
sensors

Article

Deep-Learning-Based Stress Recognition with Spatial-Temporal
Facial Information

Taejae Jeon 1 , Han Byeol Bae 2, Yongju Lee 1, Sungjun Jang 1 and Sangyoun Lee 1,*

����������
�������

Citation: Jeon, T.; Bae, H.B.; Lee, Y.;

Jang, S.; Lee, S. Deep-Learning-Based

Stress Recognition with Spatial-

Temporal Facial Information. Sensors

2021, 21, 7498. https://doi.org/

10.3390/s21227498

Academic Editor: Sheryl Berlin

Brahnam

Received: 27 August 2021

Accepted: 9 November 2021

Published: 11 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Korea;
jtj7587@yonsei.ac.kr (T.J.); paulyongju@yonsei.ac.kr (Y.L.); jeu2250@yonsei.ac.kr (S.J.)

2 Department of Artificial Intelligence Convergence, Kwangju Women’s University, 45 Yeodae-gil,
Gwangsan-gu, Gwangju 62396, Korea; kwu_BHB@kwu.ac.kr

* Correspondence: syleee@yonsei.ac.kr; Tel.: +82-2-2123-5768

Abstract: In recent times, as interest in stress control has increased, many studies on stress recognition
have been conducted. Several studies have been based on physiological signals, but the disadvantage
of this strategy is that it requires physiological-signal-acquisition devices. Another strategy employs
facial-image-based stress-recognition methods, which do not require devices, but predominantly
use handcrafted features. However, such features have low discriminating power. We propose
a deep-learning-based stress-recognition method using facial images to address these challenges.
Given that deep-learning methods require extensive data, we constructed a large-capacity image
database for stress recognition. Furthermore, we used temporal attention, which assigns a high
weight to frames that are highly related to stress, as well as spatial attention, which assigns a high
weight to regions that are highly related to stress. By adding a network that inputs the facial landmark
information closely related to stress, we supplemented the network that receives only facial images
as the input. Experimental results on our newly constructed database indicated that the proposed
method outperforms contemporary deep-learning-based recognition methods.

Keywords: deep learning; stress recognition; stress database; spatial attention; temporal attention;
facial landmark

1. Introduction

People in contemporary society are under immense stress due to various factors [1].
As stress is a cause of various diseases and affects longevity, it is vital to keep it under
control [2–4]. A system that detects a user’s stress level in real time and provides feedback
about how to lower stress is the need of the hour [5–7]. To develop such a system, high-
accuracy stress recognition technology is required. In response to this need, research on
stress recognition technology has been actively conducted. Reliable stress recognition
technology will be useful in various fields, such as driver stress monitoring [8,9] and online
psychological counseling.

Most stress-recognition studies have been conducted using a two-class classification,
which divides subjects into stressed or relaxed, or using three classes, i.e., low, medium,
and high stress [10]. Several stress recognition studies have been conducted on physio-
logical signals acquired through wearable devices [8,11–17]. Physiological-signal-based
approaches effectively recognize human stress because they use signals that immediately
reveal a person’s condition, such as respiration rate, heart rate, skin conductivity, and body
temperature. However, this method involves additional costs because a special wearable
device is required to acquire physiological signals, which users may find too expensive or
feel reluctant to wear.

Other studies have identified and classified stress using life-log data such as mobile
app usage records obtained from smartphones [18–21]. As smartphones are always at-
tached to their users, it is possible to ascertain the user’s status by accumulating data over
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a certain period. This approach is suitable for recognizing stress over a specific period,
but fails to recognize an instantaneous stress state. By contrast, images, such as thermal
images showing blood flow and respiratory rate and visual images portraying body move-
ments and pupil size, can be used for stress recognition [22–24]. Some stress-recognition
studies use only visual images, especially facial images, which have the advantage of only
requiring a camera; the subjects need not wear additional equipment [25,26]. However, in
many of these methods, handcrafted features continue to be used. In some recent studies, a
neural network with handcrafted features is used in the feature extraction process [27–29].

Some recent studies have recognized stress using only deep learning. Zhang et al. [30]
proposed a deep-learning-based method that detects the presence or absence of stress
using the video footage of a person watching a video clip that induces or does not induce
stress. In this method, when the face-level representation was first learned, an emotion
recognition network was used to learn the emotion change between the two frames with
the largest emotion difference. Furthermore, the action-level representation was learned by
using motion information and an attention module that passes the entire feature through
one fully connected layer. The resolution of both the facial image and upper body image
was 64 × 64, which rendered the detection of small facial changes difficult.

By contrast, our study focuses on a more difficult task: subdividing stressful situ-
ations into low-stress and high-stress situations. Furthermore, the attention used was
subdivided into spatial and temporal attention, and since it had a precise structure, it
could be advantageously used for learning attention for each purpose. Additionally, the
face-level representation was learned using all frame information, and the resolution of the
facial image used was 112 × 112, which was more advantageous for detecting small facial
changes. Moreover, since the proposed method does not use motion information, it can
show higher performance in situations where only a face is visible or for people without
bodily motion. The experimental results in Section 5.4 show that the proposed method
could detect overall spatial and temporal changes in the face related to stress and that it is
superior to the method presented in the previous work [30].

In a previous study [31], we constructed a database and performed deep-learning-
based stress recognition using facial images. In this database, data were acquired in
both the speaking and nonspeaking stages. However, this resulted in a challenge: the
learning proceeds in such a way that the network classifies speaking and nonspeaking
states. Moreover, the amount of data was insufficient for detecting minute changes in the
face because images were stored at a rate of about five images per second. Furthermore,
the stress recognition network was not designed in detail to find minute changes in facial
expressions, but was instead designed as a combination of a convolutional neural network
(CNN) and a deep neural network (DNN) with a simple structure.

Therefore, in this study, the database construction and network design were improved
so as to alleviate the aforementioned concerns. High-quality data were acquired by design-
ing a more sophisticated scenario, and the recognition model also had a more sophisticated
design. We acquired additional data because a large-capacity image database is required to
use deep learning, but there is no existing database that can be used for stress recognition.
Therefore, we built a large image database by conducting a stress-inducing experiment
and released the database publicly. We propose a deep-learning-based stress-recognition
method using facial images from this stress recognition database.

In the proposed method, we used time-related information, which is unavailable in
still images. Given that our database contains images captured from video data, we use
a temporal attention module that assigns a high weight to frames related to stress when
viewed from the time axis. Furthermore, we used a spatial attention module that assigns a
high weight to the stress-related areas in the image to improve the performance further.
One study [32] found that peoples’ eye, mouth, and head movements differ when under
stress. Therefore, to accurately capture these movements, a network that receives facial
landmark information was added. Accordingly, we supplemented the network, which
receives only facial images as the input. In addition, designing a proper loss function when
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using the deep-learning method is crucial. Therefore, we designed a loss function that is
suitable for our database and trained the proposed method end-to-end.

Our contributions are as follows:

1. We built and released a large-capacity stress recognition image database that can be
used for deep learning;

2. We applied a multi-attention structure to the deep learning network, and the proposed
method was trained end-to-end;

3. We trained a feature with stronger discriminating power by adding a network that
uses facial landmarks.

The remainder of this paper is organized as follows. In Section 2, previous studies
related to stress recognition and deep learning are described. In Section 3, we introduce the
construction process and contents of our database. In Section 4, the proposed method is pre-
sented in detail. In Section 5, the experimental settings are described and the experimental
results are analyzed. Finally, Section 6 concludes this study.

2. Related Work
2.1. Facial-Action-Unit-Based Stress Recognition Methods

Many studies have attempted to recognize stress using facial action unit information
that defines the movements of the eyes, nose, mouth, and head [25,32–34]. There are
several types of facial action units, and among them, units that are highly related to stress,
such as inner brow raise, nose wrinkle, and jaw drop, are used often. In previous studies,
the movement of each facial action unit was used as a feature, and classical classifiers
such as random forest and support vector machine (SVM) were used for classification.
Some studies recognized stress primarily using pupil size [24,35]. The pupil diameter
and pupil dilation acceleration were used as features, and the SVM and decision tree
were used as classifiers. Pampouchidou et al. [36] recognized stress using mouth size as a
primary characteristic. Stress was recognized using normalized openings per minute and
the average openness intensity obtained from mouth openness. In another study, stress
was recognized by observing breathing patterns through changes in the nostril area [27].
After discovering breathing patterns through temperature changes near the nostrils, two-
dimensional respiration variability spectrogram sequences were constructed using these
data and were used to recognize stress. Giannakakis et al. [37] recognized stress based on
facial action unit information obtained from nonrigid 3D facial landmarks, the histogram
of oriented gradients (HOG), and the SVM. The limitations of the aforementioned methods
are that they cannot utilize the changes in the facial colors and the full facial image because
the entire image information is not used.

2.2. Facial-Image-Based Stress Recognition Methods

In one popular method of recognizing stress using facial images, unlike the facial
action unit, a comprehensive feature is extracted from the entire image. In some studies,
the HOG features were extracted from the eye, nose, and mouth regions in RGB images
and used as features [26,29]. In these methods, a CNN and a method combining the
SVM and slant binary tree algorithm were used as classifiers. Some studies used features
extracted from thermal images or nearinfrared (NIR) images [9,22,38]. In the methods
using thermal images, stress was recognized based on the tissue oxygen saturation value
extracted from the thermal image or by applying a CNN to the thermal image itself. In the
method using NIR images, stress recognition was performed using an SVM after extracting
scale-invariant feature transform (SIFT) descriptors around facial landmarks. In other
studies, stress was recognized by fusing RGB and thermal images [28,39,40]. In these
methods, stress was recognized using the features extracted from super-pixels and local
binary patterns on the three orthogonal plane (LBP-TOP) descriptor. All the methods
introduced above used handcrafted features, but there was also a method using deep
learning. This method recognizes stress by fusing facial images and motion information
such as hand movements [30]. In this method, optical flow images were used to obtain
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motion information, and stress was recognized by applying attention to facial features
and motion features. Most of the facial-image-based stress recognition studies have used
handcrafted features. Many image recognition studies have shown great performance
improvement through deep learning. If deep learning is used, the stress recognition
performance can be further improved because stress-related high-dimensional features can
be learned from images. Recently, a study [30] that recognized stress using deep learning
came out, and we also tried to recognize stress using deep learning for better performance.

2.3. Facial-Image-Based Emotion Recognition Methods

Many studies on facial-image-based emotion recognition are being conducted, and
there are similarities between emotion recognition and stress recognition studies since
emotion and stress are related. Among studies on emotion recognition methods, many
studies using facial landmark information are underway [41–43]. As changes in facial
expressions are highly correlated with changes in facial landmarks, these studies input
the coordinates of facial landmarks directly into a network or images created from facial
landmarks. Palestra et al. [44] classified emotions using a random forest classifier after
extracting geometrical features from facial landmark information. Studies on recognizing
emotions in videos are also being actively conducted. For such emotion recognition,
various methods for using time-related information are being studied. These include
a method that uses a 3D-CNN [41,45] and a method that combines a 2D-CNN and a
recurrent neural network (RNN) [42,43]. Furthermore, many recent deep-learning-based
studies have improved the recognition performance by using simple modules such as the
attention module [46,47]. The attention module creates attention maps that are multiplied
by the input feature maps and then refines those feature maps to improve recognition
performance. For example, Zhu et al. [48] proposed a hybrid attention module comprising a
self-attention module and a spatial attention module to detect regions with large differences
in facial expressions. Meng et al. [49] proposed a frame attention module that assigns
higher weights to frames with higher importance among multiple frames when video
data are input. The difference between our method and the above methods is that the
former were designed to detect overall spatial and temporal changes in the face. First,
attention was divided into spatial attention and temporal attention to emphasize spatially
and temporally important parts, respectively. We then designed a network that could
effectively detect facial changes by using preprocessed facial landmark images. We showed
that the proposed method is superior to other methods through various ablation studies
and performance evaluation experiments.

3. Database Construction

Several databases [50,51] containing data for stress recognition are available, but
most contain physiological signal data; few have image-related information. As far as
we know, there is only one database, i.e., the SWELL-KW database [51], that includes
facial image information. This database provides four types of information: computer
interactions, facial expressions, body postures, and physiology. It provides four pieces
of information related to facial expressions. First, the orientation of the head in three
dimensions is provided. Second, ten pieces of information related to facial movements,
such as gaze direction and whether the mouth is closed, are provided. Third, 19 pieces
of information related to facial action units such as inner brow raise, nose wrinkle, and
chin raise are provided. Finally, probability values are provided for eight emotions such
as neutral, happy, and sad. However, this database does not provide images, but only the
above high-level information obtained from images. Therefore, this database cannot be
used for deep-learning-based stress-recognition methods that take images as the input.

Therefore, a new database is required to recognize stress using deep learning, so we
built a large image database. The database we built consists of the subject’s facial images
and information on whether the subject’s stress level belongs to one of three levels (neutral,
low stress, or high stress). As this study involved human participants, our database was
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built with the approval of the Institutional Review Board of Yonsei University, and the
study was conducted upon it. We created this database by designing an experimental
scenario that included stress-inducing situations. The designed stress-inducing experiment
scenario is depicted in Figure 1.

Relaxation

5 min 10 min 10 min5 minRecording Time

Experiment
Process

Native Language
Script Reading

Non-native
Language

Script Reading

Native Language
Interview

Non-native 
Language
Interview

Figure 1. Progress of the designed stress-inducing experimental scenario, including the recording
time for each stage.

As research results indicated that an interview induces stress in the subject [52,53]
and that the subject is stressed when asked to use a non-native language [54,55], the
experimental scenario was designed in accordance with these studies’ results. Therefore,
the stress-inducing situation comprised interviews in native and non-native languages. The
former was established as a situation that induces low stress and the latter as a situation
that induces high stress. We recruited subjects near our school. As most of the population
is Korean, Koreans were selected as test subjects, and accordingly, Korean was used as the
native language. English was selected as the non-native language because it is the most
popular non-native language used by Koreans.

Situations in which the test subject reads scripts written in the native or non-native
languages were used as the comparison group. These were considered situations that
did not cause stress (i.e., neutral). If the nonspeaking situations were set as a comparison
group, the network can learn to classify speaking and nonspeaking situations. Thus, the
comparison group was limited to situations in which subjects read scripts. The experiment
time for each stage was 5 min for the native and non-native language script reading and
10 min for the native and non-native language interviews. We set the experiment time for
each script-reading stage to 5 min because we designed both script-reading stages to be
stress-free so that the sum of the experiment time of the two stages would be the same
(10 min) as the other stress-inducing stages in the experiment. We shot a single video
at each experimental stage for each subject. As there were four experimental steps, the
number of videos for each subject was four.

We collected data by recruiting 50 men and women in their 20 s and 30 s. We chose
this age group because the experimental stages included reading scripts and interviewing
in a non-native language. We believed that this task would be difficult for older people.
In addition, the population in their 20s and 30s in the subject recruitment area was large.
During the experiment involving situations that do and do not induce stress, the subject’s
appearance was photographed using a Kinect v2 camera.

The data acquisition environment was as follows. The data were acquired in a win-
dowless location so that the lighting could be kept constant. The camera was set so that
only a white wall appeared behind the subject, eliminating any potential interference
from a complex background. The camera was positioned in front of the subject so that
the subject’s frontal face could be photographed. To ensure that the subject’s face would
always be visible, hair or accessories other than glasses were not allowed to cover the
subject’s face. The reason for this constraint is that if hair or accessories cover the face, they
interfere with the observation of the subject’s facial changes. We enforced these constraints
because the purpose of this study is to detect overall spatial and temporal changes in the
face related to stress. The resolution of the recorded video is 1920 × 1080. When the data
were acquired, about 24 images were saved per second, and the entire database comprises
2,020,556 images. The summary information about the database construction settings and
database contents is depicted in Appendix A.

As presented in Table 1, this database comprises a large number of images for deep
learning, which is considered highly useful, and was released as the Yonsei Stress Im-
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age Database on IEEE DataPort (https://dx.doi.org/10.21227/17r7-db23 (accessed on 8
November 2021)). It is publicly available for stress recognition research. We measured the
stress recognition accuracy after labeling the acquired data according to the scenario we
designed. We labeled the data acquired during the native language interview as low stress,
the data acquired during the non-native language interview as high stress, and the data
acquired while reading the script produced in the native language or non-native language
as neutral.

Table 1. Number of images acquired at each stage of the database construction.

Designed State Experimental Stage Total Images

Neutral
Native Language Script Reading 366,121

Non-native Language Script Reading 368,991

Low Stress Native Language Interview 656,624

High Stress Non-native Language Interview 628,820

We annotated the data in this manner because many stress recognition studies still use
this method [10]. The reason why this labeling method continues to be popular is that it is
difficult to annotate stress data in real time. In the case of an emotion database, an annotator
can examine the facial expression of a subject and label the subject’s emotions as positive or
negative in real time. This is possible because in the case of facial expressions, the emotion
is visually apparent, and therefore, other people can judge to some extent whether it is
positive or negative. However, in the case of stress, it is difficult to judge it solely from
facial expressions. For example, while a subject may actually be stressed, it may not be
evident from his/her facial expressions, or he/she may fake a smile. Therefore, many
studies have created a stress-inducing situation, and all data obtained from that situation
were labeled as corresponding to a stress state. We trained and tested how accurately
the proposed method and other methods classified data into these three labels, and the
performance of each method was compared using the test accuracy. The ablation studies
and comparative experiments conducted using the established database are described in
Section 5.

4. Proposed Methodology

In this section, we describe the structure of the proposed method for recognizing stress
using facial information and multiple attention. We look at the proposed method’s overall
structure and then look at the spatial attention module, facial landmark feature module,
temporal attention module, and loss function, in that order.

4.1. Overall Structure

The proposed method predicts a person’s stress level from video data based on facial
information. A flowchart for the proposed method is depicted in Figure 2, and the details
are described below.

First, one clip was entered as the input for the proposed method. This clip was created
by dividing all 5 or 10 min videos acquired in the database construction experiment into
2 s clips. As the data acquisition rate was 24 frames per second (fps), one clip consisted
of 48 frames, and we used all 48 frames as the input. The size of the original image was
1920 × 1080, but when training and testing, the face area was detected, cropped, and
resized to 112 × 112. A multitask cascaded convolutional network [56] was used to detect
and localize the facial area. When the facial image passes through the ResNet-18 residual
network [57], feature maps are generated. Furthermore, as these feature maps pass through
the spatial attention module and global average pooling (GAP) [58], a facial image feature
is generated.

In the spatial attention module, a high weight was assigned to the positionally im-
portant parts of the feature maps, and a lower weight was assigned to the positionally
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unimportant parts of the feature maps. The details of the spatial attention module are
described later in Section 4.2. When a facial image passed through the facial landmark
detector, 68 facial landmarks were obtained. After creating a facial landmark image by
marking 68 facial landmark points as white dots on a black image, the facial landmark
feature network and GAP were applied to obtain a facial landmark feature. The details of
the facial landmark feature module are described later in Section 4.3. The resulting 48 facial
image features and 48 facial landmark features were concatenated for each frame and then
passed through the temporal attention module to obtain a final feature.

In the temporal attention module, a high weight was assigned to frame features that
were highly related to stress, while a low weight was assigned to frame features that were
less related to stress. The details of the temporal attention module are described later in
Section 4.4. When the final obtained feature passed through the fully connected layer, a
stress prediction result was finally produced. We divided the stress state into neutral, low,
and high stress. Therefore, the stress prediction result would be one of these three states.
While the learning was in progress, the part that was actually learned is marked with a red
box in Figure 2.

Figure 2. Flowchart of the proposed method. The residual network ResNet-18 extracts feature maps from facial images.
GAP: global average pooling; FC: fully connected layer.

4.2. Spatial Attention Module

Chen et al. [59] used a spatial attention module to pinpoint to the network the relevant
parts of the feature map that should be viewed more closely. Since then, the spatial attention
module’s structure has continued to develop. As the module proposed by Woo et al. [47]
demonstrated both light and high performance, we used it to obtain the spatial attention
weight. The spatial attention module’s overall structure is depicted in Figure 3, and the
details are described below.

First, the feature maps were extracted by inputting the facial image into ResNet-18.
This network is light and has high performance, so it is widely used in various recognition
fields. We did not use a pretrained network; only the structure of ResNet-18 was used and
trained from the beginning after initializing the weights. After obtaining the feature maps,
average pooling and max pooling were performed on the channel axis. The two results
were concatenated along the channel axis. Chen et al. [59] demonstrated that performing
the pooling operation on the channel axis emphasizes locational importance. The average
pooling operation used by Zhou et al. [60] is frequently used because it is effective for
aggregating information.
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Figure 3. Structure of the spatial attention module. For efficient learning, the multiplication result
from the original feature maps and the spatial attention map is added to the original feature maps.
GAP: global average pooling.

Furthermore, Woo et al. [47] found that the max pooling operation reveals important
information that differs from that revealed by the average pooling operation. Therefore, if
the results obtained by performing both the average pooling and max pooling operations
on the feature maps are concatenated and a convolutional operation is performed, it is
possible to obtain an attention map that highlights stress-relevant regions by considering
multiple perspectives. In our design, the sigmoid function was used to obtain the final
spatial attention map. By multiplying the obtained spatial attention map by the original
feature maps, feature maps with applied spatial attention can be obtained.

In the next step, the final feature maps were obtained by adding attention-applied
feature maps to the original feature maps. This addition to the previous layer’s result is
called identity mapping. This structure reduces the amount of information that the layer
must learn so that learning can be performed more effectively [57]. Finally, the facial image
feature was obtained by applying GAP to the final feature maps. While the learning was in
progress, the part that was actually learned is marked with a red box in Figure 3. The facial
image feature was obtained using the following equation:

Msa = σ(conv7×7([AvgPool(F); MaxPool(F)]))), (1)

f f acial image = GAP(F + Msa ◦ F), (2)

where σ is the sigmoid function, conv7×7 denotes the convolutional operation with a
7 × 7 filter, F denotes the feature maps extracted from ResNet-18, the symbol ; denotes
the concatenation operation, GAP indicates the GAP operation, and ◦ is the product of
the attention weight and feature value for each position in the feature map. The residual
network’s structure and spatial attention module are depicted in Table 2. As can be seen
from Table 2, the size of the feature space of the facial image feature was 4 × 4 × 512. This
module was automatically trained through an end-to-end learning process. The importance
of the spatial attention module is evaluated in Section 5.3.2.
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Table 2. Network structure of the residual network and spatial attention module.

Unit Layer Filter/Stride Output Size

Input 0 112 × 112 × 3

Residual
Network

1
Conv-BN-ReLU 7 × 7, 64/2 56 × 56 × 64
Max Pooling 3 × 3/2 28 × 28 × 64

2
Conv-BN-ReLU 3 × 3, 64/1 28 × 28 × 64
Conv-BN 3 × 3, 64/1 28 × 28 × 64

3
Conv-BN 1 × 1, 128/2 14 × 14 × 128
Conv-BN-ReLU 3 × 3, 128/1 14 × 14 × 128
Conv-BN 3 × 3, 128/1 14 × 14 × 128

4
Conv-BN 1 × 1, 256/2 7 × 7 × 256
Conv-BN-ReLU 3 × 3, 256/1 7 × 7 × 256
Conv-BN 3 × 3, 256/1 7 × 7 × 256

5
Conv-BN 1 × 1, 512/2 4 × 4 × 512
Conv-BN-ReLU 3 × 3, 512/1 4 × 4 × 512
Conv-BN 3 × 3, 512/1 4 × 4 × 512

Spatial
Attention
Module

6

AvgPool 4 × 4 × 1
MaxPool 4 × 4 × 1
AvgPool+MaxPool 4 × 4 × 2
Conv-Sigmoid 7 × 7, 1/1 4 × 4 × 1

7 Product (5 ◦ 6) 4 × 4 × 512

Output 8 GlobalAvgPool 512
BN: batch normalization. In Unit 7, the outputs of Units 5 and 6 are multiplied for each position in the feature
maps.

4.3. Facial Landmark Feature Module

Giannakakis et al. [32] indicated that peoples’ eye, mouth, and head movements
during stressful situations differ from those during nonstressful situations. To accurately
capture these movements, we designed a network that receives facial landmark points
representing the eye, mouth, and head positions as the input. The feature extracted from
this network is used along with the facial image feature to complement its discriminating
power. The process of extracting the facial landmark feature is depicted in Figure 4, and
the details are described below.

Figure 4. Facial landmark feature extraction process. A simple network with three convolutional layers is used to extract
the facial landmark feature. GAP: global average pooling.

A facial image was first input into the facial landmark detector to extract the facial
landmark feature, where the detector was an ensemble of the regression tree algorithm [61].
Passing through the facial landmark detector, 68 facial landmarks were obtained and
displayed as white dots on a black image to create a facial landmark image. The facial
landmark image was used because it better captures the movement of the facial landmarks
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when input into the CNN, which uses spatial information, rather than simply entering the
facial landmark coordinate values into the fully connected neural network. In the method
proposed by Wu et al. [41], the facial landmark image was used to utilize the facial location,
and it was shown that fine movements could be captured well. Therefore, we also tried
to capture the minute movements of the face by proposing a method to utilize a facial
landmark image by paying attention to this aspect.

Furthermore, two preprocessing steps were performed on the facial landmark image;
one is min–max normalization, and the other is Gaussian blurring. Min–max normalization
was used because the position of the area where the human face is detected in each frame of
the video jitters slightly, so the face is stationary, but appears to be moving. If the location
of the face area moves slightly, the location of the facial landmark detected in the facial
area also moves slightly. Consequently, the head is stationary, but it may appear to move,
which may adversely affect stress recognition. By performing min–max normalization,
this phenomenon can be prevented because the positions of the facial landmarks are
evenly aligned in all frames. In the face detection stage, we roughly aligned the positions
of the eyes, nose, and mouth through alignment, but these positions were not always
precisely fixed. Therefore, min–max normalization was additionally applied to reduce this
phenomenon as much as possible.

After min–max normalization, Gaussian blurring was performed because jittering
also occurred in the facial landmark detector result, and the effects that arise from these
phenomena can be reduced when blurring is performed by spreading the data around a
point rather than merely displaying that point. After performing these two preprocessing
steps, the image was passed through the CNN. The structure of this network comprises
three convolutional layers. The content of the facial landmark image is simple. Useful
information can be extracted even by a simple network, so we chose a simple network
to avoid unnecessary complexity. Finally, the facial landmark feature was obtained by
performing a GAP operation on the feature maps that passed through the CNN. While the
learning was in progress, the part that was actually learned is marked with a red box in
Figure 4. The facial landmark feature module network structure is depicted in Table 3. As
can be seen from Table 3, the size of the feature space of the facial landmark feature was
9 × 9 × 256.

Table 3. Network structure of the facial landmark feature module.

Unit Layer Filter/Stride Output Size

Input 0 112 × 112 × 1

Facial
Landmark
Feature
Network

1
Conv-BN-ReLU
Conv-BN-ReLU
Conv-BN-ReLU

7 × 7, 64/2
7 × 7, 128/2
7 × 7, 256/2

53 × 53 × 64
24 × 24 × 128
9 × 9 × 256

Output 2 GlobalAvgPool 256
BN: batch normalization. The stride is 2, but the feature map size is reduced by more than 0.5-times because
padding is not performed during convolution.

4.4. Temporal Attention Module

Meng et al. [49] used a temporal attention module to observe the information in all
frames to determine on which frame to focus. As the structure is simple and demonstrated
high performance in facial expression recognition, we modified this module and used it to
obtain the temporal attention weight. The temporal attention module’s overall structure is
depicted in Figure 5, and the details are described below.
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Figure 5. Structure of the temporal attention module. The attention weight increases when the frame is highly related to
stress, considering the average feature representing 48 frames and the feature of a specific frame. FC: fully connected layer.

First, 48 video frames passed through the ResNet-18 network and spatial attention
module, and 48 facial image features were extracted. Then, these frames passed through
the facial landmark detector and facial landmark feature network, and 48 facial landmark
features were extracted. When the 48 extracted facial image features and 48 extracted facial
landmark features entered the temporal attention module, they were first concatenated
frame-by-frame to create 48 concatenated features. Thus, frames highly related to stress
were found by considering the facial image features, as well as the facial landmark features.

The 48 concatenated features were averaged to obtain the average feature, and the
average feature was concatenated into 48 concatenated features to generate 48 final con-
catenated features. The average feature can be regarded as containing all information for
all frames. When the temporal attention weight is calculated using these final concate-
nated features, it becomes possible to obtain each frame’s temporal attention weight by
comprehensively viewing the information of the entire frame, as well as the information of
individual frames. Therefore, each final concatenated feature was passed through three
fully connected layers to obtain each frame’s temporal attention weight. It is possible to
attach the 49th slice and calculate the weight at once, but the weight of the target individual
feature and the total feature decreases, so the desired weight value cannot be obtained.
Therefore, we did not proceed in this manner.

When the obtained temporal attention weight for each frame is multiplied by the
concatenated feature from the corresponding frame’s facial image feature and facial land-
mark feature, the concatenated feature reflects the importance of the corresponding frame.
Accordingly, after obtaining the concatenated features that reflect the importance of all
48 frames, the final feature was obtained by applying the average operation. By applying a
fully connected layer to this feature, the stress recognition result was output. While the
learning was in progress, the part that was actually learned is marked with a red box in
Figure 5. The final feature was obtained using the following equations:

f i
concat = [ f i

f acial image; f i
f acial landmark], (3)

f i
total concat = [ f i

concat; Avg( fconcat)], (4)

Wi
ta = f c1( f c1536( f c1536( f i

total concat))), (5)
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f f inal = Avg(Wta · fconcat), (6)

where f i is the feature of the ith frame, Avg denotes the averaging operation on the time
axis, Wi is the weight of the ith frame, f cn represents a fully connected layer with n output
nodes, and the symbol · denotes the multiplication operation for each frame. The bold
notation indicates a vector of features or weights for all frames. The network structure of
the temporal attention module is depicted in Table 4.

Table 4. Network structure of the temporal attention module.

Unit Layer Output Size

Input
0 Facial Image Feature 512 × 48 (frames)

1 Facial Landmark Feature 256 × 48 (frames)

Temporal
Attention
Module

2 Concatenate (0 + 1) 768 × 48 (frames)

3 Average (48 frames) 768

4 Concatenate (2 + 3) 1536 × 48 (frames)

5
Fully Connected 1536 × 48 (frames)
Fully Connected 1536 × 48 (frames)
Fully Connected 1 × 48 (frames)

6 Multiplication (2 · 5) 768 × 48 (frames)

7 Average (48 frames) 768

Output 8 Fully Connected 3 or 4
In Unit 4, the outputs of Units 2 and 3 are concatenated for each frame. In Unit 6, the outputs of Units 2 and 5 are
multiplied for each frame.

4.5. Loss Function

We trained and tested the proposed method using the constructed database. Given
the database’s characteristics, the choice of the loss function influenced the training result
considerably. For the constructed database, the difference in facial changes observed by the
same person in different stress states is minute, so the difference between classes within
the same subject’s data is not large.

In contrast, even in the same stress state, each person has a unique face, and a differ-
ence in the pattern of facial changes occurs. Accordingly, the difference between subjects
within data from the same class is large. Therefore, if the distance between features for data
from different classes within the data for the same subject is increased and the distance
between features for data from different subjects within the data for the same class is
decreased, it is possible to prevent ineffective learning caused by database characteristics.

Previous studies have proposed several loss functions to prevent this phenomenon,
such as the widely used contrastive loss [62] and triplet loss [63] functions. For contrastive
loss, only one positive data point and one negative data point are used in the loss function,
but this may result in less efficiency than using both. For triplet loss, one formula handles
both, reducing the distance between data for the same class and increasing the distance
between data for different classes. However, this approach can reduce the learning abil-
ity when compared with methods that handle these tasks separately and then combine
the results. Therefore, considering this information, we propose a new loss function by
combining the two loss functions.

The first component of the proposed loss function reduces the Euclidean distance
between the features extracted from the anchor data and the positive data to zero. The
second component changes the Euclidean distance between the features extracted from
the anchor data and the negative data to a value called the margin. The final loss function
was completed by adding three cross-entropy losses to the proposed loss function. The
three cross-entropy losses were obtained from the prediction scores of the anchor, positive,
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and negative data and the ground truth for each data point. The final loss function was
obtained using the following equations:

LCE = −
C

∑
c=1

tc log(sc), (7)

where C is the number of classes, tc indicates the ground truth of class c, and sc is the
prediction score of class c.

LMSE( f1, f2) =
1
N

N

∑
i=1

( f i
1 − f i

2)
2, (8)

L f inal = LCE−anchor + LCE−pos + LCE−neg

+ LMSE( fanchor, fpos)

+ max(0, m − LMSE( fanchor, fneg)),

(9)

where N denotes the feature dimension, f i is the ith element of the feature, and m represents
the margin. Furthermore, tc is one when the ground truth of a data point is class c and zero
for the rest, and LCE−x is the cross-entropy loss of x data.

Positive and negative data input into the final loss function were selected considering
the characteristics of the constructed database. The positive data were selected to have the
same class as the anchor data, with the selected subject being different from the anchor
data. The negative data were selected to be a different class from the anchor data, with
the selected subject being the same as the anchor data. The proposed method was learned
end-to-end using this newly proposed loss function.

5. Experimental Results

This section explains the experiment we conducted. First, the experimental setting
and dataset are described. Second, the results of the ablation study experiment performed
to design the proposed method are presented. Finally, the results of the performance
comparison experiment between the proposed method and other methods are explained
and analyzed.

5.1. Experimental Setting

PyTorch, a deep-learning library, was used to implement the proposed method. We
divided the training set and the testing set using a five-fold cross-validation method to
evaluate the performance. When training, the parameters were set as follows. First, in the
final loss function (9), the margin was set to 2, and for the optimizer, a stochastic gradient
descent optimizer was used. The momentum was set to 0.9, and the weight decay was set
to 0.0001. The training epoch was set to 45, and the initial value for the learning rate was
set to 0.001 and decreased by 0.1 every 15 epochs. The batch size was set to maximize the
GPU memory and set to 6 in the proposed method. We divided the data into a training
set, a validation set, and a testing set in a ratio of 3:1:1, and the best hyperparameter set
was determined by conducting experiments with various hyperparameter combinations
for the validation set. During the division of the data, it was ensured that a subject’s data
belonged to only one set, since if the same subject’s image were to be included in both the
training and test sets, the subject’s appearance could be learned and the performance could
hence be abnormally high.

In the experiments, the performance comparison between the methods used accuracy
values obtained by dividing the number of correctly predicted clips in the testing set by
the number of all clips in the testing set. As we used the five-fold cross-validation method,
we used the average of five accuracy values from five testing sets.
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5.2. Dataset

We used the Yonsei Stress Image Database previously described in Section 3 to eval-
uate the stress recognition performance. A total of 42,023 clips were created by dividing
2,020,556 images of 50 subjects into 48 consecutive frames, and the clips were used as the
input for training and testing. The reason for defining a clip as 48 consecutive frames, i.e.,
two seconds in length, is as follows. In university labs, GPUs with 11GB of memory are
often used. When learning the proposed method using this GPU, if 48 frames are input
to the GPU, the maximum batch size is 6. If the batch size is too small, the performance
deteriorates, so we could use up to 48 frames at once. Additionally, we conducted an
ablation study (described in Section 5.3.4) to investigate the variation of the performance
with the clip length. To match the experimental conditions as much as possible, 48 frames
were randomly selected and used for clips longer than 2 s. In the experimental results, the
2 s clip showed the highest performance, so we used the 2 s clip as a training and test unit.

The facial images were cropped from the original images and input into the network.
Examples of the facial images are depicted in Figure 6. For four randomly selected subjects,
the various facial expressions displayed by them are presented for each situation.

Non-native Language
Interview

Non-native Language
Script Reading

Native Language
Interview

Native Language
Script Reading

Non-native Language
Interview

Non-native Language
Script Reading

Native Language
Interview

Native Language
Script Reading

Figure 6. Samples of cropped facial images from the constructed database.

5.3. Ablation Study

In this subsection, we describe the settings and results of the experiments conducted to
select the structure of the proposed method. We also present the results of the experiments
and examine the effect of the clip settings.

5.3.1. Loss Function

First, an experiment was conducted to determine the loss function that most effec-
tively improved the learning. The proposed loss function was designed with reference to
the contrastive loss [62] and triplet loss [63] to ensure effective learning considering the
characteristics of these databases. The performance was compared with these functions
to determine whether the proposed loss function was effective. The results are listed in
Table 5.
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Table 5. Comparison of different loss functions.

Method Accuracy (%)

ResNet-18 + Cross-Entropy Loss 60.0895
ResNet-18 + Cross-Entropy Loss + Contrastive Loss 63.1357
ResNet-18 + Cross-Entropy Loss + Triplet Loss 62.8771
ResNet-18 + Cross-Entropy Loss + Proposed Loss 64.1865

As depicted in the experimental results, the best performance was achieved when
the cross-entropy loss and proposed loss were used together. When learning using the
proposed loss function, the distance between the data from the same class was reduced,
and the distance between the data from different classes was increased when compared
with using other loss functions.

5.3.2. Attention Module

With several types of attention modules available, we experimented to determine
the best combination by fusing several attention modules. The attention modules used in
the experiment are common: the spatial attention module, channel attention module, and
temporal attention module. The spatial and channel attention modules were proposed by
Woo et al. [47], and the temporal attention module was a modified version of that proposed
by Meng et al. [49]. Table 6 presents the experimental results for various combinations of
attention modules.

Table 6. Comparison of various combinations of attention modules.

Method Accuracy (%)

ResNet-18 64.1865
ResNet-18 + Spatial Att 64.7608
ResNet-18 + Channel Att 65.1097
ResNet-18 + Temporal Att 65.2569
ResNet-18 + Channel Att + Temporal Att 64.3173
ResNet-18 + Spatial Att + Temporal Att 65.3396
ResNet-18 + Spatial Att + Channel Att 64.4165
ResNet-18 + Spatial Att + Channel Att + Temporal Att 64.8969

The experimental results demonstrated that the highest performance occurred when
the spatial attention and temporal attention modules were both used. Accordingly, finding
a channel with a high correlation to stress on the feature maps did not significantly affect
the performance, whereas finding a location and frame with a high correlation to stress
significantly affected the performance.

5.3.3. Facial Landmark Feature Module

Furthermore, 68 facial landmarks were imaged and entered into the network to extract
facial landmark features, and an experiment was conducted to determine the best method
for processing and inputting these facial landmark images. As the results of the face
detector and facial landmark detector illustrated a jittering pattern, we examined the
extent to which the stress recognition performance was affected when this phenomenon
was prevented by applying min–max normalization and Gaussian blurring to the facial
landmark images. The experimental results are listed in Table 7.
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Table 7. Comparison of facial landmark feature extraction methods.

Method Accuracy (%)

ResNet-18 + Att 65.3396
ResNet-18 + Att + Landmark Image 63.0085
ResNet-18 + Att + Landmark Image + Norm 64.0012
ResNet-18 + Att + Landmark Image + Blur 66.1854
ResNet-18 + Att + Landmark Image + Norm + Blur 66.8409

Att: spatial and temporal attention modules, Norm: min–max normalization, Blur: Gaussian blurring.

The experimental results demonstrated that the performance decreased when only
the landmark image was used or only min–max normalization was applied. However,
when min–max normalization and Gaussian blurring were both applied to the landmark
images, the performance increased. Thus, when both min–max normalization and Gaussian
blurring were used, the jittering phenomenon was prevented.

5.3.4. Clip Length and Number of Frames

Finally, we analyzed the impact of the proposed method on the performance by
varying the clip length and number of frames. First, we experimented by changing the clip
length, which is a unit used in training and testing, to 1 s, 2 s, 5 s, 10 s, and 30 s; the results
are listed in Table 8. To match the experimental conditions as much as possible, we used
24 frames for 1 s, and 48 frames were used in the remaining experiments.

Table 8. Effect of clip length on the performance.

Method Clip Length (s) Accuracy (%)

1 65.9470
2 66.8409

Ours 5 65.6555
10 65.8282
30 65.6207

The experimental results demonstrated that the best performance occurred when
the clip length was 2 s. It was possible to identify the cues that indicated stress in 2 s
clips, and the temporal change was learned well using 48 consecutive frames. In contrast,
we randomly selected 48 frames for clips longer than 2 s and used them for training
and testing; hence, the discontinuity between frames could have an adverse effect on
learning the temporal change. Next, we experimented by changing the number of frames
constituting one clip to 8, 16, 32, 48, and 64, and the results were the same as in Table 9. To
match the experimental conditions as much as possible, we used 2.7 s clips for 64 frames,
while the other experiments used 2 s clips.

Table 9. Effect on the performance of the number of frames.

Method Number of Frames Accuracy (%)

8 65.0138
16 64.8687

Ours 32 66.1900
48 66.8409
64 64.4527

The experimental results demonstrated that the highest performance was achieved
when 48 frames were used. This setting exhibited the highest performance when all
48 frames of the 2 s clips were used because it is necessary to find the overall spatial and
temporal facial changes when recognizing stress. In contrast, when the clip length exceeded
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2 s, recognition was hampered by the increased amount of unnecessary information, as in
the above experiment.

5.4. Comparison with Other Methods

We evaluated the stress recognition performance of the proposed method, as well
as various other methods. We compared the proposed method with widely used deep-
learning networks that have demonstrated high performance [46,47,57,64–67]. The HOG–
SVM method, which combines the widely used handcrafted features, HOG [68], and
the classical classifier SVM [69], was used for comparison. In addition, current deep-
learning-based recognition methods [41–43,45] using spatial–temporal facial information
were also used for performance comparison. These methods were used because an emotion
recognition network could be considered similar to a stress recognition network.

The experimental results of the proposed method and other methods are listed in
Table 10, along with each method’s feature dimension. In general, a higher feature dimen-
sion indicates a higher discriminating power, but because the computational complexity
increases, lower feature dimensions that exhibit high performance are preferable.

Table 10. Stress recognition accuracy, sensitivity, and specificity on the constructed database.

Method Feature Dimension Accuracy (%) Sensitivity (%) Specificity (%)

HOG-SVM [68,69] 1764 50.9153 50.4360 64.3488

VGG-16 [65] 2048 56.9125 56.4093 71.0178
CBAM-ResNet-18 [47] 512 58.8559 58.1435 72.4161

ResNet-50 [57] 2048 60.0093 59.4649 74.2789
ResNet-18 [57] 512 60.0895 59.4573 74.4877

Inception v3 [66] 2048 63.4185 62.8578 77.6015
AlexNet [64] 4096 64.1588 63.4871 78.3340

DenseNet-121 [67] 1024 64.9408 64.4349 78.2179
SE-ResNet-18 [46] 512 65.7013 65.1206 79.2945

2D-CNN + LSTM + Facial Landmark [42] 768 58.3432 57.7521 72.5148
3D-CNN + Facial Landmark Image [41] 4096 62.5361 62.1877 76.1710

2D-CNN + GRU + Multimodel [43] 512 65.8770 65.3907 79.3543
3D-CNN + Hyperparameter

Optimize [45] 4096 65.9372 65.4369 79.7895

Zhang et al. [30] 47104 64.6481 64.0199 78.3209

Ours (w/o Facial Landmark Feature) 512 65.3396 64.5928 78.9639
Ours 768 66.8409 66.1292 80.0959

As depicted in the experimental results, the proposed method had the highest accuracy,
66.8409%, even though features with a relatively low dimensional number of 768 were
used. Even when the facial landmark feature was not used, it exhibited an accuracy of
65.3396% with a small 512-dimensional feature. SE-ResNet-18 had the highest performance,
at 65.7013%, among the widely used deep-learning networks. This network uses attention
modules, which seems to have a positive effect on the stress recognition performance.

By contrast, VGG-16 and ResNet-50 exhibited low performance despite using a rela-
tively high number of feature dimensions, i.e., 2048. This result demonstrates that these
methods have a network structure that is unsuitable for stress recognition. The HOG–SVM
method used a relatively high number of feature dimensions, i.e., 1764, but exhibited the
lowest performance, i.e., 50.9153%. Thus, it was demonstrated that the discriminating
power of the handcrafted features was lower than that of the deep-learning networks.

Examining the results of methods using spatial–temporal facial information, the
method using the 2D-CNN, LSTM, and facial landmarks demonstrated low performance,
i.e., 58.3432%. This result indicates that the facial landmark information was not utilized
satisfactorily because the coordinates of the facial landmarks were simply input into the
network. Furthermore, the method using the 3D-CNN with hyperparameter optimization
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exhibited high performance at 65.9372%. Thus, even a simple network can exhibit high
performance through appropriate hyperparameter optimization.

We also compared the performance with the method using a physiological signal
database [13]. It can be seen that the performance of that method was higher than ours
at 74.1%. However, unlike our method, which classified three stress states, this method
classified two stress states. In addition, since this method uses physiological signal data, a
direct comparison with our method is not possible. Therefore, our approach, which showed
the highest performance when there were three stress states, was quite competitive as it
offered finer distinctions. Furthermore, as mentioned before, our method does not require
biosensors and has the advantage of being able to be used for more diverse applications
using images.

Furthermore, we compared the performance with the previous video-based stress-
recognition method [30]. The performance of the method was high at 64.6481%, but the
performance was lower than that of our proposed method. Therefore, the experimental
results in Table 10 show that the performance of the proposed method was higher than
that of the other methods. These results indicate that the proposed method is superior to
other methods in detecting the overall spatial and temporal changes of the face.

We present the sensitivity and specificity rates along with classification accuracy in
Table 10. It can be confirmed that the proposed method showed the best performance in
both sensitivity and specificity, as well as accuracy.

We also output the feature maps and attention map obtained from the spatial attention
module, and the results are shown in Figure 7. In the case of the attention map, it can be
seen that a higher weight was assigned to the lower part of the face. However, in the case
of the feature map, it can be seen that it is difficult to identify which features have been
learned because the resolution was as low as 4 × 4. Therefore, we drew a picture of the
Grad-cam [70], which shows which part of the image was mainly viewed and determined
the prediction. We drew the Grad-cam results for the facial image, as well as the facial
landmark image, and the results are shown in Figure 7. As can be seen from Figure 7, the
network predicted the stress level primarily by considering the areas around the eyes and
mouth.

Input Image Grad-cam ImagesAttention MapFeature Maps

…

Figure 7. Feature maps, attention map, and Grad-cam images output from an example facial image.

In addition, temporal attention weights were visualized to check whether temporal
attention was well applied, and the result is as shown in Figure 8. In the neutral state, the
change rate of the weight was not large; however, in the stressed state, the change rate
was large. It can be seen that the weight was higher for images in which the change in
facial expression was large. This showed that the temporal attention module was working
properly.

The classification accuracy for each of the proposed method’s classes is listed in
Table 11. When the facial landmark feature was used, the proposed method demonstrated
higher performance for all three classes than when it was not used. This result implies that
the facial landmark feature effectively complements the facial image feature. However,
even if the facial landmark feature is used in the proposed method, its classification of the
neutral state was superior to its classification of the stress states. Thus, it is challenging to
find overall spatial and temporal facial changes that appear when people are under stress.
Especially under low stress, the changes are smaller, so they are more difficult to pinpoint.
We also output the confusion matrix of the proposed method without and with the facial
landmark feature, and the results are shown in Figure 9. Figure 9 shows that the overall
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performance improved when the facial landmark feature was used compared with not
using it.

Figure 8. Visualization of the temporal attention weight in three stress states. The higher the height
of the bar on the image, the greater the weight is.

Table 11. The proposed method’s classification accuracy for each stress state with and without the
facial landmark feature.

Stress State
Accuracy (%)

Ours (w/o Facial Landmark Feature) Ours

Neutral 79.9396 80.5567
Low Stress 49.4030 51.5811
High Stress 64.4358 66.2499

(a) (b)

Figure 9. Confusion matrix of the proposed method (a) without and (b) with the facial landmark
feature.

We plotted a histogram of the accuracy of each subject in the proposed method, as
shown in Figure 10. The histogram shows how the average performance of the three classes
is distributed for all subjects. More specifically, five subjects with an accuracy of 30%∼40%
means that the number of subjects with an average performance of three classes between
30% and 40% is five. The interval with the largest number of subjects was between 60%
and 70%, and the average performance of the three classes in our method from Table 11
also involved this interval.
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Figure 10. Histogram of the accuracy for each subject in the proposed method.

To evaluate the performance of the video unit, we performed classification by dividing
all 5 min and 10 min videos into 2 s clips. For each subject, there were two 5 min videos for
the neutral class and one 10 min video for the low- and high-stress classes. If the ratio of
correctly classified clips was greater than the threshold, the video was counted as correctly
classified and the accuracy was measured. The video unit performance of the proposed
method is shown in Table 12, and it is possible to grasp the trend of the performance change
according to the threshold change. Since the accuracy was calculated using the results of
Table 10 learned by the cross-validation method, the cross-validation method was also
applied to these results. If the threshold was set to 50%, the video unit performance was
better than the 2 s clip unit performance. For the three classes, the threshold value of 50%
can be seen as a reasonable value.

Table 12. Video-based stress recognition accuracy in the proposed method obtained by changing the
threshold.

Accuracy (%)

Threshold 40% 50% 60%

Neutral 84.0000 79.0000 77.0000
Low Stress 58.0000 56.0000 52.0000
High Stress 79.5918 73.4694 67.3469

Total 73.8639 69.4898 65.4490

6. Conclusions

In this paper, a stress-recognition method using spatial–temporal facial information
was proposed using deep learning. To use deep learning technology, we built and released
a large image database for stress recognition. In the proposed method, we used a spatial
attention module that assigns a high weight to the stress-related regions of the facial
image. Using a temporal attention module that assigns a high weight to frames that are
highly related to stress from among several frames in the video, we improved the feature’s
discriminating power. Furthermore, using features extracted from the facial landmark
information, we supplemented the discriminating power of the feature extracted from the
facial image.

We designed the loss function so that the network learning proceeds effectively,
considering the characteristics of the constructed database. We evaluated the proposed
method on our constructed database, and it exhibited higher performance than existing
deep-learning-based recognition methods. However, our approach has a limitation in that it
would find it difficult to recognize stress in people who do not display much change in their
facial expressions. In the future, to mitigate this limitation, a study on stress recognition
based on multimodal data will be conducted using voice data, which is closely related to
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stress, along with the images. In addition, research in more difficult environments such as
occlusion on the face will be conducted as future work.
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Appendix A

Table A1. Summary of the database construction settings and database contents.

Item Description

Number of Subjects 50
Age of Subjects 20–39 y
Gender Ratio of Subjects 1:1
Nationality of Subjects Korea
Number of Experimental Stages 4
Number of Stress States 3
Number of Videos per Subject 4
Camera Used for Recording Kinect v2
Image Resolution 1920 × 1080
Data Acquisition Rate 24 frames/s
Total Number of Images 2,020,556
Total Length of Recorded Videos 1403 min
Illumination Keep the lights constantly bright
Background Only clean, white walls
Head Orientation Almost straight ahead
Occlusion Hair or accessories do not cover the face (excluding glasses)
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