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Objective: To investigate whether machine learning analysis of multiparametric MR

radiomics can help classify immunohistochemical (IHC) subtypes of breast cancer.

Study design: One hundred and thirty-four consecutive patients with

pathologically-proven invasive ductal carcinoma were retrospectively analyzed. A

total of 2,498 features were extracted from the DCE and DWI images, together with

the new calculated images, including DCE images changing over six time points

(DCEsequential) and DWI images changing over three b-values (DWIsequential). We

proposed a novel two-stage feature selection method combining traditional statistics

and machine learning-based methods. The accuracies of the 4-IHC classification and

triple negative (TN) vs. non-TN cancers were assessed.

Results: For the 4-IHC classification task, the best accuracy of 72.4% was achieved

based on linear discriminant analysis (LDA) or subspace discrimination of assembled

learning in conjunction with 20 selected features, and only small dependent emphasis

of Kendall-tau-b for sequential features, based on the DWIsequential with the LDA model,

yielding an accuracy of 53.7%. The linear support vector machine (SVM) and medium

k-nearest neighbor using eight features yielded the highest accuracy of 91.0% for

comparing TN to non-TN cancers, and the maximum variance for DWIsequential alone,

together with a linear SVM model, achieved an accuracy of 83.6%.

Conclusions: Whole-tumor radiomics on MR multiparametric images, DCE images

changing over time points, and DWI images changing over different b-values provide

a non-invasive analytical approach for breast cancer subtype classification and TN

cancer identification.

Keywords: radiomics, breast cancer, immunohistochemical subtypes, dynamic contrast-enhanced imaging,

diffusion-weighted imaging, machine learning
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INTRODUCTION

Breast cancer is a heterogeneous disease with diverse clinical
manifestations, treatment responses, and survival outcomes
(1). The immunohistochemical (IHC) subtypes based on the
expression of the estrogen and progesterone receptor, the
detection of overexpression of the human epidermal growth
factor receptor 2 (HER2) oncogene, and Ki-67 labeling index, are
routinely used to identify tumor subtypes with different clinical
outcomes and responses to therapy, including Luminal A cancer,
Luminal B cancer, HER2-positive cancer, and triple negative
(TN) cancer (2). HER2-positive breast cancers are more likely

to have a pathologic complete response (pCR) to neoadjuvant
chemotherapy, whereas reduced pCR rates are demonstrated

in Luminal-type breast cancers (2, 3). Patients with TN breast
cancer have a relatively high death rate due to the aggressive
features of this subtype and lack of effective targeted therapy (4).
Therefore, it is important to identify the subtypes to select the
appropriate therapy and predict the therapeutic response (5).

Multiparametric MR imaging, including dynamic contrast-
enhanced (DCE) imaging and diffusion-weighted imaging
(DWI), has excellent sensitivity and good specificity for breast
cancer diagnosis and plays an important role in the preoperative
staging and subsequent choice of appropriate therapy. If DCE
imaging and DWI can be used to differentiate breast cancer
subtypes, this would provide a complementary method for
constructing the IHC profile and therefore assist in treatment
planning. Several authors have described the breast cancer
subtypes with the BI-RADS lexicon on MRI (6–8), but
inter- and intra-observer variability continues to exist among
radiologists (9, 10).

Beyond visual interpretation by radiologists, there is more
quantitative diagnostic information about the tumor hidden
in thousands of acquired images. Radiomics (referring to
computational algorithms) used extracted imaging texture
features to serve as noninvasive biomarkers that could
predict breast cancer subtypes (10). Multiple studies have
used the texture analysis of DCE images for the subtype
classification of breast cancer or the identification of TN cancer
(11, 12). Grimm et al. demonstrated a correlation between
Luminal subtypes of breast cancer and texture features on
DCE images (13). Agner et al. used the morphologic and
texture features extracted from the whole tumor on early
postcontrast images in conjunction with an SVM classifier to
identify TN cancer (14). Several studies have proposed the
histogram or textural features extracted from DWI for subtype
differentiation (15, 16). However, no study has attempted to
investigate the texture analysis based radiomics of combining
DCE imaging and DWI in the subtype classification of
breast cancer.

The purpose of this present study was to evaluate the
performance of the MR multiparametric radiomics model to
differentiate among Luminal A cancer, Luminal B cancer, HER2-
positive cancer, and TN breast cancer using DCE imaging and
DWI. Furthermore, we investigated whether the radiomic model
could identify the subtype of the worst clinical outcome (TN
breast cancer) from other subtypes.

MATERIALS AND METHODS

Study Population
Between February 2016 and May 2017, 190 consecutive patients
with core needle biopsy-proven invasive ductal carcinoma
(IDC) were enrolled in the study. All the patients underwent
preoperative MRI examinations with DCE and DWI sequences.
Patients with a prior history of malignancy (N = 5), those
treated with neoadjuvant chemotherapy before MR examination
(N = 31), and those with lesions smaller than 1 cm (N = 16)
were excluded. Our database also excluded cases that had poor fat
saturation onDWI (N = 3) or discordance in the number of slices
among the postcontrast sequences (N = 1). Two radiologists with
2- and 8-years’ experience in breast MR imaging, respectively,
who were blinded to the pathologic results but were aware of
the IDC diagnosis, reviewed the MR images. For 22 patients with
multicentric or multifocal tumors, the largest tumor was selected
for analysis based on the first post-contrast DCE images. A total
of 134 tumors from 134 women (mean age, 51.2 years; age range,
24–84 years) were ultimately evaluated.

The immunohistochemical subtype of breast cancer was
classified as Luminal A (ER- and/or PR-positive, HER2-negative,
and Ki-67 < 14%), Luminal B (ER- and/or PR-positive, HER2-
negative, and Ki-67 ≥ 14%, or ER- and/or PR-positive, HER2-
positive, irrespective of Ki-67 expression), HER2-positive (ER-
and PR-negative, HER2-positive), and TN (ER-negative, PR-
negative, and HER2-negative) (5).

This retrospective study was approved by our institutional
review board, which waived informed consent.

MR Imaging
All the MR scans were performed using a 3.0T MAGNETOM
Skyra system (Siemens Healthcare, Erlangen, Germany) with a
16-channel phased-array breast coil, with patients in the prone
position. The breast MRI examinations included a transverse fat-
suppressed T2-weighted (TR/TE, 3,570/69ms) sequence and a
transverse T1-weighted (TR/TE, 5.4/2.4ms) sequence.

Before contrast injection, DWI was performed in the
transverse plane covering both breasts at the position of the
tumor using a single-shot echo-planar imaging sequence with
the following parameters: TR/TE, 3,000/54ms; flip angle, 90◦;
field of view, 340 × 150 – 280 mm2; matrix, 220× 220;
slice thickness, 6mm; 3 b-values, 50, 400, and 800 s/mm2,
with the number of averages 3, 4, and 5, respectively;
rate 3 GRAPPA acceleration. The total acquisition time
was 2:09 min.

DCE-MRI was performed using a 3D T1-weighted fat-
suppressed, fast spoiled gradient-echo sequence (TR/TE
4.5/1.6ms; flip angle, 10◦; bandwidth, 380 Hz/Pixel) with
one pre-contrast and five consecutive post-contrast dynamic
series after a bolus injection of 0.1 mmol/L of gadopentetate
dimeglumine (Magnevist; Bayer Schering Pharma, Berlin,
Germany) per kilogram of body weight, injected at a rate of 1.5
mL/s. Image acquisition in the transverse plane lasted for 60 s
per volumetric acquisition with slice thickness and was 1.5mm
with no gap and a matrix of 384× 384.
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Multiparametric MR Radiomics
The semi-automated segmentation of whole tumor on the
DWI and DCE images was conducted by the radiologist using
the prototype MR Multiparameter Analysis software (Siemens
Healthcare, Erlangen, Germany). The segmentation process was
composed of three steps: (a) The seed points were manually
drawn inside the tumor (including the necrotic regions) and
outside the tumor on DWI images with a b-value of 800 s/mm2

(DWIb800) and the first postcontrast of DCE images, respectively;
(b) The 3D segmentation of the whole tumor was executed (based
on these seed points) with a random-walker algorithm (17). We
performed manual adjustments in 9 of 134 women for DWIb800
and in 46 of 134 women for the first postcontrast of DCE images;
and (c) For DWI, 3D segmented contouring created on DWIb800
was propagated to the DWI images with other b-values. For
DCE, 3D segmented contouring created on the first postcontrast

FIGURE 1 | The process for 3D segmentation. The segmentation process comprised three steps: (A) The foreground and background seed points were manually

drawn inside and outside the tumor on the DWI images with a b-value of 800 s/mm2 (DWIb800) and the first postcontrast of the DCE images, respectively. (B) The

whole-tumor segmentations on DWIb800 and the first postcontrast of the DCE images were executed with a semiautomatic algorithm. (C) For DWI, 3D segmented

contouring that was created on DWIb800 was propagated to the DWI images with other b-values. For DCE, 3D segmented contouring that was created on the first

postcontrast images was propagated to the precontrast and four postcontrast phases of the DCE images.

FIGURE 2 | The accepted domains for coarse feature selection. (A) For the 4-IHC classification, the p-value for the analysis of variance (ANOVA) and cross-validation

error were set to 0.6 and 0.85, respectively. (B) For the TN vs. non-TN cancers, the t-test p-value and cross-validation error were set to 0.54 and 0.76, respectively.
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images were propagated to pre-contrast and the other four
post-contrast phases of DCE images. Finally, 3D segmentation
of the whole tumor from nine different imaging series (DWI
MR images with three different b-values, and six DCE images)
were saved. The progress for 3D segmentation is described
in Figure 1.

The 3D segmentation from the nine-image series were
loaded onto a personal laptop for further texture analysis. The
radiomics features were comprised of five parts: (a) Shape
features on DCE (DCEshape): The fourteen shape-based features
were calculated using the first postcontrast DCE images; (b)
Texture features based on DCE images (DCEtexture): The 92
texture features (18) features, were calculated on six time
series individually, yielding 552 features; (c) Sequential features
based on DCE time series (DCEsequential): To characterize
the textural changes on DCE images over time serials, we
measured ten new sequential features for each texture feature
described in group b (Supplemental Material 1). The first six
features, including mean, variance, kurtosis, skewness, energy,
and entropy, were extracted from each individual subject.
The other four features, including Kendall-tau-b, conservation,
stability, and dispersion, were calculated from the interactive
information between the current subject and the remainder
of the subjects. Therefore, a total of 920 DCEsequential features
were extracted from 92 texture features; (d) Texture features
based on DWI images (DWItexture): The same 92 texture
features with group b were calculated on DWI images with
three b-values set to yield 276 features; and (e) Sequential
features based on DWI images (DWIsequential): Like group c, to
characterize the textural changes on DWI images over different
b-values, we measured eight sequential features for each texture
feature. Kurtosis and entropy were not measured because of
the limited number of b-values. Therefore, 736 DWIsequential
features were extracted. A total of 2,498 features were extracted
to obtain a classification model. Texture extraction was applied
to the multiparametric images using PyRadiomics package (18)
in the Python software (v. 3.6, Python Software Foundation,
https://www.python.org/).

Feature Selection
To reduce the dimensionality of the feature space, we proposed a
two-staged method combining traditional statistics and machine
learning-based feature selection.

For coarse feature selection, the features that were considered
to be noisy were excluded. The purpose of the coarse feature
selection was to prevent the resulting model from becoming a
linear combination of noises. Regarding the 4-IHC classification
tasks of breast cancer, the one-way analysis of variance (ANOVA)
and cross-validation (CV) were performed for every radiomics
feature. The t-test and CV for each radiomics feature were
performed for TN vs. non-TN cancers. The feature that had
both a small p-value and a small cross-validation error rate was
informative. The feasible domain for excluding noisy features
was a strong convex set, which reduced a high dimensionality of
complex data sets to a two-dimensional space (19). In addition,
the ellipse was chosen as the acceptance domain. Based on this

idea, the accepted domain equation was set as follows:

(p_value)2

a2
+

(CVerrorrate)2

b2
< 1 (1)

where a and b are acceptance factors. In order to reduce
approximately half of the features, we set a and b to 0.6 and 0.85,
respectively, for the 4-IHC classification after an ergodic process
by an interval of 0.01. For TN vs. non-TN cancers, a and b were
set to 0.54 and 0.76, respectively (Figure 2).

For fine feature selection, we proposed a novel model by
combing the lasso regression, ridge regression, and elastic net to
select the features. For the 4-IHC classification, lasso regression,
ridge regression, and elastic net were utilized separately to rank
the selected features from the coarse feature selection. The ranks
from these three methods were summed up as a score for each
feature. The top 40 features with the lowest scores were selected,
and 20 features that were correlated with other features (the
absolute value of the Pearson correlation index > 0.4) were
subsequently removed manually to reduce the collinearity of
feature combinations. Using the same selection method as the 4-
IHC classification, a total of eight features were selected for TN
vs. non-TN.

Machine Learning-Based Classification
The best models for the 4-IHC classification and TN vs. non-
TN cancers were selected from three decision tree classifiers,
two discriminant analysis classifiers, six SVM classifiers, four k-
nearest neighbor (KNN) classifiers, and five ensemble learning
classifiers (20–24). The three decision tree classifiers were fine
tree, medium tree, and coarse tree. The two discriminant
analysis classifiers were LDA and quadratic discriminant analysis
(QDA). The six SVM classifiers included the linear, quadratic,
cubic, fine gaussian, medium gaussian, and coarse gaussian. The
four KNN classifiers were fine KNN, medium KNN, coarse
KNN, and weighted KNN. The five ensemble learning classifiers
included subspace discriminant, subspace KNN, the AdaBoost
algorithm with decision tree, the bootstrap-aggregated (bagged)
tree algorithm with decision tree, and the RUSBoost algorithm
with decision tree.

All the machine learning models were conducted using the
5-fold cross validation, whereby 20% of the data were used
to test the model created by the other 80% of the data.
The procedure was repeated for ten rounds to average the
estimates of performance. The accuracy for two classification
tasks was assessed for the models. To prove the superiority of
our fine feature selection method, the classification accuracy
combining lasso regression, ridge regression, and elastic net, and
the classification accuracy using any single one of these three
methods, were also assessed. The feature selection and machine
learning-based classification was achieved using the Statistics and
Machine Learning Toolbox in MatLab (v. R2018a; MathWorks,
Natick, MA). The flowchart for multiparametric MR radiomics is
described in Figure 3.
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FIGURE 3 | The flowchart for feature engineering of multiparametric MR radiomics. (A) The whole-tumor segmentations from a total of 10 sequence images were

executed. (B) A total of 2,498 features were extracted, and a two-stage feature selection method was subsequently performed. (C) Machine learning-based classifiers

were used for the 4-IHC classification and TN vs. non-TN cancers.

TABLE 1 | Clinicopathologic characteristics of patients.

Parameter Luminal A Luminal B HER2-positive TN

Age (y)* 26 68 18 22

Menopausal status

Peri- or postmenopausal 11 29 8 14

Premenopausal 15 38 10 8

Unknown 0 1 0 0

Tumor size (mm3)* 18 (11–47) 25 (10–80) 21 (10–43) 24 (13–39)

Axial lymph nodes

Negative 21 30 7 13

Positive 5 38 11 9

HER2, human epidermal growth factor receptor 2; TN, triple negative.

*Data for continuous variables are means ± standard deviation, with medians in

parentheses.

RESULTS

Clinical Data
The patient demographic and cancer characteristics are shown
in Table 1. Of the 134 cancers, the numbers of Luminal A,
Luminal B, HER2-positive, and TN cancers were 26, 68, 18, and
22, respectively.

Performance of the Machine
Learning-Based Classification
Of 2,498 features, a total of 1,292 for the 4-IHC classification
and 1,555 for the TN vs. non-TN cancers were chosen after
coarse feature selection. Fine feature selection was conducted
to reduce the feature sets to 20 features for the 4-IHC

FIGURE 4 | Performance of feature selection methods for the

4-IHCclassification. The accuracy for the four methods (our method, lasso,

ridge, and elastic net) was compared while using five representative

machine-learning models (fine decision trees, linear discriminant analysis,

linear SVM, fine KNN, and AdaBoost algorithm with decision tree of ensemble

learning).

classification and eight for the TN vs. non-TN cancers
(Supplementary Materials 2, 3). Z-score value distribution of
every selected feature for all the patients in two classification
tasks is displayed in Figure 4. As shown in Figure 5, our fine
feature selection combining the lasso regression, ridge regression,
and elastic net had higher accuracy compared with the use
of any single one of these three methods. The Rad-score
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FIGURE 5 | Box plots showed z-score value distribution of every selected feature for all patients in the 4-IHC classification (A) and TN vs. non-TN (B).

FIGURE 6 | Rad-score box plots. (A) Rad-score box plot for 4-IHC classification (p = 4.2355e-46). (B) Rad-score box plot for TN vs. non-TN (p = 3.9100e-17).

formulas for the two classification tasks were calculated via
a linear combination of selected features that were weighted
by the respective coefficients (Supplementary Materials 4, 5,
and Figure 6).

The results for model performance of the two classification
tasks are listed in Table 2. For the 4-IHC classification task, the
accuracy of the dataset for different classifiers ranged from 50.7
to 72.4%. The best models with the highest accuracy were the
LDA and subspace discriminant of ensemble learning. Notably,
only a small dependence emphasis of Kendall-tau-b feature for
DWIsequential with the LDA model yielded the highest accuracy
of 53.7%.

When comparing the TN to the non-TN cancers, the accuracy
of the test dataset ranged from 72.4 to 91.0%. The linear SVM and
medium KNN each yielded the highest accuracy of 91.0%. With
only the maximum of variance feature for DWIsequential with the
linear SVMmodel, we obtained an accuracy of 83.6%.

DISCUSSION

We investigated whether different breast cancer subtypes could
be differentiated on multiparametric MR radiomics. Texture
features extracted from DCE- and DWI-related original images,
particularly those sequential features changing over time

points or several b-values, could quantify the heterogenous
differences between the IHC subtypes. Although this is early
work, multiparametric MR radiomics has the potential to
provide a non-invasive approach and further insight into tumor
imaging phenotypes. Moreover, the methodology may assist in
the differentiation of details of subtypes that are imperceptible
to the human eye and is also free of inter- or intra-observer
variability (9).

Multiparametric imaging assessing tumor heterogeneity has
recently been extended to help identify the subtype of breast
cancer (25–28). The combined MR texture features could make

the process of subtype classification quantitative and yield
increased accuracy. Waugh et al. extracted 220 GLCM features
in 72 IDC patients and found that the accuracy for subtype
classification was 57.2% using all features and 43.6% using only
the entropy feature (29). Sutton et al. extracted the first order
and GLCM texture features from 178 IDC cancers to distinguish
three subtypes, including luminal-like, HER2+, and TN (30).
Their study analyzed only one slice showing the largest lesion
diameter on the DCE images, whereas the necrotic tissue was
excluded in Waugh’s study. Agner et al. used the morphologic
and texture features extracted from the whole tumor on the
early postcontrast images in conjunction with an SVM classifier,
to yield an area under the curve (AUC) of 0.74 for the TN
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TABLE 2 | Model performance for the test datasets of two classification tasks.

Classifiers Accuracy

(4-IHC

classification)

Accuracy

(TN vs. non-TN)

Decision tree Fine tree 69.4% 87.3%

Medium tree 69.4% 87.3%

Coarse tree 64.9% 88.8%

Discriminant

analysis

LDA 72.4% 90.3%

QDA 70.9% 90.3%

SVM Linear 67.9% 91.0%

Quadratic 69.4% 89.6%

Cubic 59.7% 72.4%

Fine gaussian 68.7% 87.3%

Median gaussian 68.7% 89.6%

Coarse gaussian 70.1% 88.1%

KNN Fine 69.4% 87.3%

Medium 64.9% 91.0%

Coarse 50.7% 83.6%

Weighted 70.1% 88.1%

Ensemble

learning

Subspace

discriminant

72.4% 90.3%

Subspace KNN 69.4% 87.3%

AdaBoost tree 67.2% 83.6%

Bagged tree 70.1% 88.1%

RUSBoost tree 58.2% 85.8%

LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; SVM, support

vector machines; KNN, k-nearest neighbor; Bagged, bootstrap-aggregated; IHC,

Immunohistochemical; TN, triple negative.

vs. non-TN cancers (14). In our study, whole-tumor texture
features extracted from DCE and DWI-related original images
and those changing over six time points or three b-values yielded
the best accuracy of 72.4% for the 4-IHC classification task,
and the best accuracy of 91.0% for the TN vs. non-TN cancers.
One possible interpretation for our model performance is that
texture features capture the information of whole-tumor about
perfusion, diffusion, and heterogeneity.

Compared with DCE, DWI was relatively less frequently
performed in the radiomics workflow due to a lower resolution
and more distortion. DWI reflecting the microenvironment of
tumor structures was introduced to be a complementary tool that
provided additional tissue information (31). Most studies used
the histogram or texture analysis on ADC maps with a mono-
exponential fit (15, 32, 33). In addition, there is one study for
which the authors performed histogram analysis on maps from
mono-exponential DWI and biexponential intravoxel incoherent
motion (IVIM) to predict the HER2 status in ER-positive breast
cancer (33). These parametric maps were calculated based on
different diffusion models. The applicability of several diffusion
models in clinical practice remains controversial. Instead of
maps, the original DWI images were used to extracted features
in our study, and classification using only minor dependence
emphasis on Kendall-tau-b for DWIsequential yielded an accuracy
of 53.7% for the 4-IHC classification. Furthermore, an accuracy

of 83.6% for the TN vs. non-TN cancers was obtained using
the maximum of variance for DWIsequential alone. Such a finding
may indicate that TN breast cancer was more heterogeneous
compared with other subtypes. A possible explanation for the
findings was that TN demonstrated more necrosis (34). In
our study, the DWI images with three b-values were obtained
using a 16-channel breast coil and relatively accurate b-values
(35, 36). The features extracting for DWI may therefore offer
a new strategy for reconsidering the role of DWI in radiomics.
Examples of the four IHC subtypes are shown in Figure 7.

Multiple studies performed texture analysis on images from
different systems and institutions, including varied protocols
(14, 29, 37). The breast MR imaging protocol has a variety of
acquisition parameters, such as spatial resolution and temporal
resolution, dynamic time points, repetition time and echo time,
b-values, numbers of average and acceleration factors. All these
variables affect texture features, and consequently the robustness
of the radiomics classification model. For the widespread use of
texture analysis in clinical applications, the approach to overcome
the limitation that texture features are sensitive to the imaging
parameters and modalities should be considered (38). In this
investigation, we extracted radiomic features from patients on
both the DCE and DWI images with two new sequential images,
including DCE images changing over several time points, and
DWI images changing over different b-values, which have not
been used or described before in the domain of breast radiomics.
Further studies on whether these normalized features minimized
the variations introduced by different reconstruction algorithms
and scanning parameters between different MR vendors and
institutions will be validated.

Furthermore, a novel two-stage method of feature selection
was performed by combining traditional statistics with machine
learning. The coarse feature selection aimed to choose a relatively
small subset of the features by removing the present features of
redundant, noisy, and irrelevant dimensions (39, 40). Because of
the differing performance of lasso regression, ridge regression,
and elastic net, we combined the three methods to select
intersecting features for robustness and stability during the
fine feature selection step (41). The number of fine features
selected in models depends on the difficulty of the classification
problem (42). In addition, the classification accuracy obtained
by combining the three methods was higher compared with
that obtained by using any single one of these three methods.
Similarly, Li et al. combined the Mann-Whitney U-test and SVM
to select informative genes (43).

This study had several limitations. First, it was a retrospective,
single-institution study. Second, the limited sample size and the
imbalance distribution of breast subtypes may not have trained
the classification models sufficiently in such a retrospective
design. Third, the same data were used for training and testing.
The model may perform differently if multicenter datasets were
used. Further prospective study using a larger and more balanced
population from multiple centers and a subset of the data as a
validation set is required. Fourth, the number of b-values for
DWI to assess the texture features based on DWI image change
over multiple b-values, was relatively low. Further validation
on original DWI with more b-values in the IVIM (44) or
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FIGURE 7 | DWI images for the four subtypes of breast cancer. A 46-year-old female with Luminal A breast cancer (A–C); a 60-year-old female with Luminal B breast

cancer (D–F); a 47-year-old female with HER2-positive breast cancer (G–I); and a 57-year-old female with TN breast cancer (J–L). The small dependence emphasis

of Kendall-tau-b for DWIsequential for Luminal A, Luminal B, HER2-positive, and TN breast cancers were −0.915, 0.358, 0.915, and 0.299, respectively.

diffusion kurtosis imaging (45) are needed. Finally, portions of
the current work were performed offline. To implement this
method into routine clinical practice, the automatic registration
and segmentation tools, as well as the radiomics tools, will need
to be integrated in the same platform.

In conclusion, we have shown that machine learning-based
analysis of multiparametric MR radiomics assessing biological
characteristics and heterogeneity of the whole tumor can
effectively differentiate different subtypes of breast cancer and
identify TN cancers. This approach could serve as a more
convenient and non-invasive biomarker for the prediction of
breast cancer subtypes.
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