) is not meant to suggest
a direct two electron transfer from AH™ to O, in order to generate H,0,. The overall reaction
involves 2 one electron transfers (Eqs 3a and 3b). The oxidation of ascorbic acid has been
described as following a general solution of the second order rate equation as described in Eq
(4)[16].

AH + 0O, +H'" — A+ H,0, (3)
AH™ +0; +H" — A~ + H,0, (3a)
A" +0,— A+0; (3b)

do _
R=—%=—kAH ][0} (4)

Since the ascorbate concentration in our experimental setup did not change beyond 5%, it
was assumed to be constant. Thus, the rate law Eq (4) can be combined with Eq (5) to yield a
single effective rate constant as described in Eq (6).

d[AH’] _
i D )
1n[0,] = In[O,], — k¢ (6)

where k — k(AH™)

Fig 6 is a plot of In [O,] against time. By fitting In [O,] against time, we can obtain the effec-
tive reaction rate constant kfrom the slope of the fitted line. The experimental value for kis
19510 + 4.5510%s " (SE). By accounting for the ascorbate concentration in each sample,
we obtain the final reaction rate constant k = 1.61 M's™" + 0.708 M's™* (SE).

With the reaction term equation known, we combined Egs (4) and (2) to obtain a differen-
tial that can be solved analytically to produce Eq (7). See supporting information for detailed
solution.

. Cle_’\/@ + C2€r %Jk (7)
B r 7. [AH K
D

C(r)

To explain the spatial variation in vitreous oxygen consumption, we hypothesized that the
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Representative Data:
Oxygen tension over time in sealed vial
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Fig 5. Kinetics of oxygen consumption in vitreous samples (red circle) compared to water (black
square) in a sealed chamber and to vitreous treated with ascorbate oxidase (blue triangles).

doi:10.1371/journal.pone.0149961.g005

ascorbate concentrations varied spatially. So, we measured the ascorbate content in the poste-
rior vitreous and compared it with the ascorbate content in the mid-vitreous (Table 1).

Vitreous samples of the vitreous core and posterior vitreous from 5 eyes were obtained and
analyzed for ascorbate content. A one-sided paired sample t-test was conducted to determine
the effect of vitreous location on ascorbate content. There was a significant difference between
the ascorbate content in the vitreous core compared to the ascorbate content in the posterior
vitreous (p = 0.02). Ascorbate content is higher in the posterior vitreous as compared to the
core. The mean ascorbate content in the mid-vitreous and posterior vitreous was 0.262mM
and 0.376mM respectively.

These ascorbate and reaction rate constant (k) values were substituted into Eq (7) and the
resulting curve was fitted against the experimental data (Fig 7). The oxygen source was mod-
eled as a 2mm radius sphere. Distance from the oxygen source was modeled from the surface
of the 2mm radius sphere. Oxygen diffusion coefficient D was assumed to be a constant[17].

Representative Plot of In(oxygen) Against Time
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Fig 6. Representative results. Plot of In (oxygen) against time.

doi:10.1371/journal.pone.0149961.9g006
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Table 1. Ascorbate concentration differences between mid-vitreous and posterior vitreous.

Eye Ascorbate content in mid- vitreous (mM) Ascorbate content in the posterior vitreous (mM) Difference in ascorbate content (mM)

1 0.271
2 0.321
3 0.172
4 0.245
5 0.301

doi:10.1371/journal.pone.0149961.t001

0.453 0.182
0.418 0.098
0.384 0.212
0.234 -0.011
0.39 0.088

Because the vitreous is approximately 99% water, we can assume the oxygen diffusion coeffi-
cient to not differ significantly between the mid and posterior vitreous. Coefficients C; and C,
were obtained for the mid and posterior vitreous based on the best fit curve (OriginLab). This
was done by minimizing the Chi-squared value, which is the square root of the sum of the
squares of the distance of each data point from the theoretical curve (Table 2).

Discussion

Oxygen distribution in the eye is tightly regulated. This is evident by the hypoxic environment
of ocular tissues, such as the lens (3-9mmHg) and trabecular meshwork (12mmHg) [3,10,18].
Studies have shown that this regulation is performed by vitreous humor [10,18]. In healthy
eyes, oxygen from the retinal vasculature in the anterior surface of the retina diffuses into the
vitreous humor. There is a gradient in oxygen content from the retina (~22mmHg) to the pos-
terior lens (~9mmHg) which indicates oxygen consumption by the vitreous[11]. Shui and
colleagues experimentally demonstrated that vitreous reacts with molecular oxygen via an
ascorbate dependent reaction [10]. Ascorbate (Vitamin C) is essential for many processes, such
as synthesis of collagen, maintaining prosthetic metal ions in their reduced forms, and scaveng-
ing free radicals to prevent oxidative damage to tissues[19]. Ascorbate is present in the vitreous
humor in relatively high concentrations and plays an important role in preventing oxidative
damage caused by free radical formation during solar radiation [20]. Shui et al’s recent finding
suggests that ascorbate’s role in maintaining a low intraocular oxygen environment is equally
important. It is interesting to note that humans and other animal species such as guinea pigs

Spatial Variation in Vitreous Oxygen Consumption
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Fig 7. Spatial variation in vitreous oxygen consumption. Experimental data with fitted curve.
doi:10.1371/journal.pone.0149961.g007
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Table 2. Coefficients and goodness-of-fit indicator for curve fitted to both mid-vitreous and posterior
vitreous data.

c, (0N Adjusted R?
Mid-Vitreous 0.00148 8.43%107° 0.703
Posterior Vitreous 0.00175 -42 0.86

doi:10.1371/journal.pone.0149961.t002

and primates are limited to whatever ascorbate they can obtain from their diet since they do
not have the ability to synthesize ascorbate from glucose[21].

The ascorbate reaction with molecular oxygen has been studied in a variety of fields [16,22].
Eq (3) is the proposed overall stoichiometric biochemical equation. However, it is important to
note that this reaction only occurs as 2 one electron transfer reactions as described in Eqs (3a)
and (3b). This reaction will only occur in the presence of catalysts such as light, free radicals,
and transition metals; these catalytic reactions are not fully understood [22-24]. Thus the reac-
tion kinetics have not been fully detailed either. Shui et al initially proposed a constant rate of
vitreous oxygen consumption. Filas et al later proposed a hyperbolic function (similar to
Michaelis-Menton Kinetics) to describe the reaction kinetics[17]. However, based on our
empirical evidence, we believe that the reaction kinetics can be best described by a second-
order reaction rate law.

While we found a statistical difference in the ascorbate content between the vitreous core
and posterior vitreous, ascorbate alone might not be the sole cause of the spatial variation in
vitreous oxygen consumption. The concentration of the above mentioned catalysts might also
account for the spatial variation in vitreous oxygen consumption. It is important to note that
the spatial variation in vitreous oxygen consumption was shown in enucleated porcine eyes,
used within 6 hours of enucleation. Despite a short postmortem interval, retinal degeneration
might affect the posterior vitreous oxygen consumption. More work needs to be done in vivo
to confirm the spatial variation in vitreous oxygen consumption.

It is well established that ascorbate accumulates in the eye of humans and animals at a con-
centration that is several times higher than that present in the blood plasma. Prior studies have
shown that ascorbate contents in the pig’s vitreous, aqueous and blood plasma are 0.28mM,
0.57mM, and 0.01mM respectively [21,25,26]. This is especially important because ascorbate’s
high concentration makes it the dominant antioxidant over Superoxide Dismutase[27]. We
know that ascorbate does not enter the vitreous by diffusion alone and its intravitreal concen-
tration is maintained by sodium dependent ascorbate transporter (SLC23A2). This transporter
is present in the pigmented layer of the ciliary epithelium [28]. Locci et al experimentally dem-
onstrated that ascorbate is found in higher concentrations near the basal area of the vitreous,
the part of the vitreous closest to the ciliary body [13]. Locci’s study, together with our findings
of higher ascorbate content in the posterior vitreous suggests that ascorbate concentration in
the eye exists along a gradient. We hypothesize that ascorbate might enter the eye via the reti-
nal pigment epithelium[29]. We also hypothesize that the posterior vitreous in close proximity
to the vitreous cortex, with its denser network of collagen fibers, holds more ascorbate as
compared to the vitreous core. Ascorbate’s molecular mass is more than 10x that of oxygen.
This spatial variation in ascorbate might account for the spatial variation on vitreous oxygen
consumption.

Our findings of a spatial variation in vitreous oxygen consumption might also give us new
insight into the results of recent intravitreal oxygen studies. Quiram et al showed that intravi-
treal oxygen tension in animals with posterior vitreous detachment (PVD) along with vitreous
liquefaction is significantly higher when compared to oxygen levels after vitreous liquefaction
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without PVD. However, oxygen levels in animals with vitreous liquefaction without PVD are
not different from oxygen levels in animals with neither vitreous liquefaction nor PVD [30].
Our understanding that the posterior vitreous consumes oxygen at a higher rate adds to Quir-
am’s findings. We believe that the vitreous cortex does not slow down the process of diffusion
by having a slower diffusion constant, but rather, consumes oxygen at a greater rate than the
rest of the vitreous.

Conclusion

In this study, we investigated the spatial variation of vitreous oxygen consumption in enucle-
ated porcine eyes. We fabricated a custom oxygen source, implanted it in the mid vitreous and
the posterior vitreous and found that the oxygen concentration profiles were statistically differ-
ent between these two locations; suggesting a spatial variation in vitreous oxygen consumption.
In conjunction with that finding, we observed statistically different concentrations of ascorbate
across the two locations and quantified the reaction rate between ascorbate and oxygen in
vitreous.
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