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Abstract: Adenosine is extensively distributed in the central and peripheral nervous systems, where
it plays a key role as a neuromodulator. It has long been implicated in the pathogenesis of progressive
neurogenerative disorders such as Parkinson’s disease, and there is now growing interest in its role in
amyotrophic lateral sclerosis (ALS). The motor neurons affected in ALS are responsive to adenosine
receptor function, and there is accumulating evidence for beneficial effects of adenosine A2A receptor
antagonism. In this article, we focus on recent evidence from ALS clinical pathology and animal
models that support dynamism of the adenosinergic system (including changes in adenosine levels
and receptor changes) in ALS. We review the possible mechanisms of chronic neurodegeneration via
the adenosinergic system, potential biomarkers and the acute symptomatic pharmacology, including
respiratory motor neuron control, of A2A receptor antagonism to explore the potential of the A2A

receptor as target for ALS therapy.

Keywords: adenosine; adenosine A2A receptor; amyotrophic lateral sclerosis

1. Introduction

Amyotrophic lateral sclerosis (ALS), sometimes known as Lou Gehrig’s disease, is a
fatal neurodegenerative disease characterized by progressive muscular paralysis reflecting
degeneration of pyramidal motor neurons in the primary motor cortex, corticospinal tracts,
brainstem and spinal cord [1]. During ALS progression, both the upper (cortical) motor
neurons and the lower (spinal cord) motor neurons degenerate, causing a progressive and
terminal atrophy of skeletal muscles. All muscles under voluntary control are affected, and
individuals with ALS progressively lose their strength and their ability to move. Once the
diaphragm and the muscles in the chest wall fail, people lose the ability to breathe without
ventilation support [1]. Globally, the average age of onset of ALS is currently 58–60 years,
and the average survival from onset to death is 3–4 years [2]. Approximately 90–95% of all
ALS cases are of unknown etiology and are referred to as ‘sporadic’ or ‘idiopathic’ ALS [2,3].
Most other ALS cases are familial, with a Mendelian pattern of inheritance resulting from a
number of gene mutations, including mutations in the genes for superoxide dismutase 1
(SOD1), TAR DNA-binding protein 43 (TDP-43), fused in sarcoma (FUS) and C9orf72 [4].

ALS is a complex, multifactorial and multi-system disease, for which the full patho-
physiological mechanisms of degeneration remain unclear. Known mechanisms include
RNA dysfunction, protein misfolding and aggregation, mitochondrial dysfunction, neu-
roinflammation, neuromuscular junction abnormalities, immune system deficiency, cy-
toskeletal aberrations, growth factor dysfunction, oxidative stress, axonal disruption and
apoptosis, excitotoxicity, activation of nucleases and proteases, and abnormal calcium
metabolism [4–6]. Similar to their now generally well-accepted staging theory in Parkin-
son’s disease (PD) [7], Braak and colleagues have suggested ALS could be a model of
corticofugal axonal spread, where motor neuron degeneration initially results from failure
of enzymatic machinery at the level of the cell body and proximal parts of the axon that then
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propagates in a corticofugal way due to impaired axonal transport [8]. Others have argued
that ALS starts with nerve terminal dysfunction, with consequent synaptic dysfunction
and then progressing in a ‘dying back’ process [9]. These hypotheses are not mutually
exclusive [10].

Regardless of mechanisms, it is increasingly apparent that ALS involves different cell
types (including interneurons, astrocytes, microglia, Schwann cells, skeletal muscle cells
and oligodendrocytes), the communication between them, and that the degeneration of
each cell population significantly contributes to the relentless progression of the disease [11].
Like other neurodegenerative disorders, a major problem for developing treatments is by
the time patients are diagnosed, they have already had significant motor neuron degener-
ation. It has been suggested that early intervention focusing on motor neuron terminals
could potentially delay or prevent the progression of the disease. Accumulating evidence
suggests an early dysfunction of the adenosinergic system in ALS. Adenosine is a ubiq-
uitous neurochemical, modulating synaptic transmission at pre-, post- and non-synaptic
levels and is involved in several essential actions. In this article, we review the possible
mechanisms of chronic neurodegeneration via the adenosinergic system, the potential of
uric acid as a biomarker and the acute symptomatic pharmacology (including phrenic
motor facilitation) of A2A receptor antagonism to explore the potential of the A2A receptor
(A2AR) as target for ALS therapy.

2. Adenosine as a Neuromodulator

Adenosine is a neuromodulator produced both intracellularly as well as in the extra-
cellular space. Intracellular production occurs via metabolic pathways that are highly regu-
lated and include adenosine triphosphate (ATP) production via adenosine monophosphate
(AMP) by adenosine kinase, nucleotide/DNA synthesis and the S-adenosylhomocysteine
pathway [12]. Once produced inside a cell, adenosine can be transported into the ex-
tracellular space via the equilibrative nucleotide transporters ENT1 and ENT2. Located
on most cells, these transporters enable bidirectional transport across the cell membrane
and ensure there is always a finite amount of adenosine in the extracellular space [13,14].
Adenosine is also produced in the extracellular space through the metabolism of ATP
via ectonucleotidases. In the first step of this process, ATP is converted into AMP by
triphosphate diphosphohydrolase-1 (CD39). AMP is then converted into adenosine by
ecto-5′nucleotidase (CD73) [12,15] (Figure 1). Importantly, extracellular adenosine concen-
trations can originate from both neurons and glia [16]. Adenosine does not function as a
central neurotransmitter in the traditional sense. Rather, it is produced as a result of cellular
metabolism and transported across the cell membrane or within the extracellular space
such that adenosine is always present in the extracellular space. Extracellular adenosine
levels increase as neuronal activity increases, and thus the adenosinergic system provides a
level of neuronal homeostatic control [17,18].

Several mechanisms for activity-dependent increases in extracellular adenosine level
have been proposed because adenosine production is likely to vary by brain region. Us-
ing CD73 knockout (KO) mice, Klyusch et al. showed two parallel pathways of central
adenosine release: one that is indirect via glutamate receptor-dependent release of ATP
and a second of equal amplitude that has no dependence on prior release of ATP and
thus represents the direct release of adenosine [21]. This component of adenosine release
was modulated by metabotropic glutamate (mGlu4) receptor activation, strongly sup-
porting adenosine release by exocytosis from parallel fibers of the cerebellum. Similarly,
Pajski et al. showed adenosine production can be triggered by nerve stimulation (action
potential-dependent) mechanism in striatal brain tissues, and both low- and high-frequency
stimulated release were almost completely blocked by removal of calcium, indicating ac-
tivity dependence [22]. Reducing dopamine efflux did not affect adenosine release, but
inhibiting ionotropic glutamate receptors did, supporting the idea that striatal adenosine
release may be affected by downstream effects of glutamate [22]. In spinal cord slices of the
dorsal horn, it has been reported that adenosine seems to be available by the breakdown of
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AMP in the extracellular space where both prostatic acid phosphatase (PAP) and CD73 have
been implicated [23,24]. Genetic deletion of both ectonucleotidases in double knock-out
mice reduced, but did not eliminate, the production of adenosine from extracellular AMP,
suggesting at least one additional AMP ectonucleotidase was present in dorsal root ganglia
(DRG) neurons and spinal cord [23], and further study found tissue-nonspecific alkaline
phosphatase (TNAP) can dephosphorylate AMP in these tissues. TNAP is also widely
expressed in the brain, suggesting a role for this enzyme in the CNS [25], where it also
hydrolyzes extracellular ATP to promote the axonal growth of hippocampal neurons [26]
and can serve as a source of extracellular adenosine in the hippocampus when CD73 is
deleted [27].
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cleoside phosphorylase; XO: xanthine oxidase [19,20]. 
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Figure 1. Extracellular adenosine production and metabolism. ATP: adenosine triphosphate; AMP:
adenosine monophosphate; CD39: triphosphate diphophahydrolase-1; CD73: ecto-5′ nucleotidase;
ecto-ADA: adenosine ecto-deaminase; ENT: equilibrative nucleotide transporter; PNP: purine nucle-
oside phosphorylase; XO: xanthine oxidase [19,20].

Considering the regional differences in spontaneous, transient adenosine release [28],
it appears there may still be a few, as yet unknown, mechanisms that act simultaneously
to form extracellular action potential-stimulated adenosine, which depend upon each
individual brain area. For example, using brain slices from different areas, Lee and Vento
reported that the frequency of adenosine release is highest in the prefrontal cortex, while
the hippocampus has the largest concentration, and the thalamus has the longest duration
of release [28]. More work is needed to understand the availability of adenosine to work as
a neuromodulator in the different brain regions, and it is important to acknowledge that
current understanding is limited as most studies have been done using in vitro brain slices,
not in vivo models.
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3. Adenosine Receptors

To date, four subtypes of adenosine receptor have been identified in mammalians,
A1, A2A, A2B, and A3, all of which are G-protein coupled receptors (Table 1). A1 receptors
are expressed on both pre- and postsynaptic sites and are coupled to pertussis toxin-
sensitive Gαi and Gαo. Binding of adenosine to A1 receptors leads to inhibition of adenylyl
cyclase (AC) and downstream reduction in cAMP-dependent kinase (PKA) [29,30]. A1
receptor stimulation also activates phospholipase C (PLC) [31]. This has the effect of
modulating the release of neurotransmitters and neuropeptides from neurons [29,30].
Like A1 receptors, A2ARs signal through the AC-cAMP-PKA pathway [12]. This leads to
activation of downstream targets, such as cAMP response element-binding protein (CREB),
that promote transcription of genes related to cell survival and neuronal plasticity [32,33].

The distribution of adenosine receptors varies, with the A1, A2B, and A3 subtypes
widely expressed throughout the central nervous system (CNS) and peripheral organs/tis-
sues (albeit at relatively low densities for A2B and A3 receptors) [34,35]. A2ARs, on the
other hand, have a relatively limited distribution, with expression in CNS, especially highly
restricted to the striatum, external globus pallidus, nucleus accumbens, and olfactory
tubercle [17,18]. In the peripheral organs/tissues, A2ARs have been identified on a few
organs, blood vessels, immune cells, platelets and microglia [34,35].

Table 1. Adenosine receptor localization.

Adenosine
Receptor Subtype Central Nervous System Peripheral Organs/Tissues and

Non-neuronal Cells

A1

Widely distributed with highest levels
in the cerebral cortex, hippocampus,

cerebellum, thalamus, brain stem and
dorsal horn of the spinal cord [35–38]

Widely distributed, including
mononuclear cells in the blood,

heart, kidney, adipose tissue
[34,35,39,40]

A2A

Highly concentrated in dorsal and
ventral striatum (on striatopallidal
medium spiny neurons (MSNs)).

Additionally expressed in the globus
pallidus (external), nucleus accumbens,
olfactory tubercle [17,18,41]. Expressed

in lower levels in the hippocampus,
thalamus, cerebellum, cerebral cortex

[38,42–44] and spinal cord motor
neurons [36,41,45].

Spleen, thymus, blood vessels,
heart, lung, immune cells,

platelets, glial cells [34,35,46]

A2B Widely distributed (low density) [34,35]

Widely distributed (very low
density). Higher levels in the

cecum, colon, bladder,
macrophages, mast cells [34,35]

A3 Widely distributed (low density) [34,35]
Widely distributed (low

density). Higher levels in mast
cells, eosinophils [34,35,47]

Since it was first cloned in the late 1980s [48], the A2AR has been of particular interest
in movement disorders such as PD because of their selective expression in the brain
regions involved in regulating motor control (i.e., the basal ganglia) and the pathogenesis
of symptomatic motor dysfunction [42]. The adenosine A2AR antagonist istradefylline
(formerly known as KW-6002) is the first adenosinergic antiparkinsonian agent to be
approved (Japan and USA) as a symptomatic treatment for PD [49]. The journey through
research and development provides a good example of translational research, where the
evidence base was carefully constructed according to the following:

i. Identification of A2AR-specific expression in the medium spiny neurons (MSNs, also
known as spiny projection neurons), projecting through the striatum to GPe [50].
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ii. Synthesis and identification of selective A2AR antagonists [51,52].
iii. Demonstration of A2A antagonist efficacy in functional animal models for PD [53].
iv. Discovery of physiological significance of A2ARs in the MSN and establishing the

mechanism of action for A2AR antagonism in PD therapy [43].
v. Pathophysiological change with increased level of A2ARs in progression of PD [54–58].
vi. Proof-of-concept clinical studies in PD patients, translating A2AR antagonist phar-

macology into clinical manifestation [49,59].
vii. Clinical development for regulatory registration [49,60].

This translational process may provide a template pathway for investigations of
adenosinergic therapeutics for ALS. The analogies between the two neurodegenerative
diseases are interesting, not least because of the evidence for adenosinergic system in-
volvement in ALS, as well as the evidence for A2AR expression in spinal cord motor
neurons [36,41].

4. Pathophysiology in Adenosine Levels and A2A Receptor Density in ALS

Several studies have suggested that adenosinergic function (i.e., adenosine levels,
adenosine receptors) within different tissues/areas in the central nervous systems seems
to be enhanced as ALS progresses. Evidence for increased adenosine levels in the cere-
brospinal fluid of patients with ALS (n = 12) [61] was already available in the late 1990s,
but it has only recently been demonstrated that the extracellular adenosine concentration,
which can be increased by loss of astrocyte adenosine deaminase (ADA), is critical to induce
motor neuron toxicity in ALS [62]. In C9orf72 cells and astrocytes derived from sporadic
ALS patients, the metabolism of inosine was shown to be reduced as a result of the reduced
activity of ADA. ALS induced astrocytes were more susceptible to adenosine induced
cell loss than control induced astrocytes and were protected by inosine supplementation,
resulting in an increase in motor neuron survival in co-culture with induced astrocytes.
This suggests that adenosine levels are, at least in part, a cause (and not just a consequence)
of the progressive motor neuron loss in ALS.

Since the early receptor binding studies first suggested expression of adenosine re-
ceptors in the spinal cord [36], it has been directly observed that adenosine A2ARs are
highly enriched in non-astroglial cells, including motor neurons in the spinal cord ventral
horns, compared to levels in the cortex and hippocampus. In contrast, levels of adenosine
A1 receptors in the spinal cord are lower than in other areas. Interestingly, a clear trend
to the upregulation of A2A, but not A1, receptors has been found in samples from post-
mortem patients with ALS [63]. Additionally, studies using the symptomatic SOD1G93A

mouse model of ALS have reported that A2AR expression in SOD1G93A mice spinal cords
is increased 3-fold compared to wild-type mice, with no significant changes in A1 receptor
expression, in the early symptomatic (symptomatic onset) phase [64]. Conversely, symp-
tomatic SOD1G93A mice have been shown to have a dramatic decrease in A2ARs in the
spinal cord [65]. Both these observations suggest alteration of A2AR expression during ALS
progression is related to the SOD1 mutation.

Enhanced A2A (but not A1) receptor expression and signaling has also been detected
in non-motor areas (i.e., hippocampus) of pre-symptomatic SOD1 mutation mice [66]. Rei
et al. [66] have further shown that, while blockade of A2ARs with istradefylline did not
alter the receptor levels in wild-type mice, chronic treatment normalized A2AR expression
in SOD1G93A mice down to wild-type levels. It seems unlikely that a receptor antagonist
would induce down regulation; however, this requires confirmation.

Interesting analogies in pathophysiological changes of A2ARs during disease progres-
sion can be made between ALS and other neurodegenerative diseases. In patients with PD,
increased striatal and pallidal (GPe) A2AR density has been demonstrated, both in post-
mortem brain tissue [54,55] and using PET imaging [56–58]. Further work has also shown
increased putaminal density in the early ‘pre-symptomatic’ phase of PD (Braak PD stages
of 1–2) [55] as well as significant changes in receptor expression during more advanced
PD when patients were experiencing motor complications [54,56–58]. This localization is



Biomedicines 2021, 9, 1027 6 of 22

not just interesting due to its discrete nature but also due to the functional significance of
the areas linking A2A expression and PD. Postmortem evaluation of the cortex of patients
with frontotemporal lobe dementia (FTLD) has also demonstrated an increase in A2ARs of
the temporal cortex [67]. The study also demonstrated an association between the increase
in A2ARs and phosphorylated tau protein, suggesting a sequential process resulting in
cognitive impairment [67]. Like these diseases, the exact timing and conditions for A2AR
changes during ALS progression remain to be investigated.

5. Pharmacology of Adenosine A2A Receptor Blockade on ALS Animal Models

Despite the growing body of evidence for increased adenosine levels and upregulation
of A2AR levels in human ALS and ALS models (Table 2), pharmacological outcomes, using
both A2A agonists/antagonists, vary considerably (Table 3).

Table 2. Alteration of adenosine and adenosine receptors in ALS and models.

Human Sample/Model Tissue/Sample Examined Finding Reference

A2AR Postmortem samples from
human patients with ALS Spinal cord Upregulation of A2AR [64]

A2AR Patients with ALS Lymphocytes Upregulation of A2AR [68]

Adenosine Patients with ALS CSF Increase of adenosine level [61]

ADK Patients with ALS Reactive astrocyte/Spinal
cord Upregulation of ADK [69]

A1R Postmortem samples from
human patients with ALS Spinal cord No significant change of A1R [64]

Mouse

A2AR SOD1G93A mice Spinal cord Upregulation of A2AR
(early symptomatic stage) [64]

A2AR SOD1G93A mice Spinal cord Decrease of A2AR
(end stage) [65]

A2AR SOD1G93A mice Hippocampus

Increased adenosine A2AR levels
in hippocampus (pre-symptomatic

and symptomatic stage).
Impairment of LTP and NMDA

receptor function.

[66]

A1R SOD1G93A mice Spinal cord
No significant change of A1R
(symptomatic onset period:

P100–110)
[64]

Table 3. Pharmacological studies of adenosine A2A receptor agonists and antagonists in ALS models (in vitro, in vivo).

Experimental Model Cell/Brain Area Compound Findings Reference

In vitro

A2AR antagonist Embryonic SD rat
spinal cord cultures Motor neurons Istradefylline (1 µM)

Istradefylline protected against
kainate-induced motor neuron

death
[70]

A2AR antagonist,
A2AR +/−

SOD1G93A+ astrocyte
induced cell death

Embryonic stem
cell-derived motor

neuron (ESMN)

Istradefylline (1, 10 µM)
A2AR +/−

Pharmacological inhibition
(istradefylline) and partial

genetic ablation of A2AR (A2AR
+/−) significantly protected

ESMN from SODG93A+
astrocyte-induced cell death

[71]
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Table 3. Cont.

Experimental Model Cell/Brain Area Compound Findings Reference

A2AR agonist,
antagonist

Motor neuron cell
line NSC34 cells

Agonist: JMF1907 (30 µM)
Antagonist: SCH58261

(10 µM)

JMF1907 enhanced the activity
of adenylyl cyclase (AC) and

suppressed the aberrant AMPK
activity induced by AICAR, the

AMPK-triggered
mislocalization of TDP-43.

These effects of JMF1907 were
blocked using an

A2AR-selective antagonist
(SCH58261)

[72]

ADA
C9orf72 or sporadic

ALS patients derived
induced astrocyte

Astrocyte

RNA and protein levels of ADA
were reduced in C9orf72 and

sporadic ALS patient
cell models.

C9orf72 and sporadic ALS
induced astrocytes were more

susceptible to
adenosine-mediated toxicity

[62]

D2R agonist,
A2AR agonist Motor neuron Cell line: NSC34

cells

A2AR agonist: T1–11
(30 µM)

D2R agonist: quinpirole
(1 µM)

Activation of D2R (quinpirole)
negatively regulated

A2AR-evoked cAMP signaling,
without significantly affecting
the binding affinity of T1–11
toward A2AR in NSC34 cells

Activation of D2R suppressed
A2AR-mediated protection of

TDP-43 mislocalization in
NSC34 cells

[73]

In vivo

A2AR antagonist SOD1G93A mice Spinal cord

Istradefylline (3 mg/kg, ip)
starting at P90–95 by daily

ip injection (before
symptomatic onset period).

Disease onset:
121 ± 1.7 day

Istradefylline significantly
delayed disease progression [64]

A2AR antagonist SOD1G93A mice Hippocampus

Istradefylline
(3 mg/kg/day) via

drinking water (7.5 µg/mL)
starting from 11 weeks to

16–18 weeks (symptomatic)
old (early symptomatic

disease stage)

Istradefylline rescued LTP
impairment and A2AR levels [66]

A2AR agonist SOD1G93A mice Spinal cord

CGS21680 (5 mg/kg/day,
ip): Starting at 8 weeks of

age (before the clinical
manifestation of

the disease)

CGS21680 treatment slowed the
onset of motor neuron

degeneration (12 weeks) and
muscle weakness

[74]

A2AR agonist
SOD1G93A mice

(Electrophysiological
recordings)

Neuromuscular
junction

CGS21680 (5 nM)
pre-symptomatic mice

(4–6 weeks) symptomatic
mice (12–14 weeks)

In pre-symptomatic mice
(4–6 weeks) the excitatory
A2AR-mediated effects on

neuromuscular transmission are
exacerbated

In symptomatic mice
(12–14 weeks) the excitatory

A2AR-mediated effects on
neuromuscular transmission

were absent

[75]

A2AR agonist TDP-43 transgenic
mice Spinal cord

JMF1907 (111 mg/
mouse/day, sc) using

ALZET osmotic minipump.
Starting from 6 weeks to

23 weeks old (from
presymptomatic)

JMF1907 markedly reduced the
activation of AMPK

JMF1907 also improved motor
function based on rotarod
performance and forelimb

grip strength

[72]
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Table 3. Cont.

Experimental Model Cell/Brain Area Compound Findings Reference

A2AR agonist,
antagonist, A1R

antagonist
SOD1G93A mice

Motor
performance,

survival

A2AR agonist: CGS21680
(2.5 mg/kg, ip): five times

per week.
A2AR antagonist:

istradefylline
(3 mg/kg/day) via

drinking water
(0.25 mg/mL).

A1R antagonist: DPCPX
(0.75 mg/kg, ip): five times

per week.
Starting from 70 days of age

(presymptomatic stage)

Neither the stimulation nor the
blockade of adenosine A2AR

modified the progressive loss of
motor skills or survival of

SODG93A mice.
Blockade of adenosine A1R

from the presymptomatic stage
significantly attenuated motor

disease progression and
induced a non-significant

increase of median survival in
ALS mice.

[76]

A1/A2AR
antagonist SOD1G93A mice Spinal cord

Caffeine (0.3 mg/mL) via
drinking water.

Starting from 70 days of age
(before the onset

of symptoms)

Caffeine intake significantly
shortened the survival of

SODG93A mice
[65]

D2R agonist,
A2AR agonist

A315T TDP-43
transgenic mice

Spinal cord, motor
performance

(grip strength)

A2AR agonist: T1–11
(0.25 mg/mL) via

drinking water.
D2R agonist: Quinpirole

(6 mg/kg, ip/day). Starting
from 7 to 10 weeks old

Activation of D2R inhibited the
A2AR -mediated beneficial

effects (rescuing effect of T1–11
on TDP-43 mislocalization and

impaired grip strength)

[73]

A1R agonist,
antagonist, A2AR

agonist,
antagonist

SOD1G93A mice
Neuromuscular

junction

A1R agonist: CPA (50 nM)
A1R antagonist: DPCPX

(50 nM)
A2AR agonist: CGS21680

(5 nM)
A2AR antagonist:

SCH58261 (50 nM)
pre-symptomatic mice

(4–6 weeks)
symptomatic mice

(12–14 weeks)

In pre-symptomatic mice
(4–6 weeks), there is a loss of

A1R-A2AR functional crosstalk.
In symptomatic mice

(12–14 weeks), there is
increased A1R tonic activation

[77]

In vivo (phrenic motor neurons)

A2AR antagonist

Intrapleural
CtB-Saporin injected

rats (neurotoxic
model of respiratory
motor neuron death)

phrenic motor
neuron

Istradefylline twice daily,
for a total dose of

1 mg/kg/day

Increased A2AR expression
following CtB-Saporin

injections. Istradefylline
reduced phrenic motor neuron

death and preserved
diaphragm EMG activity

[78]

In SOD1G93A mice, A2A antagonism with istradefylline has demonstrated beneficial
effects, including motor neuroprotection. Ng et al. [64] demonstrated adenosine treatment
induced embryonic stem cell-derived motor neuron (ESMN) cell death in cultures, while
application of istradefylline significantly protected against death of EMSNs co-cultured
with SOD1G93A + astrocytes. From a motor function perspective, daily treatment of the
A2A antagonist and partial genetic ablation of the A2AR significantly delayed disease pro-
gression in SOD1G93A mice, which was evaluated by longitudinal grip strength change [64].
Istradefylline has also been shown to protect against kainate-induced motor neuron death
as well as time-dependent death of motor neurons by expression of mutant forms of SOD1
and mutant p150glued subunit of dynactin in rat spinal cord cultures. This study has found
that istradefylline led to a substantial reduction in phosphor Trk, suggesting A2A antago-
nism inhibits activation of the receptor tyrosine kinase (Trk) and downstream signaling of
Trk-B, which co-localizes with the A2AR in motor neurons [70].

Rei et al. [66] have found, using in vitro hippocampal slices from SOD1G93A mice, that,
in comparison with those from wild-type mice, glutamatergic pre-synaptic function was
enhanced with up-regulated A2ARs in pre-symptomatic mice. By contrast, in symptomatic
mice, NMDA glutamatergic transmission and its plasticity (i.e., long-term potentiation
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(LTP)) were impaired but were rescued by A2AR blockade. Since the study was done
in a non-motor brain area, it is less conclusive if this sequential change, from the pre-
symptomatic to the symptomatic phase of ALS, can be translated to progressive motor
dysfunction in ALS. However, these findings may contribute to further understanding
a mechanism for non-motor symptoms of ALS, such as cognitive dysfunction. Similar
changes of A2AR neuronal plasticity are also reported in corticostriatal glutamatergic
long-term depression (LTD) using in vitro slices from DYT1 dystonia model mice. In the
symptomatic disease state, LTD was impaired, which could be recovered by A2AR blockade
resulting in motor improvement [79].

Electrophysiological study of phrenic-nerve hemidiaphragm prepared from in pre-
symptomatic SOD1 mutation mice (4–6 weeks old) has also demonstrated that the selective
A2AR agonist, CGS 21680, significantly enhanced neuromuscular junction (NMJ) trans-
mission, the effect being of higher magnitude than age-matched control littermates [75].
However, in the preparation from symptomatic phase mice (12–14 weeks old), the A2AR-
mediated effects disappear (although NMJ transmission from wild-type mice was increased
by A2AR stimulation) [75]. These pathophysiological findings may suggest that A2AR func-
tion and/or sensitivity alters between pre-symptomatic to symptomatic phases in ALS,
which is in line with A2AR expression change in SOD1G93A mice, as mentioned previ-
ously. This A2AR-mediated NMJ control in the phrenic nerve is also key for symptomatic
therapeutic strategies in ALS (see Section 6 below). Adenosine A1 receptor activation,
using the same pre-symptomatic phase preparation, decreased NMJ transmission but,
during the symptomatic phase, increased its tonic activation [77]. Taken together with A2A
changes, this suggests physiological interactions between excitatory A2A and inhibitory
A1 receptors [80] are disrupted during presynaptic regulation, leading to a higher level of
adenosine than that in age-matched controls [77].

There are conflicting data regarding the pharmacology of A2ARs in SOD1 mutation
mice. In contrast to previous discussion, it has been reported that, in an in vivo study using
presymptomatic SOD1G93A mice (starting at 8 weeks and continued until 12 weeks), the A2A
agonist CGS21680 slowed the onset of motor neuron degeneration with muscle weakness.
This was considered due to an A2AR-mediated activation of brain-derived neurotrophic
factor (BDNF) truncated receptor (TrkB) signaling independent of neurotrophines [74].
However, a further in vivo study with presymptomatic SOD1 mutation mice showed that
neither the stimulation nor blockade of A2ARs by CGS21680 (i.p) or istradefylline via
drinking water, respectively, modified the progressive loss of motor skills or survival of the
mice [76]. Although the route of administration for the drug has been suggested to be the
root cause of the conflicting data [81], the effect of A2AR agonism in the presymptomatic
phase needs to be further investigated.

In another SOD1G93A mouse study, caffeine intake was reported to shorten survival.
While the authors at the time considered this an “unexpected result”, there are two possi-
bilities that may explain the observation [65]. Since caffeine is a non-selective adenosine
antagonist exerting various pharmacological effects, it may be that the decreased survival
is not attributable to A2AR antagonism but other receptor characteristics of the drug. An-
other possible explanation may be reduced A2AR-induced neurotrophic support since the
A2AR is closely involved in the regulation of vascular endothelial growth factor (VEGF)
expression [82]. On the other hand, the authors also found a dramatic down-regulation
of spinal cord A2ARs, making it hard to speculate that the effects were mediated by A2AR
inhibition [65]. Moreover, the outcome of a recent pooled analysis of clinical cohort studies
in patients with ALS did not support associations of ALS mortality risk with caffeine
consumption [83].

TAR DNA binding protein (TDP-43 transgenic) transgenic mice are used as another
ALS model because cytoplasmic mislocalization of TDP-43 from the nucleus is consid-
ered a hallmark of early event for the pathogenesis of ALS [84]. However, only a few
studies using this model have been done to investigate the contribution of adenosine
receptors. Liu et al. [72] suggested that elevated oxidative stress might cause the abnormal
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activation of AMPK, subsequently causing the mislocalization of TDP-43. Using the A2A
agonist JMF1907 to suppress AMPK activity via cAMP stimulation, they demonstrated
that (i) activation of A2AR rescues the AMPK-triggered mislocalization of TDP-43 in a
motor neuron cell line (NSC34), which was blocked by the A2A antagonist SCH21680, and
(ii) treatment with JMF1907 improved motor function in rotarod performance and forelimb
grip strength [72]. Finally, JMF1907 also inhibits the adenosine transporter ENT1 [85],
causing an increase in adenosine levels. Thus, in contrast to SOD1 mutation models, the
TDP-43-related ALS model can demonstrate therapeutic effects of A2AR stimulation. How-
ever, AMPK is activated in the spinal cord of SOD1G93A mice at disease onset [86,87], but it
is suppressed in transgenic TDP-43 A315T mice at the presymptomatic and symptomatic
stages [87], making regulation of AMPK during disease progression a priority area for
further investigation.

In summary, the potential contribution of A2AR pharmacology in ALS can be consid-
ered to depend on two factors:

i. Disease stage (pre-symptomatic phase, onset of symptomatic phase and end stage);
ii. The ALS model used and the mechanisms underlying the motor neuron disease.

6. Uric Acid as a Proposed Biomarker in Patients with ALS

Adenosine in neuronal systems follows a well-recognized metabolic pathway (Figure 1)
breaking down into inosine through the activity ADA [88] with the clearance mediated via
nonconcentrating nucleoside transporters. It has been suggested that, whereas neurons
are enriched in adenosine kinase, ADA is more abundant in astrocytes [62,88]. The end
metabolite in humans, uric acid (UA), is well known to have antioxidant properties [89–91].

Serum UA has been proposed to be a biomarker of ALS progression (especially in the
early phases) [92], and there is accumulating evidence demonstrating that serum UA levels
correlate with ALS progression as measured by the ALS Functional Rating Scale-Revised
(ALSFRS-R) [93,94]. Meta-analyses also support an inverse association of serum UA levels
with risk of death among ALS patients [95]. Other studies have shown a significant survival
advantage of higher UA levels in male, but not female, patients [96]. Again, there is an
interesting analogy to be made with other neurodegenerative disorders since UA levels
are also found to be inversely associated with the risk of PD and Alzheimer’s disease
(AD) [97–100]. In addition, studies in Huntington’s disease, multiple system atrophy and
mild cognitive impairment have also demonstrated a correlation between higher UA levels
and slower clinical progression [101–104].

Much of the current literature postulates that UA plays an important role in ameliorat-
ing oxidative stress, and research has focused on addressing UA-induced neuroprotective
effects. Authors often suggest that UA produced from inosine via xanthine [105] may
provide some level of neuroprotection, partly based on an antioxidant action [106,107],
since oxidative stress is thought to induce motor neuron death and promote the patho-
genesis of ALS [108–110]. Additionally, UA-induced protection of spinal cord neurons
from glutamatergic excitotoxicity via astrocytes has also been proposed as another possible
mechanism [111]. However, a study by Allen et al., using inosine supplements that signifi-
cantly reduced the induced astrocyte-mediated toxicity toward motor neurons, found that
increased UA levels from inosine were not always correlated with motor neuron survival
increases. This led them to suggest that the protection they observed was not via UA
production but another pathway triggered by inosine (i.e., lactate production induced by
the increased glycolytic capacity) [62]. Thus, an alternative or additional thought may be
that serum UA is actually a marker of remaining extracellular adenosine levels in ALS.
This may suggest lower serum UA levels indicate higher levels of adenosine in neuronal
systems, including motor neurons, which may increase risk for ALS induction and/or pro-
gression in particular neuronal systems. However, whether lower serum UA is attributable
to reduction in adenosine metabolism (i.e., suppression of ADA) is yet to be investigated.

Ectonucleotidase-mediated ATP catabolism (CD73-mediated adenosine formation)
provides a powerful mechanism to control the levels of extracellular adenosine. Orr et al.
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have shown that the conversion of ATP to adenosine by activated microglia leads to activa-
tion of the adenosine A2AR and consequent microglial process retraction into an amoeboid
shape (considered a hallmark of neuroinflammation or trauma) [112]. By connecting the
neurodegenerative processes and mechanisms related to both increased adenosine levels
and adenosine A2AR activation, Meng et al. have recently suggested that CD73 provides a
self-regulating feed-forward adenosine formation to activate striatal A2ARs in cells that
release pro-inflammatory cytokines causing neurodegeneration [113]. Using the 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD, they showed that limiting CD73-
derived adenosine substantially suppressed microglia-mediated neuroinflammation. Based
on experiments using CD73 KO mice, they further showed CD73 inactivation suppressed
A2AR induction and A2AR-mediated pro-inflammatory responses [113].

In other neurodegenerative diseases such as Alzheimer’s disease and frontotempo-
ral degeneration, increased astrocytic A2AR expression is also correlated with memory
deficits [67,114], and studies in a mouse model of tauopathy have shown that A2ARs
exacerbate tau phosphorylation and memory loss [67]. A2ARs are also known to be upregu-
lated in stroke [115], and studies have shown selective A2AR antagonism reduces ischemic
brain damage and neurological deficit [116,117] via mechanisms including inhibition of
oligodendrocyte-mediated neuroinflammation [118]. For ALS patients, increased A2AR
expression (versus healthy controls) has also been demonstrated in lymphocytes, and the
density correlated with ALSFR-R scores [68]. In addition, the lymphocytes from patients
with ALS had a higher potency for A2AR functional activation, represented by cAMP levels,
than those from healthy subjects.

These lines of converging evidence seem to suggest that A2AR changes in non-neuronal
cells may be a reliable indicator for what happens in A2AR-induced neurodegeneration
and could be a key process for neuronal degeneration triggered via non-neuronal cells.
In the PD model, CD73 activation was induced by the neurotoxin MPTP, which causes
dopaminergic degeneration [113], and this approach could be adapted for ALS by devel-
oping a model of ADA deficiency. Interestingly, in mouse models of spinal cord injury,
CD73 expression was also upregulated in microglia. The authors of the study concluded
CD73 has an anti-inflammatory role, attributed to inhibition of macrophages/microglia
polarization [119]. Thus, CD73 in microglia may be a specific target to be investigated to
unravel the entire process from cause to consequence in the pathogenesis of ALS. Other
potentially translatable mechanisms of adenosine A2AR-mediated neurotoxicity in PD have
been described and are extensively reviewed by Chen and Schwarzschild [120].

While it can now be assumed that an increase in extracellular adenosine levels due to
loss of ADA and upregulation of A2ARs contributes to motor neuron death and functional
impairment in ALS, several questions remain:

i. What is the sequence for initiating motor neuron death? Increased level of adenosine
and/or via adenosine A2AR activation?

ii. What causes loss of ADA?
iii. What are the mechanisms that drive the upregulation/down regulation of A2ARs?
iv. What are the timings by which the alterations of the adenosinergic system occur

during ALS pathogenesis in patients and animal models?
v. What are the processes of each event in the entire pathogenesis of ALS from pre-

symptomatic, symptomatic and end stages?
vi. How can plasma UA be utilized as a biomarker for diagnosis and therapy?
vii. Can A2AR antagonists (and agonists) be useful pharmacotherapy during an ALS

patient’s journey, and if so, what is the optimal timing for such therapy?

7. A2A Receptors in Respiratory Motor Neurons and tAIH Treatment for ALS

The respiratory neuronal network must continuously adjust due to the dynamic
demands throughout one’s life to maintain homeostasis, including adjustments for disease
onset. These regulatory strategies are achieved through various feedback, feedforward,
and adaptive mechanisms. Several clinical disorders challenge the neuronal control of
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respiratory motor output, including neuromuscular disorders such as spinal cord injury
(SCI) and ALS [121–124]. In fact, a major cause of mortality in both SCI and patients
with ALS is the disruption and degeneration of the respiratory motor neurons [122,125].
Eventually, a diminished ability to generate spinal respiratory motor nerve activity exceeds
the compensation capacities of the respiratory system and compromises breathing, leading
to respiratory failure [122,125–127]. In the case of ALS, neuronal loss eventually leads
to ventilator dependence or death [122,126,127]. Therefore, it is critical to develop new
strategies that restore neuronal motor activity and preserve independent breathing in
these patients.

When perturbations occur, one of the breathing control strategies for the neuronal
respiratory system is plasticity [123,128–131]. Phrenic motor facilitation (pMF) is a form of
motor plasticity induced by neuromodulators, such as serotonin and adenosine, to increase
the neural output of the phrenic nerves [123,124,132–134]. A specific form of pMF, known as
phrenic long-term facilitation (pLTF), is excited when exposed to acute intermittent hypoxia
(AIH) and leads to a long-lasting increase in phrenic motor output [128,135–139]. pLTF is
pattern-sensitive as it requires intermediate hypoxia rather than continuous hypoxia [140].
AIH-induced pLTF is also pattern-sensitive to the severity of hypoxia via two distinct
cellular pathways [133,140] (Figure 2).
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Moderate AIH (mAIH) initiates pLTF via the Q pathway to pMF activity. It is called
the Q pathway because it is induced by spinal Gq protein-coupled serotonin 2 (5-HT2)
metabotropic receptors [128,137,141–144]. The Q pathway also requires downstream extra-
cellular signal-related protein kinase (ERK) mitogen extracellular kinase (MEK) activity
and new protein synthesis of BDNF [145,146]. New BDNF synthesis leads to activation
of its receptor, tropomyosin-related kinase B (TrkB), and protein kinase C theta (PKCθ)
activity [145,147–150]. When AIH is severe (sAIH), pLTF activation’s dominant mechanism
is through the S pathway to pMF activity [128,151]. The S pathway is initiated by Gs-
coupled metabotropic receptors that require A2AR or 5-HT7 receptor activation [151–153].
When pLTF is elicited via the adenosine-dependent mechanism, it is independent of 5-HT
receptor activation [146]. The Gs protein-coupled adenosine A2AR (GsPCRs) activation
induces a downstream signaling cascade that requires exchange protein activated by cAMP
(EPAC), protein kinase b (pAkt) signaling via phosphatidylinositol 3-kinases (PI3K) and
new protein synthesis of immature tropomyosin-related kinase B isoform rather than
BDNF [152–154].

It was initially thought that the Q pathway and the S pathway would work together
to elicit pLTF. However, it is now known that the serotonin and adenosine-dependent
pathways interact via crosstalk inhibition dependent on the severity of AIH. The Q pathway
predominantly follows mAIH, and the S-pathway follows sAIH [155]. When a shift from
mAIH to sAIH occurs, serotonin shifts to adenosine-dependent pLTF, with greater ATP
release and extracellular adenosine accumulation contributing to the shift during severe
hypoxic episodes [156–158]. The longer the cumulative duration of hypoxia, the greater
the accumulation of extracellular adenosine [159]. During mAIH induced pLTF, the S
pathway diminishes the Q pathway activity by concurrent, subthreshold activation of spinal
A2ARs [133]. When these mechanisms are activated equally, they can cancel each other out
and block phrenic motor plasticity, which has profound implications for therapeutic AIH
(tAIH) used to treat severe neuromuscular disorders that compromise breathing [159–161].

The rationale for treating various neuromuscular disorders with tAIH, a non-invasive
treatment modality that consists of brief periods of hypoxic gas mixtures interspersed by
periods of normoxia, was initially studied in human [162,163] and intact rat models [164].
These rodent studies showed that daily tAIH treatments activated carotid body chemore-
ceptors that are required for serotonin-dependent pMF [137,143,155,159,165]. Stimulation
of episodic serotonin release then initiated a cell-signaling cascade with the synthesis of
BDNF and activation of TrkB, leading to increased synaptic input and motor output of
respiratory and motor nuclei, giving rise to pMF [129,145,164,166].

With spinal cord injuries, the disruption between brain and spinal cord pathways
results in impaired motor control, breathing control and loss of function below the area of
injury. However, around 95% of spinal cord injuries are incomplete (iSCI) [167,168]. The in-
complete nature of these injuries leaves spared neural pathways with spinal plasticity that
can partially restore recovery of limb function, although the recovery is limited [169,170].
However, because of the limitations with spontaneous plasticity in iSCI patients, there
is a need for strategies to further promote spinal plasticity and increase functional recov-
ery [162,163,171].

In animal models, rats with cervical spinal hemisections showed restored breathing
compacity following repetitive AIH treatments [135,137,164,172]. The recovery of respi-
ratory function occurred through strengthening the phrenic motor output through the
serotonin-dependent S-pathway [129,164]. In addition, tAIH demonstrated enhanced
motor function via increased plasticity in somatic motor nuclei and restored forelimb func-
tion [164,173]. In humans with iSCI, several recent studies have shown that tAIH enhanced
corticospinal synaptic plasticity and showed improved motor function [162,163,171,174].
Trumbower et al. showed that a single AIH treatment improved ankle strength in patients
with chronic iSCI that lasted one hour after treatment [163]. Other studies showed combin-
ing repetitive AIH with hand opening practice or gait training enhanced hand and walking
function in iSCI patients [162,171].
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However, results in the rodent and human studies showed variable responses, in-
dicating that other factors may impact the efficacy of tAIH [162,163]. An anesthetized
rodent study by Hoffman et al. demonstrated that spinal A2AR activation constrained
AIH-induced pLTF. Therefore, respiratory plasticity may be modulated by the S-pathway
following tAIH [165]. The model they proposed is that both receptor pathways are acti-
vated during AIH. However, serotonin-dependent pathways predominate while cross-talk
inhibition from A2AR-dependent pathways constrains AIH-induced pLTF [165]. Indeed,
A2AR inhibition in these anesthetized rats enhanced pLTF [165].

Additionally, a study of unanesthetized rats observed that moderate AIH induced di-
aphragm (dia) pLTF after chronic, not acute, cervical spinal injuries, and a single dose of the
A2AR antagonist, istradefylline, enhanced dia-LTF in normal rats, but not chronic (8 weeks)
cervical (C2) spinal hemisection (C2HS) [175]. Other key observations in SCI rodent models
indicate that 2 weeks post-C2HS dAIH enhanced breathing capacity [172,176,177]. Still,
functional recovery is adenosine-dependent, and dAIH induced recovery of breathing
capacity was less robust eight weeks post-surgery as there was a shift from serotonin-
independent to the serotonin-dependent mechanism when transitioning from acute to
chronic SCI [172,176,177]. Increased tAIH efficacy was observed following the adminis-
tration of istradefylline in these chronic SCI animals [172]. It may be surmised that A2AR
antagonists increase the therapeutic effects of tAIH by releasing the adenosine constraints
and further augment respiratory motor output, making A2AR inhibition of clinical inter-
est when treating respiratory insufficiency in spinal cord injury and neurodegenerative
diseases, albeit depending on the time post-injury [172,176].

These initial findings involving crosstalk inhibition and enhancing tAIH treatment
by combining with A2AR inhibition in SCI models are also relevant in ALS. A2ARs are
upregulated in patients with ALS, specifically in respiratory motor neurons [45,61,64], and
ALS animal models show a major loss of phrenic motor neurons in end-stage disease [151].
Despite up to 80% loss of phrenic motor neurons at this stage in ALS, the nerve activity
is only reduced to around 50%. By taking advantage of the remaining neurons and
A2AR increase in patients with ALS, tAIH combined with A2A antagonists could be an
effective treatment option that could further preserve pLTF-enhanced breathing capacity.
By preserving independent breathing in ALS patients, enhancing the quality of life and
extending life duration is possible. Once independent breathing ability is lost for those with
ALS, mechanical ventilators are required, and many patients choose end-of-life options.

Several animal studies using a transgenic ALS rodent model (SOD1G93A) have pro-
vided preliminary data to support this theory. At the end-stage of disease in SOD1G93A rats,
a single dose of AIH was restored and showed sustained increase in phrenic nerve burst
amplitude via pLTF [151,178,179]. AIH-induced pMF analyzed in young, pre-symptomatic
and end-stage SOD1G93A rats showed that the phrenic burst activity was restored to around
50% of normal levels in end-stage and pMF was doubled compared to pre-symptomatic
and wild-type rats [178]. End-stage SOD1G93A and wild-type littermates demonstrated that
AIH enhanced pLTF occurs via the Q pathway. The serotonin-induced ERK/MAP kinase
pathway activation and BDNF protein synthesis were increased in the spared phrenic
motor neurons, consistent with Q-pathway requirements for pLTF induction [179]. A2ARs
can also activate several intracellular cascades, including downstream signaling via ERK
and MAP kinases. After neurotoxin insult, it has been observed that A2ARs are upregulated
prior to phrenic motor neuron death (Table 3). The A2A antagonist istradefylline reduced
phrenic motor neuron death and preserved diaphragm EMG activity after toxic insults [78].
It also reduced the p38 MAP kinase phosphorylation seen after toxic insult, similar to the
observed increase in phosphor-ERK in ALS rodent models that improved phrenic motor
neuron survival and diaphragm function [78,166,180].

Based on the discoveries in rodent ALS models, a clinical trial (NCT03645031) is
currently recruiting patients with ALS to investigate the effects of a single acute AIH
session on respiratory and non-respiratory motor function and EMG (electromyography)
activity on patients with ALS and healthy controls [181]. Further investigations are needed
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to confirm the mechanisms underlying phrenic motor plasticity in ALS to guide new
treatment combinations for improved breathing capabilities, which would potentially lead
to increased quality of life. These include preliminary human studies in ALS combining A2A
antagonists with tAIH treatment that could have significant implications for independent
breathing and extended duration of life.

8. Conclusions and Future Perspectives

ALS is a complex, multifactorial disease where the activity of adenosine at A2ARs
has been shown to play a role in pathogenesis and disease progression. Increased A2AR
expression has been observed in the spinal cord in both animal models of ALS (e.g.,
SOD1G93A mice) and in post-mortem tissue from human patients. While dependent on
disease stage, this increased expression in the spinal cord is accompanied by enhanced
expression and signaling in non-motor areas of the brain as well. These findings suggest
that alterations in A2AR expression may contribute to progression of the disease. By
contrast, relatively little is known about the role of A1, A2B and A3 receptors in ALS.
Given the known neuroprotective effects of A1 receptors [182,183], this can be considered
surprising, and this avenue of research merits further attention [63].

Interest in A2ARs as a therapeutic target for ALS has grown exponentially in recent
years. Both agonists and antagonists to this receptor have been investigated in animal mod-
els of ALS and seem to point to a potential role for pharmacological manipulation of A2A
(e.g., in the regulation of phrenic motor facilitation) in the treatment of patients with ALS.
However, the timing by which the alterations of the adenosinergic system occur during ALS
pathogenesis in patients and animal models is a key factor to completely understand its
contribution to disease progression and to identify the proper therapeutic window for puta-
tive treatments. Ongoing studies in human patients may help to identify these benefits and
may potentially improve the lives of this patient population for which disease-modifying
options are limited and treatment usually focuses on symptomatic management.
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