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Two-stage meta-analysis of survival data
from individual participants using
percentile ratios
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Methods for individual participant data meta-analysis of survival outcomes commonly focus on the hazard ratio
as a measure of treatment effect. Recently, Siannis et al. (2010, Statistics in Medicine 29:3030–3045) proposed the
use of percentile ratios as an alternative to hazard ratios. We describe a novel two-stage method for the meta-
analysis of percentile ratios that avoids distributional assumptions at the study level. Copyright © 2012 John
Wiley & Sons, Ltd.
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1. Introduction

In a review of individual participant data (IPD) meta-analyses published during the years 1999 to 2001,
Simmonds et al. [1] found that in practice meta-analysis of IPD was most frequently conducted using
simple two-stage methods. For example, in the meta-analysis of survival IPD, hazard ratios can be esti-
mated for each study individually in the first stage using a proportional hazards model, or approximated
by a log-rank statistic (for example, [2]). Individual study results can then be combined using standard
random-effects or fixed-effects meta-analysis in the second stage.

In the analysis of a single survival study, the hazard ratio is a commonly used measure of treatment
effect and is therefore a natural quantity to consider when undertaking a meta-analysis. However, an
assumption of proportional hazards is even more restrictive in meta-analysis because it is imposed on
multiple studies. If the proportional hazards assumption does not hold for some studies, then the esti-
mated hazard ratio depends on the length of follow-up in those studies, and meta-analysis may not
be appropriate. Methods that relax the proportional hazards assumption, the majority of which focus
on a measure or measures of treatment effect that are based on the hazard ratio, have been proposed.
For example, Moodie et al. [3] meta-analysed a function that can be interpreted as a log-transformed
weighted average of hazard ratios over time for each trial. Arends et al. [4] extended the model of Dear
et al. [5] by modelling the survival probabilities in treatment and control groups using a multivariate,
mixed-effects model. The treatment effect in the model of Arends et al. is the hazard ratio, which can
be time varying when treatment-by-time interaction terms are included in the model. Fiocco et al. [6]
described a piecewise-constant hazard model, where hazards for the treatment and control arms are
modelled using a bivariate frailty model. And more recently, Ouwens et al. [7] have proposed a meta-
analysis model in which hazard ratios are time varying and expressed in terms of the shape and the scale
parameters of parametric survival curves. The methods we propose here provide an alternative approach
to the use of time-varying hazard ratios in this context.
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In a recent paper, Siannis et al. [8] considered the percentile ratio as an alternative measure of
treatment effect in survival IPD meta-analysis when proportional hazards assumptions are not appro-
priate. The percentile ratio qk at percentile level k comparing the survival distributions of two groups is
defined as

qk D
kth percentile of survival distribution for treatment group

kth percentile of survival distribution for control group
: (1)

The median ratio at k D 0:5 represents the expected ratio of times at which half of the population will
fail in the treatment group compared with the control group. Similarly, for other percentile levels k,
the percentile ratio is the expected ratio for the time at which 100k% of the population will fail in the
treatment group compared with the control group. Because the interpretation of percentile ratios can be
so easily explained, their use could lead to clearer, more practical understanding of survival differences
between treatment groups. In general, percentile ratios may vary across percentile levels. If the survival
distributions in question are accelerated failure time models, however, the percentile ratio q is constant
across all values of k [8].

Siannis et al. estimated percentile ratios using a one-stage parametric model with data at the individual
study level being modelled using either accelerated failure time or proportional hazards distributions. In
the simplest version of the model, accelerated failure time distributions were used to model the data at
the study level. In this case, the combined percentile ratio q is constant across percentile levels and can
be modelled using either fixed or random effects. The proposed framework is very general, however,
and could be used to model any choice of distribution at the study level. This was illustrated using a
combination of accelerated failure time and proportional hazards models.

Motivated by the popularity of simple two-stage analyses, we propose an alternative, two-stage
method for meta-analysis of percentile ratios, which in addition avoids all distributional assumptions
in the first stage. In stage 1, we use Kaplan–Meier estimates of the survivor functions for the treatment
and control groups to estimate percentile ratios and their variance–covariance matrix. In stage 2, per-
centile ratios are combined using either univariate or multivariate, random-effects meta-analysis (see [9]
for an overview of multivariate meta-analysis). The pros and cons of using multivariate meta-analysis in
this context are explored in the analysis of an example data set.

The layout of the paper is as follows. In Section 2, we describe the new two-stage method and explore
its properties using a simulation study in Section 3. We apply the method to an example data set in
Section 4 and conclude with a discussion in Section 5.

2. Two-stage meta-analysis of percentile ratios

In this section, we describe our methods in more detail. In Section 2.1, we describe stage 1 of the anal-
ysis, in which a vector of log percentile ratios (logPRs) and its variance–covariance matrix is estimated
for each study. In Section 2.2, we describe how estimated logPRs from several studies can be combined
using multivariate meta-analysis.

2.1. Stage 1: estimation of log percentile ratios

We focus here on the analysis of the data from a single study. The aim is to estimate a vector of logPRs
qi D .qi1; : : : ; qiK/T for each study i , where qik denotes the percentile ratio in study i at percentile level
k, and its variance–covariance matrix Si . Methods for combining these estimates will be discussed in
Section 2.2. To estimate qik , we first estimate the kth percentile in the treatment and control groups for
study i , which we denote tT

ik
and tC

ik
, respectively, and use

log qk D log
tT
k

tC
k

D log tTk � log tCk : (2)

To simplify the notation, we will ignore study index i for the remainder of this section. We will assume
throughout that censoring is non-informative, that is, it occurs independently of survival.

The percentile tk at percentile level k of a distribution of survival times is defined by the equation
S.tk/ D k, where S./ is the survivor function. We estimate tk from a Kaplan–Meier estimate of the
survivor function OSKM.t/ as follows

Otk Dmin
t

n
OSKM.t/ < k

o
; (3)
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where the minimisation in (3) is necessary because of the steplike nature of the estimated survival curve
OSKM.t/. In a graph of OSKM.t/ against t , this corresponds to the value of t for which a horizontal line at
S.t/ D k crosses the estimated survival curve. If there is an interval t1 6 t < t2 for which S.t/ D k

exactly, then the percentile is estimated to be the midpoint of that interval:

Otk D
1

2
.t1C t2/: (4)

Suppose OtT
k

and OtC
k

are the estimated kth percentiles in the treatment and control groups, respectively.
Then, an estimate for the logPR is given by substituting the estimates OtT

k
and OtC

k
in Equation (2).

Sander [10] demonstrated asymptotic normality for quantile estimates of survival distributions derived
from Kaplan–Meier curves under certain conditions and further discussed by Roth [11] and Reid [12]
(we thank a referee for pointing out these references). However, estimation of the variance–covariance
matrix S for quantile estimates is not straightforward. We describe two methods, the first of which
is based on asymptotic approximations and is relatively fast to compute. The second method uses
bootstrapping but is computationally more intensive.

2.1.1. Asymptotic variance estimation. A simple asymptotic expression for the variance of an estimated
log-percentile log.Otk/ is given by

Varflog.Otk/g �
VarfS.Otk/g

f .Otk/
2 Otk

2
; (5)

where f .t/ is the probability density function of the survival distribution (see Appendix A.1 for a deriva-
tion). To estimate Varflog.Otk/g, we use Equation (5) with VarfS.Otk/g and f .t/ replaced by suitable
estimates. VarfS.Otk/g is taken to be Varf OS.tk/g (theorem 2 of [11]), which is estimated by Greenwood’s
formula. The estimation of f .t/ is less straightforward but can be carried out using the presmooth
package in R [13]. A brief explanation of presmoothed density estimation is given in Appendix B.

Having estimated the variances of both treatment and control group log percentiles, an estimate of the
variance of the estimated logPR is given by

Skk D Var flog Oqkg D Var
˚
log.OtTk /

�
CVar

˚
log.OtCk /

�
: (6)

An asymptotic expression to estimate the covariance between two estimated log percentiles log Otk1
and log Otk2 is given by

Cov
˚
log Otk1 ; log Otk2

�
�
S.Otk2/

S.Otk1/

Var
˚
S.Otk1/

�
f .Otk1/f .Otk2/ Otk1 Otk2

(7)

(see Appendix A.2 for a derivation). When k1 D k2, Equation (7) reduces to the variance formula of
Equation (5). VarfS.t/g and f .t/ can again be estimated using Greenwood’s formula and the presmooth
package, respectively. The estimated covariance matrix S between two logPRs is then given by

Sk1k2 D Cov
˚
log Oqk1 ; log Oqk2

�
D Cov

n
log OtTk1 ; log OtTk2

o
CCov

n
log OtCk1 ; log OtCk2

o
: (8)

2.1.2. Bootstrap variance estimation. Variance–covariance matrices could alternatively be estimated
by bootstrapping. The validity of bootstrap methods for the case of censored data has been demonstrated
by Efron [14] (see also [15] for a summary of bootstrap methods). For a study with nT and nC partic-
ipants in the treatment and control groups, respectively, a bootstrap sample is constructed by making
nT random draws with replacement from the treatment group and nC from the control group. A large
number B of bootstrap samples are drawn, and each is used to estimate a vector of logPRs log Oq�b for
b D 1; : : : ; B . Then, an estimate of the variance–covariance matrix S of log Oq is given by

SD Varflog Oqg �
BX
bD1

�
log Oq�b � log Oq��

� �
log Oq�b � log Oq��

�0
.B � 1/

; log Oq�� D

P
log Oq�b

B
: (9)
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2.2. Stage 2: meta-analysis

The output from stage 1 of the analysis is an estimated logPR or vector of logPRs from each study,
log Oqi , along with an estimated variance or variance–covariance matrix Si . Si can be estimated using
Equation (8) or (9) but, for the purposes of the meta-analysis, is assumed fixed and known. When a sin-
gle percentile level k is of interest, logPRs can be combined using standard random-effects meta-analysis
as follows. The estimated logPR from study i , log Oqik , is assumed to be normally distributed about the
true logPR in study i , log qik , with variance Si;kk:

log Oqik �N.log qik; Si;kk/: (10)

The true logPR in study i , log qik , is then assumed to be normally distributed about the combined logPR
qk with between-studies variance �2

k
:

log qik �N.log qk; �
2
k /: (11)

If a vector of logPRs from each study are to be combined, this can be performed either by using a sepa-
rate univariate meta-analysis at each percentile level or by combining logPRs at all levels simultaneously
using multivariate meta-analysis. It has been argued that multivariate meta-analysis is preferable when
combining multiple correlated outcomes because estimates of combined effect sizes borrow strength
across outcomes through the correlations between them [16]. For a multivariate meta-analysis, we
assume that log Oqi has a multivariate normal distribution

log Oqi �N.log qi ;Si /; (12)

where log qi is a vector of true, underlying logPRs in study i . Si is the within-study variance–covariance
matrix from study i , which is again assumed fixed and known. The within-study correlation for a given
study arises from the use of data from the same set of participants in the estimation of percentile ratios
for that study. For random-effects meta-analysis, the vectors of true logPRs are then assumed to be
distributed multivariate normally about a vector of combined logPRs log q,

log qi �N.log q;†/; (13)

where† is the between-studies variance–covariance matrix, to be estimated from the data.† comprises
the between-studies variances and the between-studies correlation. The between-studies variances mea-
sure the variation in the true effect sizes across studies, equivalent to �2

k
in the aforementioned standard

random-effects meta-analysis. The between-studies correlation is the correlation between the true effect
sizes across studies.

The model given by (12) and (13) can be estimated using the mvmeta package in STATA, which uses
restricted maximum likelihood (REML) to estimate log q and † [17, 18]. In practice, there must be suf-
ficient data available to estimate the K variance parameters and the K.K�1/=2 correlation parameters
contained in the matrix †. The number of percentile levels for which estimation is possible is therefore
limited by the number of studies in the dataset. The number of parameters to be estimated in† could be
reduced by imposing constraints, but options to do this within the mvmeta package are currently limited.

3. Simulation study

In this section, we present the results of a simulation study designed to assess the performance of stage 1
of the two-stage method. Bivariate meta-analysis has already been investigated in simulation studies [19].
These results can be anticipated to apply to the multivariate meta-analysis of stage 2 of our method; it is
not our intention to examine the properties of multivariate meta-analysis here.

Data were simulated from a Cox proportional hazards model with a log-logistic baseline distribution
with location parameter � D 4, scale parameter � D 0:3 and log hazard ratio � D �0:4. The baseline
parameter values were chosen to be similar to parameter estimates for the example dataset of Section 4.
The hazard ratio was chosen to represent a moderately beneficial effect of treatment. For simplicity,
no censoring was assumed to take place, but results should be comparable to censored datasets with a
similar numbers of events.

Simulated data were generated for studies with 20, 100 and 500 participants, with equal numbers
in each treatment arm, and percentile ratios were calculated for percentile levels 0.9, 0.7, 0.5, 0.3 and

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 4296–4308
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Table I. Estimated coverage of log percentile ratio estimates for data simulated from a
log-logistic proportional hazards distribution.

Estimated coverage probability

Variance estimation method k nD 18 nD 20 nD 98 nD 100 nD 498 nD 500

Asymptotic 0.9 0.992 0.981 0.988 0.986 0.967 0.964
0.7 0.972 0.966 0.985 0.981 0.968 0.969
0.5 0.920 0.936 0.963 0.963 0.960 0.957
0.3 0.800 0.897 0.928 0.930 0.943 0.939
0.1 0.498 0.892 0.846 0.885 0.925 0.922

Bootstrap 0.9 0.765 0.863 0.960 0.959 0.951 0.952
0.7 0.962 0.956 0.961 0.952 0.949 0.953
0.5 0.963 0.954 0.956 0.948 0.955 0.951
0.3 0.961 0.960 0.954 0.948 0.953 0.948
0.1 0.744 0.813 0.960 0.957 0.953 0.950

0.1 (we give percentile levels in decreasing orders because higher percentile levels correspond to ear-
lier survival times). Because of the absence of censoring in these simulated datasets, estimated survival
probabilities were always equal to the chosen percentile levels for some time interval. Percentile esti-
mates were therefore always calculated using Equation (4). To investigate percentiles estimated using
Equation (3), we also generated data for studies with 18, 98 and 498 participants. For each simulated
dataset, two variance estimates were calculated, one using the asymptotic expansion of Section 2.1.1 and
the other using the bootstrapping method of Section 2.1.2 with 1000 bootstrap samples.

For asymptotic variance estimation, the presmoothing method for estimation of the survival density
function requires two bandwidths to be specified, as explained in Appendix B. The ‘presmooth’ package
offers two built-in options for bandwidth selection, ‘plug-in’ and ‘bootstrap’. However, we found these
to be unreliable for some simulated datasets, giving undersmoothed density function estimates that were
inappropriately close to zero. For the simulation study, we instead fixed the bandwidths for all datasets
to be the median of the bandwidths selected by the ‘plug-in’ method for 50 simulated datasets for each
treatment arm in each study size.

From the simulations study results (not presented here), the bias in the estimated logPRs is estimated
to be less than 0.01 for all percentile ratios for all sample sizes except the smallest, n D 18 and 20. For
the smaller sample sizes, the estimated bias is greatest for the lower percentile levels, rising to 0.086 for
nD 18 and 0.046 for nD 20 at k D 0:1. The true logPR at k D 0:1 is 0.362.

Results for the estimated coverage probabilities are given in Table I, calculated as the percentage of
replications for which the estimated 95% confidence interval (CI) for the logPR contains the true value.
The asymptotic variance estimation method appears to perform badly, with only larger sample sizes giv-
ing appropriate coverage probabilities of approximately 0.95 for mid-range percentile levels. For higher
percentile levels, coverage tends to be too high, whereas for lower percentile levels, it tends to be too
low. This is consistent with the first omitted term in the asymptotic expansion (14), which provides a
negative contribution for lower percentile levels and a positive contribution for higher levels. In prac-
tice, the method could be improved by selecting more appropriate bandwidths, considering each study
individually, as in the analysis of the example dataset in Section 4. For the bootstrap method of variance
estimation, the estimated coverage is much better, with reasonable coverage for studies with as few as
20 patients for the mid-range percentile levels. For the smaller studies, coverage is too low for the high-
est percentile levels, where few events have yet to take place, and for low percentile levels, where few
patients remain in the study. Computation time is longer for the bootstrap method than for the asymp-
totic method but is not prohibitively so, with the estimation procedure taking around 1 min for the largest
studies considered here.

4. Example: glioma dataset

We illustrate our method using a dataset consisting of nine studies examining the post-surgery treatment
of patients with high-grade glioma. Patients in the treatment groups underwent a post-surgery course of
radiotherapy and chemotherapy, whereas in the control groups, patients were treated with radiotherapy
alone. The original meta-analysis contained 12 studies. Hazard ratios were estimated by log-rank
statistics and combined using fixed-effects meta-analysis, giving a pooled hazard ratio of 1.18 (95% CI

4300
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1.09, 1.28) [20]. We were unable to obtain data from three of these studies and re-analysed the remaining
nine using the two-stage method of Section 2. In our analysis, the studies are labelled 2, 7, 9, 11, 13, 16,
17, 18 and 19, in line with the labels given in the dataset.

The data were investigated for departures from the proportional hazards assumption of Siannis et al.
[8] by inspecting plots of the estimated log-cumulative hazard against log time (in these plots, the lines
for the treatment and control groups should appear parallel under proportional hazards). In these plots,
proportional hazards appeared to be violated for trials 9 and 17 and to be questionable for trials 19
and 11.

These data were also analysed using the accelerated failure time models of Siannis et al. [8]. The
distribution used was the extended log-gamma distribution, which incorporates several of the more
commonly used accelerated failure time distributions. We have assessed the goodness of fit of the
extended-log-gamma distribution to the data from each study by comparing the estimated survival
curves from the extended-log-gamma analysis for treatment and control groups with the respective
Kaplan–Meier estimates. The plots for the treatment groups are given in Figure 1; plots for control
groups are similar. The extended-log-gamma distribution appears to fit the data well for some stud-
ies, such as study 16, but not for others, such as studies 9 and 17. The data therefore warrant further
investigation using the methods described here.

4.1. Implementation

We estimated logPRs for each study in the glioma dataset at k D 0:9; : : : ; 0:2 using the two-stage method
of Section 2. There were insufficient data available to estimate logPRs at k D 0:1. Variance–covariance
matrices were calculated for each study using both asymptotic and bootstrap methods.
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Figure 1. Assessing goodness of fit of the extended-log-gamma distribution to the data from each study. Plotted
are estimates of the survival curve for the treatment group with Kaplan–Meier estimates plotted using solid lines

and extended-log-gamma estimates using dashed lines.
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For the asymptotic variance estimation method, bandwidths were selected using the plug-in option
as a default. To ensure that appropriate bandwidths had been selected, estimated density functions were
plotted for each treatment arm in each study. For the control arms of studies 9 and 19, the estimated
density functions appeared to be undersmoothed. We then used the bootstrap bandwidth selection option
as an alternative. If the estimated curves still appeared to be undersmoothed, we then multiplied the
bootstrap bandwidth by successive integers until the estimated curves appeared smooth.

When applying the bootstrap variance estimation method, we were unable to calculate the logPR at
lower percentile levels for some bootstrap samples when Kaplan–Meier estimates of survival curves
did not decrease below a survival probability of 0.2. Removing all bootstrap samples where this is the
case may bias the variance estimate because those samples would tend to have higher survival rates in
the treatment group and therefore larger differences between treatment groups. For study 9, the logPR
at k D 0:2 could not be estimated for 140 out of 1000 bootstrap samples and for four out of 1000 at
k D 0:3. We therefore calculated logPRs only at k D 0:9; : : : ; 0:3, discarding the small number of
samples at k D 0:3 for which logPRs could not be calculated.

The code was written in R for the estimation of percentile ratios and the variance–covariance matrix
in stage 1 and is available from the authors on request. In stage 2, multivariate meta-analysis was car-
ried out using the ‘mvmeta’ command in STATA with unconstrained between-studies covariance matrix
†. Parameter values for the multivariate meta-analysis model described in Equations (12) and (13)
are estimated using REML [17, 18]. Univariate meta-analyses were also carried out using ‘mvmeta’
and REML.

4.2. Results

We first present in Figure 2 a forest plot of median ratios with variances estimated by bootstrapping in
stage 1 and combined on the log-scale using univariate, random-effects meta-analysis. The combined
median ratio of 1.12 with 95% CI (1.01, 1.23) indicates a small increase in median survival time asso-
ciated with treatment. This is consistent with a two-stage meta-analysis of the same nine trials using
hazard ratios, which gives a combined hazard ratio of 0.85 (95% CI 0.77, 0.93), and with the one-stage
analysis of Siannis et al. using accelerated failure time models, which gave a combined percentile ratio
of 1.18 (95% CI 1.07, 1.29). The widths of the estimated CIs are similar for all analyses, suggesting
that the new method has similar power to detect non-null treatment effects compared with the standard
method. The value of I 2, which measures the proportion of the variation in the data due to heterogeneity
[21], is estimated to be 13%, indicating a low level of heterogeneity in the data.

Overall (I−squared = 13%)
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Figure 2. Forest plot of estimated median ratios for the glioma data using bootstrap variance estimation in stage
1 and univariate meta-analysis in stage 2. MR, median ratio, CI, confidence interval.
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Table II. Meta-analysis results for the glioma data with asymptotic and bootstrap variance estimation in stage
1 and univariate and multivariate meta-analysis in stage 2.

Asymptotic univariate Bootstrap univariate Asymptotic multivariate Bootstrap multivariate

k logPR O�k logPR O�k logPR
q
O†kk logPR

q
O†kk

0.9 0.106 (0.114) 0.000 0.080 (0.094) 0.000 — — — —
0.8 0.121 (0.077) 0.000 0.156 (0.065) 0.000 0.095 (0.078) 0.040 0.149 (0.066) 0.051
0.7 0.084 (0.059) 0.000 0.126 (0.059) 0.044 0.074 (0.066) 0.079 0.119 (0.060) 0.067
0.6 0.051 (0.050) 0.000 0.083 (0.056) 0.071 0.048 (0.064) 0.106 0.084 (0.055) 0.078
0.5 0.090 (0.045) 0.000 0.111 (0.049) 0.052 0.091 (0.059) 0.105 0.109 (0.052) 0.082
0.4 0.148 (0.048) 0.032 0.126 (0.049) 0.024 0.150 (0.058) 0.110 0.150 (0.054) 0.089
0.3 0.205 (0.077) 0.160 0.165 (0.066) 0.091 0.197 (0.079) 0.178 0.184 (0.074) 0.132
0.2 0.205 (0.082) 0.151 — — — — — —

Reported are parameter estimates with standard errors in brackets and estimates of the between-studies standard

deviation (�k in the univariate case and
q
O†kk in the multivariate case)

Figure 3. Plots of combined percentile ratio estimates and 95% confidence intervals using (a) asymptotic and (b)
bootstrap variance estimation in stage 1 and univariate meta-analysis in stage 2.

We present results for the full range of k-values for logPRs combined using univariate meta-analysis
in the left-hand side of Table II, illustrated graphically in Figures 3a and 3b. The results using asymp-
totic variance estimation in stage 1 suggest a slight increase in combined logPR values at later values
of k, whereas for the bootstrapped results, combined logPRs appear to be more constant over time.
Estimated standard errors are also less variable when the bootstrap method is used. Results from the
simulation study of Section 3 suggest that the bootstrapped results are more reliable. In general, CIs are
wider at early k, when fewer events have taken place, and at later k, when fewer participants remain in
the studies. Also presented in Table II are REML estimates for the between-studies standard deviation
O�k . For higher percentile levels, O�k is 0.000, indicating that no or very little heterogeneity is present.
Heterogeneity increases as the percentile level decreases, with O�k rising to 0.091 for k D 3 (using the
bootstrap method).

To compare our results with a method based on time-varying hazard ratios, we re-analysed the data
using Cox relative risk regression models with different treatment effects in years 1, 2, 3 and beyond of
the studies. The combined hazard ratio was 0.84 for year 1 (95% CI 0.72, 0.98), 0.85 for year 2 (95% CI
0.71, 1.02) and 0.86 for year 3 and beyond (95% CI 0.64, 1.15). For this example, both methods are in
agreement, suggesting a small, beneficial effect of treatment, which is maintained over time.

Results for logPRs combined using multivariate meta-analysis are presented in the right-hand side
of Table II. Only logPRs for k D 0:8; : : : ; 0:3 have been combined to avoid convergence difficulties
when too many correlation parameters are estimated. The asymptotic and bootstrapped results both
show similar trends to those observed in the univariate analyses. The multivariate standard error esti-
mates are slightly higher than the corresponding univariate estimates, in contrast with expectations that
the borrowing of strength among outcomes would lead to smaller standard errors. The larger standard

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 4296–4308
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errors in the multivariate case appear to be caused by higher estimates of the between-studies standard
deviation (also given in Table II). To investigate why this is the case, we consider the estimated between-
studies correlation matrices, which are presented in Table III. Recall that the between-studies correlation
is the correlation between the true logPRs across studies and is estimated from the data. Riley et al. [19]
found that estimates of between-studies variance may be inflated in bivariate meta-analysis to compen-
sate for a between-studies correlation estimate of ˙1, which is on the boundary of the parameter space.
It is possible that a similar effect may be observed when the estimated correlation is very close to the
boundary. In our case, only one of the correlations is estimated to be 1 in Table III, but several correlation
parameters are estimated to be very close to 1.

Our analysis of the glioma dataset suggests that there is limited benefit in the use of multivariate
meta-analysis in this context. However, it may still be advantageous to use multivariate meta-analysis
for some datasets. For example, if some of the studies had only sufficient follow-up to estimate a subset
of the logPRs of interest, multivariate meta-analysis would enable the combination of logPRs that were
missing in those studies to borrow strength from the logPRs that had been observed [22]. To illustrate
this, we re-analysed the glioma data, but with one of the studies artificially truncated by removing esti-
mated logPRs for k D 0:5; : : : ; 0:1 for that study. We did this for each study in turn and analysed each
truncated dataset using both univariate and multivariate meta-analyses with bootstrapping in stage 1 (we
chose to use the bootstrapping method here because it gives better results than the asymptotic method in
the simulation results of Section 3). For the multivariate meta-analyses, logPRs at levels k D 0:7; 0:6; 0:5

Table III. Estimated between-studies correlation matrices from multivariate meta-analysis of the glioma data
with asymptotic and bootstrap variance estimation in stage 1.

Asymptotic Bootstrap

k 0.8 0.7 0.6 0.5 0.4 0.3 0.8 0.7 0.6 0.5 0.4 0.3

0.8 1 . . . . . 1 . . . . .
0.7 0.772 1 . . . . 0.130 1 . . . .
0.6 0.941 0.941 1 . . . 0.196 0.998 1 . . .
0.5 0.813 0.998 0.962 1 . . �0.026 0.988 0.975 1 . .
0.4 0.694 0.993 0.896 0.983 1 . �0.257 0.925 0.897 0.973 1 .
0.3 0.676 0.990 0.885 0.979 1.000 1 �0.335 0.891 0.859 0.951 0.997 1

Table IV. Meta-analysis results for the glioma data with truncated
follow-up in one of the studies using bootstrap variance estimation in
stage 1 and univariate and multivariate meta-analyses in stage 2.

Study n Analysis 2logPR0:5 (SE) p-value O�0:5

2 20 Univariate 0.101 (0.048) 0.034 0.045
Multivariate 0.112 (0.051) 0.028 0.073

7 105 Univariate 0.103 (0.053) 0.051 0.060
Multivariate 0.111 (0.052) 0.032 0.072

9 116 Univariate 0.126 (0.054) 0.019 0.058
Multivariate 0.122 (0.052) 0.019 0.071

11 511 Univariate 0.126 (0.060) 0.034 0.081
Multivariate 0.106 (0.055) 0.053 0.084

13 91 Univariate 0.083 (0.045) 0.065 0.000
Multivariate 0.115 (0.054) 0.033 0.076

16 125 Univariate 0.115 (0.052) 0.028 0.062
Multivariate 0.116 (0.053) 0.028 0.077

17 270 Univariate 0.082 (0.048) 0.085 0.000
Multivariate 0.111 (0.054) 0.039 0.071

18 674 Univariate 0.137 (0.055) 0.012 0.054
Multivariate 0.128 (0.050) 0.010 0.058

19 235 Univariate 0.130 (0.056) 0.021 0.068
Multivariate 0.121 (0.052) 0.021 0.071

Multivariate meta-analyses combined logPRs simultaneously for k D 0:7, 0.6,
0.5, 0.4.
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and 0.4 were combined simultaneously. Results for combined median ratios are presented in Table IV.
Recall from Table II that for the full dataset the estimated combined median ratio from the univariate
analysis was 0.111 with standard error 0.049. For each truncated study, the multivariate median ratio
estimates are closer to the full data estimate than the univariate estimates. This is because data from the
truncated studies did not contribute to the univariate meta-analyses because estimated median ratios were
not available, whereas the multivariate meta-analyses incorporated information from logPR estimates at
k D 0:7 and 0.6 for those studies. Estimated standard errors in Table IV are lower in the multivariate
meta-analyses for over half the truncated studies. For studies 2, 13 and 17, the univariately estimated
standard errors are lower compared with the estimate from the full dataset because the removal of a
study has reduced the estimated heterogeneity in the data. In these cases, the multivariate analysis would
give a more conservative estimate for the standard error.

5. Discussion

Meta-analyses of survival data usually focus on the estimation of constant hazard ratios. If an assumption
of proportional hazards seems inappropriate, then models that incorporate time-varying hazards could be
used. However, it may be preferable to consider alternative measures of treatment effect, which are more
readily interpretable. We have proposed a novel, two-stage method for meta-analysis of survival IPD
using percentile ratios. The advantage of our method lies in the avoidance of distributional assumptions
at the study level, which makes it suitable to use when proportional hazards or accelerated failure time
assumptions are inappropriate.

Stage 1 of the proposed meta-analysis involves estimation of logPRs and their variance–covariance
matrix from Kaplan–Meier estimates of the survivor function. We have presented two methods for esti-
mation of the variance–covariance matrix, an asymptotic method and a bootstrap method. Results from
the simulation study of Section 3 suggest that the bootstrap method has the superior coverage properties,
and we therefore recommend its use for variance estimation. If bootstrapping is too computationally
intensive, the asymptotic method could be used to estimate mid-range logPRs for sufficiently large
studies.

In stage 2, logPRs can be combined using either univariate or multivariate meta-analysis. When logPR
estimates are available for all percentile levels of interest, we recommend the use of univariate meta-
analysis because multivariate meta-analysis can lead to inflated estimates of between-studies variances.
However, when some studies lack sufficient data to estimate all logPRs, then a multivariate meta-analysis
may be more appropriate to allow combined logPR estimates to borrow strength across percentile levels.
We have not yet explored the possibility of constraining the between-studies variance–covariance matrix
† to have, for example, an auto-correlated form; we leave this for future work.

Our method could be adapted to allow either parametric or non-parametric methods to be used in
stage 1 of a two-stage meta-analysis. Where appropriate, study-level data could be modelled using
parametric distributions, with the non-parametric approach being used when distributional assumptions
appear unjustified. Alternatively, the non-parametric method could be extended to estimate other quan-
tities of interest from survival curves, such as percentile differences, ratios of survival probabilities at
a given time, or differences in survival probabilities. Further work would be required to investigate the
asymptotic properties of these alternative measures of treatment effect.

Our focus has been on methods for meta-analysis of IPD. Our approach could also be used in the
meta-analysis of aggregate data if methods were available for the extraction of IPD from published sur-
vival curves. To reconstruct the individual patient data, a model would be required for the censoring
mechanism. Parmar et al. [23], Williamson et al. [24], Ouwens et al. [7] and Fiocco et al. [25] have
recently made progress in this area.

Appendix A. Derivation of variance–covariance formulae

A.1. Derivation of variance formula

We derive the formula (5), following the method described in [26], by asymptotic expansion of the
survival function

VarfS.Otk/g �

 
dS.tk/

dtk

ˇ̌̌
ˇ
tDOtk

!2
VarfOtkg: (14)
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Rearranging and using f .t/D�dS=dt , we get

VarfOtkg �
VarfS.Otk/g

f .Otk/2
: (15)

By the delta method

Varflog Otkg �
VarfOtkg

Otk
2

(16)

and using equation (15) we obtain

Varflog Otkg �
VarfS.Otk/g

f .Otk/
2 Otk

2
: (17)

A.2. Derivation of covariance formula

Let t.1/; : : : ; t.N/ be the N observed event times for the study in question and let Opm be the estimated
probability of surviving through the time interval that begins at t.m/. Then the estimated survivor function
at time t is given by

OS.t/D

rY
mD1

Opm; (18)

where t.r/ 6 t < t.rC1/. Suppose t1 6 t2, then

Covflog OS.t1/; log OS.t2/g D Cov

8<
:

r1X
m1D1

log Opm1 ;
r2X

m2D1

log Opm2

9=
;

D

r1X
mD1

Var flog Opmg

D Var
n
log OS.t1/

o
; (19)

where we have used the assumption that Opm’s corresponding to different time intervals are independent.
Then, by using asymptotic expansions of Varflog OS.t/g in both sides of (19) we obtain

Cov
n
OS.t1/; OS.t2/

o
�
OS.t2/

OS.t1/
Var

n
OS.t1/

o
: (20)

Then, using similar calculations to those described in section A.1, and approximating CovfS.Ot1/; S.Ot1/g
by (20), we obtain

Cov
˚
log Otk1 ; log Otk2

�
�
OS.Otk2/

OS.Otk1/

Var
n
OS.Otk1/

o
f .Otk1/f .Otk2/Otk1 Otk2

: (21)

Appendix B. Presmoothed density function estimation

A presmoothed kernel density estimator for censored data was introduced by Cao and Jacome in [27].
See also [28] for an extension to left-truncated data.

Let Zi be the ordered observation times, i D 1; : : : ; n, with Zi D min.Ti ; Ci /, where Ti is the
event time and Ci is the censoring time. Let ıi be the censoring indicator with ıi D 1 if the observa-
tion is uncensored and ıi D 0 otherwise. Then the Kaplan-Meier estimate OFKM .t/ of the probability
distribution function F.t/ of T is given by

OFKM .t/D 1�
Y
i WZi6t

�
1�

ıi

n� i C 1

�
: (22)
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An estimate Of KM .t/ for the probability density function f .t/ can be derived from OFKM .t/ using the
standard kernel density estimation procedure due to Rosenblatt [29] and Parzen [30]:

Of KMs .t/D

Z
Ks.y � u/d OF

KM .u/

D

nX
iD1

Ks.y �Zi /
�
OFKM .Zi /� OF

KM .Z�i /
�
; (23)

where K.x/ is a kernel and Ks.x/D s�1K.x=s/ is the rescaled kernel with bandwidth s.
Let m.t/ be the conditional probability of uncensoring, m.t/ D E.ıjZ D t /. The function m.t/ can

be estimated non-parametrically using the Nadaraya–Watson estimator with kernel K and bandwidth b

Omb.t/D

Pn
iD1Kb.t �Zi /ıiPn
iD1Kb.t �Zi /

: (24)

Replacing the censoring indicator ıi in (22) with Omb.t/ leads to the presmoothed estimate OF P
b
.t/ of

F.t/:

OF Pb .t/D 1�
Y
i WZi6t

�
1�

Omb.Zi /

n� i C 1

�
: (25)

Note that the presmoothed estimate OF P
b
.t/ is a step-like function of t with jumps at all values of Zi . It

has been shown to be more efficient than the Kaplan-Meier version OFKM .t/ for a suitable choice of the
bandwidth b. Analogous to equation (23), a corresponding presmoothed estimate Of P

s;b
.t/ of f .t/ is then

Of Ps;b.t/D

Z
Ks.y � u/d OF

P
b .u/ : (26)

Note that the estimate Of P
s;b
.t/ depends on two bandwidths; the presmoothing bandwidth b, used in the

estimation of m.t/, and the smoothing parameter s, used to estimate f .t/ from OF P
b
.t/.

Efficiency of the presmoothed estimator Of P
s;b
.t/ relies on selection of appropriate bandwidths b and s.

In [31] two approaches to bandwidth selection are described, both of which have been implemented in the
presmooth package. The first approach, termed ’plug-in’ bandwidth selection, minimises an asymptotic
expansion of the mean integrated squared error (MISE). The second approach, ’bootstrap’ bandwidth
selection, minimises a bootstrap version of the MISE. See [31] for details.
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