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Crosslinked polyarylene ether 
nitrile film as flexible dielectric 
materials with ultrahigh thermal 
stability
Ruiqi Yang*, Renbo Wei*, Kui Li, Lifen Tong, Kun Jia & Xiaobo Liu

Dielectric film with ultrahigh thermal stability based on crosslinked polyarylene ether nitrile is prepared 
and characterized. The film is obtained by solution-casting of polyarylene ether nitrile terminated 
phthalonitrile (PEN-Ph) combined with post self-crosslinking at high temperature. The film shows a 5% 
decomposition temperature over 520 °C and a glass transition temperature (Tg) around 386 °C. Stable 
dielectric constant and low dielectric loss are observed for this film in the frequency range of 100–200 kHz 
and in the temperature range of 25–300 °C. The temperature coefficient of dielectric constant is less than 
0.001 °C−1 even at 400 °C. By cycling heating and cooling up to ten times or heating at 300 °C for 12 h, 
the film shows good reversibility and robustness of the dielectric properties. This crosslinked PEN film 
will be a potential candidate as high performance film capacitor electronic devices materials used at high 
temperature.

With the rapid development of electric industry, compact, portable, and light weight electronic devices have 
attracted considerable attention from the material research community1–3. Many works have been reported on 
optimizing the properties of the electronic materials for their applications in electronic devices4–11, especially for 
the applications at high temperature12,13. Inorganic ceramics have been widely used in these fields for their unique 
properties14–16. However, several intrinsic defects, including brittleness, weak dielectric strength, difficult to pro-
cess and/or extremely high processing temperature, have encountered when using these inorganic ceramics17,18. 
In recently years, high performance polymers and polymer based composites as ideal alternative candidates for 
these applications have been intensively investigated owing to their fascinating properties19–26.

Film capacitors is one of the most widely applied unit in electric devices. The demands to dielectrics for capac-
itor use are that the stable dielectric properties, moderate mechanical properties and great reliability in changing 
environment. Up to now, biaxially oriented polypropylene film (BOPP), polyethylene terephthalate (PET) and 
Poly(vinylidene fluoride) (PVDF) are the most widely used organic dielectric materials for energy storage film 
capacitors27–31. However, BOPP, PET and PVDF based capacitor can only work at temperature lower than 150 °C 
due to their low glass transition temperatures (Tg). As a result, to accommodate the BOPP or PVDF in hybrid or 
electric vehicles, aerospace space power system and high-temperature electronics, additional thermal manage 
system, which keeps stable temperature of the system for its regular work, is indispensable to transfer the heat to 
the outer space for the high temperature devices. Usually, a cooling system is employed to keep the temperature 
below 150 °C. This cooling system will lead to the auxiliary cooling system and extra weight for the device, which 
is unacceptable in practical application. Undoubtedly, new candidates that can work over a broad temperature 
and frequency range are urgently demanded. Li et al. report a thermal stable and low dielectric loss composite 
which can be used up to 300 °C32. However, the complexity of preparation process restricts the application in 
commercial production. Polyarylene ether nitrile (PEN), a high-performance polymer, has attracted considerable 
attention in recent years owing to its outstanding properties, including high thermal stability, radiation resistance 
and excellent mechanical properties33. The possible applications of PEN as dielectric materials has been widely 
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explored34. However, the application of the PEN at high temperature, especially at temperatures higher than 
250 °C, has not been reported due to its intrinsic glass transition temperature is lower than that temperature.

In this study, we report the preparation and characterization of novel crosslinked PEN film that can be used 
as dielectric materials with broad operating temperature, moderate mechanical properties and ultrahigh thermal 
stability up to 380 °C. The film is self-crosslinked by the phthalonitrile groups capped at the ends of linear PEN. 
The thermal properties and dielectric properties, especially dielectric properties at high temperatures are studied 
in detail.

Results and Discussion
In this study, crosslinked polyarylene ether nitrile with ultrahigh stability up to 386 °C is fabricated through the 
scheme given in Fig. 1. The polyarylene ether nitrile terminated with phthalonitrile (PEN-Ph) is firstly synthe-
sized in our laboratory according to our previous work35. Through simply curing with high temperature, the 
phthalonitriles capped at the ends of PEN self-crosslink and form the phthalocyanines as the crosslinking points 
in the system36,37. As the crosslinking points are at the ends of linear PEN, the obtained network is a PEN elas-
tomer. The cross sectional micro-morphology of PEN-Ph is shown in Fig. 1a, relatively rough cross section is 
observed, indicating a thermoplastic material. After the post self-crosslinking, the film changes from brown to 
black (Fig. 1b). In addition, the film becomes rigid as the cross sectional micro-morphology of the crosslinked 
film is smooth and compact, as shown in Fig. 1d. Fortunately, the film is still flexible enough to be rolled up 
(Fig. 1c) and processed into different shapes, which is extremely important for its practical application.

As a high-performance engineering polymer, PEN has been intensively studied in recent years owing to its 
outstanding properties including high thermal stability, good mechanical properties as well as radiation resist-
ance. After crosslinking, these properties are further improved, which are needed in more strict circumstances. 
The thermal properties of the crosslinked PEN film are investigated by means of DSC, DMA, TGA as well as 
TMA. On the DSC curves, no obvious glass transition temperature (Tg) is observed in the range of 50 to 360 °C 
(Fig. 2a) which is the detection limit of the instrument, indicating that the Tg of the film is higher than 360 °C. 
The DMA testing shows a peak for Tan delta at 386.6 °C (Fig. 2b), meaning the Tg of the crosslinked PEN film is 
around 386.6 °C. This super elevation of Tg is higher than that of most capacitor used organic dielectrics, such 
as BOPP and PET38,39. Figure 2c shows the TGA curves of the crosslinked PEN film. The crosslinked PEN film 
shows excellent thermal resistance with initial decomposition temperature (T5%) of 524.3 and 533.6 °C in N2 and 
O2 atmosphere, respectively. The unique dimension stability is studied by TMA, as shown in Fig. 2d. The coeffi-
cient of temperature expansion (CTE) is lower than 1 μ m °C−1 over broad temperature range from 50 °C to 380 °C, 
while for BOPP, the lower melting temperature (164.6 °C) results in poor dimension stability40. These superior 

Figure 1. Morphology and cross-linking mechanism of the crosslinked PEN film. (a) morphology of the 
film before crosslinking, (b) the photos of the films before and after crosslinking, (c) the rolled up structure 
of the crosslinked PEN film, (d) morphology of film after crosslinking, (e) the preparation scheme of the 
crosslinked film and the structure of the PEN.
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thermal properties of the crosslinked PEN film indicate that this novel material is more preferable for application 
at high temperature conditions.

The dielectric property is one of the most important parameters of PEN which has been explored as dielec-
tric and packaging materials in the microelectronics industry41. Usually, the dielectric constant of linear PEN 
decreases with the increasing of the measuring frequency due to the effect of the polarization relaxation42. While 
for the crosslinked PEN film, dielectric constant (~4.1) and dielectric loss (0.02) are almost same at room tem-
perature with the increasing frequency (Fig. 3), fascinating properties for the practical application43. This result 
is mainly due to the fact that the movements of the macromolecular main-chains are restricted, and thus the 

Figure 2. Thermal properties of the crosslinked PEN film (a) DSC curves during the heating and cooling scans, 
(b) tan delta of the crosslinked PEN film, (c) the TGA curves in oxygen and nitrogen atmosphere, (d) TMA 
curve of the crosslinked PEN film.

Figure 3. Dielectric properties of the crosslinked PEN film at vary conditions, (a) dielectric constant at 
different temperature, (b) dielectric loss at different temperature.
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orientation polarization is retained at all measured frequency44. When tested at higher temperature, the die-
lectric constant and dielectric loss increase a little (Fig. 3), and are only 4.3 and 0.05 at 1 kHz even at 250 °C. 
The increments of dielectric constant and dielectric loss are due to the higher activation energy of the system at 
higher temperature. When the temperature increases, the mobility of electrons is strengthened, leading to higher 
polarization of the system, and results in the increasing of dielectric constant. While as the macromolecular 
main-chains are still restricted in the network and the temperature is lower than the Tg of the system, this chang-
ing is negligible comparing with that of linear PEN45.

The temperature dependencies of dielectric constant and dielectric loss of the crosslinked PEN film are fur-
ther investigated. Tang et al.46,47 reported that the dielectric properties of a polymer are relatively stable before 
Tg, and increase abruptly when the temperature is higher than the Tg of the polymer. When the temperature is 
below Tg of the polymer, the macromolecular motion is restricted, and is relatively weak. While the temperature 
is higher than Tg of the polymer, the macromolecular motion is enhanced and the polarization inside the system 
is strengthened, thus results in the increasing of the dielectric properties. As the film is a crosslinked network, the 
motion of the macromolecules is still restricted even the temperature is close to or higher than the Tg of it. As a 
result, the dielectric constant of the crosslinked PEN film at 10 kHz is stable before 300 °C, and increases slowly 
from 300–400 °C (Fig. 4a). Comparing with 20% increment of dielectric constant from 50 °C to 150 °C for BOPP, 
only 2.4% increment is observed for the crosslinked PEN film in the same temperature range38,48. While the 
competition between the motion of macromolecules and the restriction of the crosslinking still increases the die-
lectric loss of the system. As shown in the insert figure in Fig. 4a, when temperature is below 300 °C, the dielectric 
loss shows a slight increment from 0.017 to 0.064, which is favorable for the application in capacitor; while if the 
temperature further increases, the dielectric loss increases to 0.59 at 400 °C. Especially, an abruptly increment is 
observed on the curve of temperature dependencies of dielectric loss (Fig. 4a). According to the crossover point 
of tangent lines of the dielectric loss, the Tg of the crosslinked PEN film can be calculated to be 385 °C, consistent 
with the DSC and DMA results.

The temperature coefficient of dielectric constant, which can quantitative express the changing rate of dielec-
tric constant with increasing of temperature, is determined by Equation (1):

τε
ε ε

ε
=

−

−T T( ) (1)
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where τε is the temperature coefficient of dielectric constant, εf, εi, and εr is the dielectric constant at finally tem-
perature, initial temperature, and room temperature respectively, Tf and Ti is the finally temperature and initial 

Figure 4. (a) The temperature dependencies of dielectric constant and dielectric loss of the crosslinked PEN 
film at 10 kHz; (b) The temperature coefficient of dielectric constant of the crosslinked PEN film at 10 kHz;  
(c) The dielectric properties of the crosslinked PEN film at 300 °C and at 10 kHz for different time; (d) The 
dielectric properties of the crosslinked PEN film at 300 °C and at 10 kHz on different cycling time.
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temperature. According to Equation (1), the crosslinked PEN film shows excellent thermal stability as the τε of 
the film at 10 kHz is less than 0.001 °C−1 even at 400 °C, as shown in Fig. 4b. In addition, the current density at 
10 kHz, the storage modulus, the breakdown strength and the energy density at different temperatures (in the 
supporting information) also confirm the thermal stability of this crosslinked PEN film. To make a clear view of 
the properties of the crosslinked PEN film, a comparison of the thermal and dielectric properties between BOPP 
and PEN-Ph self-crosslinked film is listed in Table S2.

For the practical application in electronic devices, excellent reversibility and robustness of the dielectric prop-
erties of the materials are necessary. The time dependence of the dielectric properties of the crosslinked PEN film 
is studied at 300 °C and at frequency of 10 kHz. As can be seen in Fig. 4c, both of the dielectric constant (~4.5) and 
dielectric loss (~0.07) of the crosslinked PEN film show excellent robustness even the film is consistently heated 
at 300 °C for up to 12 h. In addition, the dielectric properties of the crosslinked PEN film at 10 kHz are further 
investigated through repeat heating and cooling scans from room temperature to 400 °C. Concordant dielectric 
constant and dielectric loss are observed even by cycling up to ten times (Fig. 4d). The excellent thermal stability, 
reversibility and robustness of dielectric properties shown in Fig. 4 verify the long-term usage of this novel PEN 
based material at high temperature.

Conclusion
Crosslinked polyarylene ether nitrile film as flexible dielectric material that can be used at temperatures as high 
as 380 °C was fabricated. By solution-casting of polyarylene ether nitrile terminated phthalonitrile (PEN-Ph) 
followed by post self-crosslinking at high temperature, this novel crosslinked PEN film can be prepared on a 
large scale. According to the results of DSC, DMA, TGA and TMA, the film showed superelevation of Tg and T5%, 
which are higher than 380 °C and 520 °C respectively. Due to the crosslinking, the film showed stable dielectric 
constant and low dielectric loss in the frequency range of 100–200 kHz and in the temperature range of 25–380 °C. 
The film showed excellent reversibility and robustness of the dielectric properties by cycling heating and cooling 
from room temperature to 400 °C up to ten times or heating at 300 °C for 12 h. Making use of these advantages, 
the crosslinked PEN film would be a promising candidate as the dielectric materials for high performance film 
capacitors electronic devices used at high temperature.

Methods
Materials. N-methyl-2-pyrrolidone (NMP) was purchased from Chengdu KeLong chemicals, Chengdu, 
China. Toluene and acetone were also purchased from KeLong chemicals, Chengdu, China. 4-Nitrophthalonitrile 
(99%) was purchased from Alpha chemicals (Dezhou) Co., Dezhou, China. Potassium carbonate (K2CO3), hydro-
quinone (HQ), biphenyl (BP), and 2, 6-dichlorobenzonitrile (DCBN) were commercially available products and 
used without further purification.

Fabrication of crosslinked PEN film. The polyarylene ether nitrile terminated with phthalonitrile 
(PEN-Ph) was synthesized in our laboratory according to our previous work20, the detail of the synthesis of 
PEN-Ph can also be found in the supporting information. For the fabrication of crosslinked polymer films, 
PEN-Ph and certain amount of N-methyl-2-pyrrolidone (NMP) were added in a 100 mL three-necks round bot-
tom flask charged with mechanical stirrer. The mixture was stirred and heated for 2.5 h to form a stable solution 
and then casted on a clean glass plate after cooled down to room temperature. The as-casted films were dried in an 
oven to remove the solvent. Furthermore, the dried films were transferred into a high temperature oven for post 
self-crosslinking at 280 °C, 300 °C, 320 °C, 340 °C and 360 °C every for 4 h, respectively. Finally, the crosslinked 
PEN films with thickness of 20–30 μ m were obtained. The thermal properties and dielectric properties of the 
crosslinked PEN film were studied in detail. In addition, the other properties of the crosslinked PEN film, includ-
ing the water absorption, mechanical properties as well as electrical performance were shown in the supporting 
information.

Characterization. The cross-sectional morphologies of the crosslinked PEN films were observed with SEM 
(JEOL JSM-5900LV) operating at 20 kV. The thermal curing behavior of the crosslinked film was performed on 
TA Instrument DSC-Q100 with a heating and cooling rate of 10 °C/min from room temperature to 350 °C and 
in a nitrogen flow rate of 50 mL/min. Thermal gravimetric analysis of the crosslinked PEN film was obtained 
with a TA Instruments TGA-Q50 at a heating rate of 20 °C/min from room temperature to 600 °C under nitro-
gen and oxygen atmosphere. DMA test was carried out on TA-Q800 at a heating rate of 5 °C/min from 50 °C 
to 420 °C. TMA test was performed on a TA-Q400 and the dielectric properties were monitored according to 
the ASTM D150 on a HP4284A precision LCR meter. The mechanical properties were investigated by SANS 
CMT6104 Series Desktop Electromechanical Universal Testing Machine. Electric breakdown strength was tested 
by Dielectric Withstand Voltage Tester (ZJC-50KV). Electric displacements-electric field (D-E) loops were meas-
ured at 10 Hz with a Premier II ferroelectric test system (Radiant Technologies, Inc.) and the energy density of the 
materials in supporting was extracted from the D-E loops.
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