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ABSTRACT Our understanding of the evolutionary consequences of mutation relies heavily on estimates of the rate and fitness effect
of spontaneous mutations generated by mutation accumulation (MA) experiments. We performed a classic MA experiment in which
frequent sampling of MA lines was combined with whole genome resequencing to develop a high-resolution picture of the effect of
spontaneous mutations in a hypermutator (DmutS) strain of the bacterium Pseudomonas aeruginosa. After �644 generations of
mutation accumulation, MA lines had accumulated an average of 118 mutations, and we found that average fitness across all lines
decayed linearly over time. Detailed analyses of the dynamics of fitness change in individual lines revealed that a large fraction of the
total decay in fitness (42.3%) was attributable to the fixation of rare, highly deleterious mutations (comprising only 0.5% of fixed
mutations). Furthermore, we found that at least 0.64% of mutations were beneficial and probably fixed due to positive selection. The
majority of mutations that fixed (82.4%) were base substitutions and we failed to find any signatures of selection on nonsynonymous
or intergenic mutations. Short indels made up a much smaller fraction of the mutations that were fixed (17.4%), but we found
evidence of strong selection against indels that caused frameshift mutations in coding regions. These results help to quantify the
amount of natural selection present in microbial MA experiments and demonstrate that changes in fitness are strongly influenced by
rare mutations of large effect.

MUTATIONS are the ultimate source of genetic variation
that natural selection acts upon. Understanding the

rate at which mutations arise and the distribution of fit-
ness effects of spontaneous mutations is therefore of cen-
tral importance to the study of evolutionary biology
(Haldane 1937; Kondrashov 1988; Partridge and Barton
1993; Charlesworth and Hughes 1996, 2000; Hughes
2010; Bank et al. 2014). One of the most widely used
methods for determining the rate and fitness effect of
spontaneous mutations is the MA experiment. Following
the pioneering work Bateman (1959) and Mukai (1964),
MA experiments involve propagating many replicate lines
at very small effective population sizes so that the effect
of natural selection is swamped out by that of genetic

drift, allowing weakly selected mutations to accumulate
randomly. The decline in mean fitness and increase in
among-line variance in fitness are then used to indirectly
infer mutation rate and effect estimates (Bateman 1959;
Mukai 1964; Keightley 1994; García-Dorado 1997; Shaw
et al. 2002).

Recently, whole genome resequencing of MA lines has
been used to directly measure the mutation rate in micro-
organisms (Lynch et al. 2008; Lee et al. 2012; Ness et al.
2012; Sung et al. 2012a,b; Long et al. 2013). In line with
classic mutation rate estimates from reporter gene assays,
the emerging consensus is that the genomic mutation rate is
remarkably constant across DNA-based microbes, �3 3
1023 mutations/genome/generation (Drake 1991; Lynch
2010). Accurate estimates of the fitness effects of spontane-
ous mutation, however, have remained elusive (Eyre-Walker
and Keightley 2007; Halligan and Keightley 2009).

Because MA experiments rely on making comparisons
among lines, they have traditionally focused on studying
how fitness changes across as many lines as possible. An
alternative approach is to combine whole genome rese-
quencing in a smaller number of MA lines of a hypermutator
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strain to allow a greater number of mutations to accumu-
late, thus increasing our ability to detect and quantify the
amount of natural selection that occurs during microbial
mutation accumulation experiments. Furthermore, whole
genome resequencing directly determines the average num-
ber of mutations that accumulate between fitness measure-
ments, allowing for improved estimates of the distribution of
fitness effects of spontaneous mutations.

Natural selection must occur to some extent during
microbial mutation accumulation experiments because col-
onies must grow big enough to become visible, resulting in
an effective population size (Ne) .1. Beneficial and delete-
rious mutations should be subject to effective selection when
Nes . 1, where s is the absolute value of the fitness effect of
the mutation, and the fluctuating population size of micro-
bial MA experiments may further increase the efficacy of
selection (Otto and Whitlock 1997). This may explain why
many microbial MA experiments have reported results that
are consistent with the fixation of some beneficial muta-
tions as a result of positive selection (Shaw et al. 2000;
Joseph and Hall 2004; Perfeito et al. 2007; Dickinson
2008; Trindade et al. 2010; Stevens and Sebert 2011).
Studies have begun to combine both MA and whole ge-
nome resequencing in microorganisms (Lynch et al. 2008;
Lee et al. 2012; Ness et al. 2012; Sung et al. 2012a,b; Long
et al. 2013), but none have detected a genomic signature of
natural selection.

Using detailed fitness measurements and whole genome
resequencing, we studied the evolutionary dynamics of eight
replicate mutation accumulation lines of a hypermutator
strain of the pathogenic bacterium Pseudomonas aeruginosa.
MA lines were passaged through 28 single-cell bottlenecks
followed by rapid population growth over a period of �644
generations. Under this regime, we estimate that the effec-
tive population size of MA lines had a lower limit of �16,
which should be sufficient to prevent natural selection on
the vast majority of spontaneous mutations. We determined
the evolutionary dynamics of our lines with a high degree of
precision by (1) directly measuring competitive fitness in-
stead of a component of fitness such as growth rate, and (2)
measuring fitness at every second bottleneck to capture a
small number of mutations between each time point. In line
with recent work, we used deep whole genome sequencing
to determine the genetic consequences of population bottle-
necking, infer the molecular basis of altered fitness, and test
for genomic signatures of natural selection during the MA
procedure.

Consistent with previous MA experiments, we found that
mean fitness decayed linearly over time. Detailed trajecto-
ries of fitness in individual lines coupled to whole genome
sequencing revealed that rare, strongly deleterious muta-
tions account for nearly half of the total loss of fitness.
Furthermore, we found that positive selection resulted in
the fixation of beneficial mutations, and that purifying
selection was able to remove the majority of frameshift
mutations.

Materials and Methods

Strains

The eight replicate clones used in this study were founded
from the P. aeruginosa hypermutator strain PAO1DmutS,
which was created by replacing mutS—part of the methyl-
directed mismatch repair pathway—with the antibiotic re-
sistance marker aac1 using the Cre-lox system for gene
deletion and antibiotic resistance marker recycling following
the methods of Mandsberg et al. (2011). Deleting mutS
increases the mutation rate by �70-fold in P. aeruginosa
(Torres-Barcelo et al. 2013), primarily by increasing the rate
of transitions (Miller 1996). The reference strain used to
assess competitive fitness was PAO1-GFP. This strain was
generated by integrating a constitutively expressed GFP
marker at the chromosomal tn7 insertion site in P. aerugi-
nosa PAO1 using the methods of Choi and Schweizer
(2006).

Mutation accumulation

Eight replicate mutation accumulation lines were generated
by streaking randomly selected colonies of PAO1DmutS
onto individual M9KB agar plates (glycerol, 10 g/liter; pep-
tone, 20 g/liter; M9 salts, 10.5 g/liter; agar, 12 g/liter; and
MgSO4, 2 mL/liter). Plates were incubated at 37� for 18 hr
before repeating the process of picking a random colony and
streaking it on a fresh plate. This process was repeated daily
for 30 days. Each day, colonies would form from a single
cell, which had doubled �23 times, resulting in an Ne

of �16. Every second day, a portion of the randomly se-
lected colony was suspended in a 50% v/v solution of
glycerol and frozen at 280� to be stored for competition
assays. To ensure random selection of colonies, the last
colony of the streak, which was not touching another col-
ony, was selected. It is unlikely that random colony selec-
tion suffered a detection bias due to missing extremely
small colonies; we sampled 14 regions between the visible
colonies of our streaked plates and restreaked them, but
did not detect a single instance of colony growth after
10 days.

Competitive fitness assay

Fitness of each line at each time point was determined
relative to the PAO1-GFP strain. Strains were precultured
in M9KB medium from frozen 50% glycerol stocks. Over-
night cultures of each strain were mixed in M9KB broth at
a ratio of �80% mutant to 20% PAO1-GFP. The exact
initial proportions were confirmed via flow cytometry.
Mixtures were competed for 18 hr at 37�, with agitation
at 200 rpm, and the final proportion was again measured
by flow cytometry. We define the relative fitness of the
mutant as the number of doublings that the mutant strain
undergoes during the 18-hr competition divided by the
number of doublings of the wild-type strain, given by the
formula
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wmutant ¼
log2

�
Nfinal; mutant

Ninitial; mutant

�

log2

�
Nfinal; wild type

Ninitial; wild type

�

where wmutant is the fitness of the mutant relative to the
wild-type and Nij is the number of either the mutant or
the wild-type cells at either the beginning or the end of
the competition. Each competition assay was performed in
two experimental blocks with three replicate competitions
per block. In some mutation accumulation lines, fitness be-
came too low to accurately measure (final mutant propor-
tion ,10%) and thus these data have been excluded from
all analyses except those pertaining to Figure 2 and the de-
cay in average fitness over time. The inclusion of these in-
accurate points does not change the statistical significance of
any of the results presented.

Flow cytometry

Flow cytometry was used to determine the relative propor-
tions of mutant and wild-type strains at the beginning and
end of the competitive fitness assays. Bacterial cultures,
diluted 200-fold in sterile filtered M9 salts, were prepared
using deionized water to minimize background signal in the
flow cytometer. Diluted mixtures were run on an Accuri C6
Flow Cytometer Instrument (BD Accuri, San Jose, CA) until
10,000 cells had been assayed. Events with a forward scatter
value ,10,000 or a side scatter value ,8000 were excluded
to prevent the false detection of small particles in the
medium and electrical noise. To discriminate between GFP-
tagged and untagged cells, cells were excited at a wave-
length of 488 nm and fluorescence emissions between 518
and 548 nm were measured. There was a small overlap in
the fluorescence profiles of tagged and untagged cells (i.e.,
the most fluorescent untagged cells were slightly more fluo-
rescent than the least fluorescent GFP-tagged cells), so pure
cultures of PAO1 and PAO1-GFP were used as controls to
correct for such spillover.

Whole genome sequencing

Illumina whole genome sequencing was performed on the
first and last time point of each line, as well as on the five
pairs of adjacent time points that showed the largest decrease
in fitness. Raw sequencing data were analyzed using an in-
house pipeline. Briefly, raw reads were filtered using the NGS
QC Toolkit (Patel and Jain 2012) and aligned against the
reference genome using BWA (Li and Durbin 2009). Two
approaches were used to call variants, GATK’s Unified Geno-
typer (Depristo et al. 2011) and SAMtools’s Mpileup (Li et al.
2009). Identified variants were annotated with SnpEff
(Cingolani et al. 2012). To detect structural variants, we
combined two algorithms, Breakdancer (Chen et al. 2009)
and Pindel (Ye et al. 2009). Finally, copy number variants
(CNVs) were detected using Control-FREEC (Boeva et al.
2012).

All differences between the P. aeruginosa PAO1 reference
genome and the first time point of each bacterial line were
excluded, leaving only mutations that accumulated through-
out the experiment. Sequences from intermediate time
points were treated as sequences from end points. All muta-
tions found in intermediate time points were found at the
end points except for one that fell in a mutation hotspot.

Testing for selection on base substitutions

To test for selection on base substitutions in protein coding
genes, we estimated the expected number of protein altering
mutations, under the assumption that synonymous muta-
tions are effectively neutral. Specifically, since almost all
base substitutions in our experiment were transitions
(99.5%), we calculated the neutral mutation rate of each
of the four bases to its partner (A/G, G/A, C/T, and
T/C) using the observed synonymous mutations in our
experiment. Given these mutation rates, we used the nucle-
otide composition and codon usage of P. aeruginosa proteins
to estimate the rates of nonsynonymous and synonymous
mutations (dN/dS ratio), as well as the rates of stop-gain,
stop-loss, and intergenic mutations. To test for a deviation
from the neutral expectation, we tested the null hypothesis
that the proportion of mutations in a given class (nonsynon-
ymous, truncation, or intergenic) relative to the number of
observed synonymous mutations is equal to the predicted
ratio calculated using the synonymous mutation rate. This
hypothesis was tested using the normal approximation of
the binomial distribution (Zar 2010).

Repetitive regions

The RepeatMasker program (Smit et al. 1996–2010) was
used to screen the PAO1 genome for simple repeats, inter-
spersed repeats, and low-complexity DNA sequences. Homo-
polymeric tracts of single nucleotide repeats ranging from 4
to 20 bases were identified using the dreg program, imple-
mented in the EMBOSS package (Rice et al. 2000).

Magnitude of selection against indels in coding regions

The percentage of indels in repetitive coding regions removed
by natural selection was calculated under the assumption that
indels in the repetitive noncoding genome are neutral. The
expected number of indels in repetitive coding regions before
natural selection was calculated by dividing the observed num-
ber of “neutral” mutations in repetitive noncoding regions
by the fraction of repetitive elements that are in noncoding
regions (21.8%) and multiplied this value by the fraction of
repetitive elements that are in coding regions (78.2%). The
percentage of indels removed due to natural selection is
then 1 2 observed/expected. If mutations in noncoding re-
petitive regions are not neutral, then this method will gen-
erate a lower limit estimate.

Core genes

Precomputed pairwise reciprocal best BLAST hits for 36
Pseudomonas species were downloaded from the Pseudomo-
nas Genome Database (Winsor et al. 2011). The core
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genome for P. aeruginosa PAO1 was defined as the set of
PAO1 genes that had pairwise reciprocal best BLAST hits in
the 35 remaining Pseudomonas species. We found a total of
1435 core genes.

Clusters of Orthologous Groups analysis

A list of P. aeruginosa PAO1 genes with annotated Clusters
of Orthologous Groups (COGs) categories (Tatusov et al.
2000) was downloaded from the National Center for Bio-
technology Information. This list was intersected with the
list of genes that had experienced at least one mutation
during our experiment. Genes with annotated mutations
and COG categories were compared to the rest of the genes
in the PAO1 genome that were unmutated, but had been
assigned a COG category. P-values were computed using Fish-
er’s exact test and corrected for multiple testing using the
false discovery rate method (Benjamini and Hochberg 1995).

Statistical analysis and simulations

All statistical analyses were conducted in R (version 2.15.0)
(R Development Core Team 2012). All statistical tests are
reported as a P-value and the value for the test statistic with
a subscript indicating the degrees of freedom. All tests use a =
0.05 and, where applicable, are two tailed.

Simulations were used to generate the expected distri-
bution of the number of mutations per gene, given the
substantial variation in gene length in the P. aeruginosa
genome (mean: 830 bp, 95% confidence interval: 247–
2786 bp). The lengths of all genes in the P. aeruginosa
genome were obtained from the Pseudomonas Genome Data-
base (Winsor et al. 2011). In each simulation, mutations
(either synonymous or nonsynonymous) were randomly dis-
tributed across a simulated genome, using the same number
of mutations as was detected in our experiment. The num-
ber of mutations per gene was recorded and results were
averaged across 100 simulations.

Results

Here we present the results from a �644-generation-long
mutation accumulation experiment in eight replicate MA

lines. We measured the fitness of each MA line every 2 days,
providing a high-resolution picture of the evolutionary
dynamics of heavily bottlenecked bacterial populations.
We performed whole genome resequencing on multiple
time points of each line to determine the molecular na-
ture of mutations fixed under conditions of relaxed natural
selection.

Whole genome resequencing identified 944 mutations in
the eight mutation accumulation lines. Sanger sequencing of
a random sample of these mutations confirmed 35/35 muta-
tions (Supporting Information, Table S1), indicating a very
low false positive rate. As expected, mutations were Pois-
son distributed across MA lines (one-sample Kolmogorov–
Smirnoff test: P = 0.521, D = 0.270) with an average of
118 mutations fixed per line and an average of 8.4 muta-
tions fixed between each adjacent time point. This equates
to a per base pair mutation rate of 2.95 (6 0.21 SE) 3 1028

mutations/site/generation and a genomic mutation rate of
0.18 (6 0.01 SE) mutations/genome/generation. Given that
the hypermutator strain used in this study increases the
mutation rate by �70-fold (Torres-Barcelo et al. 2013), this
estimated genomic mutation rate is in line with the con-
sensus bacterial genomic mutation rate of �3 3 1023

mutations/genome/generation (Drake 1991; Lynch 2010).
Of the 944 mutations, 778 (82.4%) were base substitu-

tions, 164 (17.4%) were short indels (,10 bp), and 2
(0.2%) were large structural variations, consisting of a par-
tial gene duplication event (pvdD) and a 1880-bp intergenic
deletion. Insertions were �2.5-fold more common than
deletions (118 insertions vs. 46 deletions) (Figure 1). As is
typical for a DmutS hypermutator strain, almost all base
substitutions were transitions (774/778 = 99.5%), and
G:C/A:T transitions (478) were �60% more common than
A:T/G:C transitions (298).

As expected, the average fitness of the hypermutator
populations decreased significantly over time (Figure 2;
ANOVA: P = 1.68 3 1026, F1,13 = 67.409), indicating that
the average effect of spontaneous mutations was delete-
rious and that recurrent population bottlenecks inhibited
the action of natural selection (mean mutational fitness

Figure 1 Types of mutations ac-
cumulated. (A) The distribution of
accumulated mutations accord-
ing to type of mutation. Indels
,10 base pairs long were consid-
ered to be “short.” (B) Further in-
formation on the effects of point
mutations.
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effect =20.16%). In fact, in some lines, fitness became so low
that it was no longer possible to reliably measure (Figure 3).
These data are included in Figure 2 to prevent bias, but
excluded from subsequent analyses. The average fitness of
bottlenecked nonhypermutator control lines did not change
significantly over the course of the experiment (ANOVA:
P = 0.712, F1,118 = 0.137), indicating that the loss of fitness
in hypermutator lines was due to mutation accumulation.

Fitness data

Unlike the linear decrease observed for average fitness, the
evolutionary trajectory of individual lines was much more
complex (Figure 3). The net change in the fitness of MA
lines ranged from 21 to 227% (mean: 213% 6 9 SD). A
large portion of the net decrease in fitness of each line was
due to a single drop between adjacent time points (we here-
after refer to a pair of adjacent time points as a “step”).
Specifically, on average, 42.2% (6 12.9% SD) of the total
decrease in fitness between the first and last time point in an
individual MA line (excluding any beneficial steps) was due
to the largest deleterious step in that line. Furthermore, the
four most deleterious steps across all lines accounted for
42.3% of the total fitness decrease throughout the entire
experiment. To determine whether these large drops in fit-
ness were caused by (1) the accumulation of a greater num-
ber of mutations than other steps or (2) the accumulation of
mutations of larger effect, we performed whole genome se-
quencing on the four largest deleterious steps across all MA
lines, as well as on an exceptionally large deleterious step,
which caused the fitness of its MA line to drop to an un-
detectable level. These steps did not contain a significantly
greater number of mutations than the remaining steps
(mean of five largest steps: 9.0 mutations, mean of remain-

der: 7.9 mutations, paired t-test: P = 0.285, t4 = 1.235).
However, these large deleterious steps showed a significantly
higher frequency of mutations in highly conserved core
genes than other steps (x2 goodness-of-fit test: P = 0.049,
x21 = 3.882; Table S2). Therefore, large drops in fitness are
due to mutations in more important genes rather than due
to a greater number of mutations.

Although the average fitness effect of a step was delete-
rious, there were numerous steps in which fitness increased
(Figure 4). To confirm the presence of steps containing
beneficial mutations, we repeated the competitive fitness
assays for the 11 steps with the largest increases in fitness.
Even after false discovery rate correction (Benjamini and
Hochberg 1995), fitness increased significantly (P , 0.05)
in 6/89 (6.7%) of the measurable steps. Because steps where
fitness increased were rare, it is likely that each of these
steps only contained a single beneficial mutation. This
implies that at least six beneficial mutations were fixed
during the mutation accumulation experiment, which cor-
responds to 0.64% of all mutations that were fixed during
the experiment.

Signatures of natural selection

Selection on base substitutions in protein coding genes:
The vast majority of protein-altering base substitutions were
nonsynonymous mutations, but the ratio of the rate of
nonsynonymous mutations to silent mutations (dN/dS =
1.08) did not differ significantly from the neutral expecta-
tion of 1 (Table 1; Z-test: Z = 0.92, P = 0.26). We observed
only a single loss-of-stop mutation, but this was similar to
our predicted number of 1.4. Truncation mutations that in-
troduce a premature stop codon were much more frequent
(n = 14), but this was not significantly different from the
neutral expectation of nine truncation mutations (Z-test:
Z = 1.63, P = 0.10).

Selection on coding and noncoding regions: Protein coding
sequence accounts for 89.4% of the P. aeruginosa genome
and so we expected that if no natural selection has occurred
during the MA experiment then �89.4% of mutations will
have occurred in protein coding sequences. We found that
the percentage of mutations (short indels and base substi-
tutions) that occurred in coding regions was 85.4% (804/
942), which was significantly different from the neutral ex-
pectation of 89.4% (x2 goodness-of-fit test: P, 0.001, x21 =
15.888). Interesting patterns arose when we analyzed base
substitutions and short indels separately.

We found that the percentage of base substitutions in
coding regions (89.6%, 697/778) and intergenic regions
(10.41%, 81/778) was not significantly different from
the neutral expectation (x2 goodness-of-fit test: P = 0.833,
x21 = 0.045). This result may be confounded because inter-
genic regions contain a larger proportion of repetitive DNA
than coding regions (intergenic: 7.2%, coding: 3.1%), but
when we restricted our analysis to repetitive regions we still
observed that the percentage of base substitutions that fell

Figure 2 Average fitness decays in mutation accumulation lines. Plotted
points show the mean fitness (6 SE) of hypermutator lines (solid symbols,
n = 8) and control lines (shaded symbols, n = 4) that were passaged
through 28 daily bottlenecks, which correspond to �644 generations
of mutation accumulation. The fitness of hypermutator lines rapidly de-
clined, but the fitness of control lines did not change over the course of
the experiment (ANOVA: F1,3 = 0.436, P = 0.556). Note that in some MA
lines, fitness decayed to the point where it was not possible to measure
fitness reliably, but these data are included to prevent bias.
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in coding (4.3%) and intergenic (16.5%) repetitive regions
did not differ from the neutral expectation (x2 goodness-of-
fit test: P = 0.181, x21 = 1.791).

Selection on indels: In contrast to base substitutions, we
found significantly fewer indels in coding regions than
expected (observed: 107/164 = 65.2%; expected: 89.4%;
x2 goodness-of-fit test: P , 0.0001, x21 = 100.236). Again,
this difference could be confounded because intergenic
regions contain a larger proportion of indel-prone repetitive
DNA, but we also found significantly fewer indels in repet-
itive coding regions (observed: 103/160 = 64.4%; expected:
78.2%; x2 goodness-of-fit test: P , 0.0001, x21 = 17.920)
than expected in the absence of selection. This indicates
strong purifying selection against frameshift mutations. In
fact, these data suggest that at least 49.6% of frameshift
mutations are sufficiently deleterious to be removed by
natural selection, even under a regime of intense bottle-
necking. Despite selection against frameshift mutations,
we still found 106 frameshifts in our experiment. Almost
all of them (101/106 = 95.3%) overlapped with homo-
polymeric tracts of C (ranging from 4C to 8C) or G (ranging
from 5G to 8G). There were significantly more frameshifts
located near the N terminus of the protein than expected,
given the distribution of homopolymeric tracts in the
P. aeruginosa genes (Figure 5; one-sided exact binomial test:
P = 0.037). We found no significant difference for frameshifts
near the middle (one-sided exact binomial test: P = 0.453) or
near the C terminus of the protein (one-sided exact binomial
test: P = 0.063).

Tests for parallel evolution: Previous work has shown that
exposing replicate microbial populations to a similar selec-
tive pressure results in parallel adaptation at a molecular
level in both lab experiments (Wichman et al. 2000; Segrè
et al. 2006; Barrick et al. 2009) and clinical populations
(Huse et al. 2010; Lieberman et al. 2011). To test for parallel
evolution at the level of individual genes, we compared the

distribution of the number of mutations fixed per gene in the
eight MA lines, with the distribution expected based on the
lengths of the genes in the P. aeruginosa genome (Figure S1;
see Materials and Methods for details on calculating the
expected distribution). We found no deviation from the ex-
pected distribution for synonymous mutations (x2 goodness-
of-fit test: P = 0.643, x22 = 0.883). On the other hand, we
found significantly fewer parallel nonsynonymous mutations
than expected (x2 goodness-of-fit test: P , 0.0001, x22 =
19.302), which does not support the hypothesis that natural
selection was capable of causing parallel evolution on the ge-
nomic scale in these MA lines. Rather, longer genes simply had
more mutations than smaller genes (Figure S2): genes with one
or more mutations were significantly longer than genes without
mutations (Kolmogorov–Smirnov test, P , 0.001).

It is also possible that parallel evolution could act on levels
higher than the gene. We analyzed our mutation data for
evidence of over- or underenrichment of mutations in COGs—
genes that share a common function. After false discovery rate
correction (Benjamini and Hochberg 1995), we found a signif-
icant underrepresentation of mutated genes involved in tran-
scription (Table S3; Fisher’s exact test: P = 0.023, Fisher’s
odds ratio1 = 0.530), suggesting that mutations in these
genes tend to have highly deleterious effects.

Core genes: We observed that large drops in fitness during
the MA experiment were associated with the accumulation
of mutations in core genes (Figure 2), and so we sought to
determine whether natural selection was effective against
mutations in these genes. Surprisingly, there was no signif-
icant underrepresentation of mutations in core genes (Fisher’s
exact test: P = 0.611, Fisher’s odds ratio1 = 1.051) despite
their potentially large deleterious effects on fitness.

Discussion

Mutations are rare events that often lead to small changes in
fitness, and these properties of mutations make it intrinsically

Figure 3 Fitness trajectories for
individual mutation accumulation
lines. The mean (6 SE; n = 6) fit-
ness of individual hypermutator
lines through time. Red data
points indicate that fitness is too
low to measure accurately. The
mean fitness (6 SE; n = 6) of
individual hypermutator lines
through time. Red data points in-
dicate that fitness is too low to
measure accurately. The y-axis of
each plot is scaled differently to
maximize the resolution of evolu-
tionary dynamics within a single
line.
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difficult to directly study the evolutionary consequences of
mutation. Our experiment, which combined a classic muta-
tion accumulation experiment with powerful whole genome
resequencing technology, found that 42.3% of the decrease in
fitness in our lines was driven by 4.5% of the steps with
highly deleterious effects on fitness. Given the rarity of large
drops in fitness, the most parsimonious explanation is that
each one of these drops was driven by a single highly
deleterious mutation. Under this assumption, the 42.3% of
the decrease in fitness in our experiment was driven by 0.5%
of the mutations fixed, which is consistent with previous work
in Caenorhabditis elegans (Davies et al. 1999). The mean mu-
tational effect, s = 21.6 3 1023, is similar to previous work
in Saccharomyces cerevisiae (s = 26 3 1023), in which whole
genome resequencing and MA were combined (Lynch et al.
2008) and, as expected, is approximately one to two orders of
magnitude smaller than previous microbial MA studies that did
not use whole genome resequencing and were therefore un-
able to detect neutral mutations (Halligan and Keightley 2009;
Trindade et al. 2010). We also found evidence of both positive
and negative selection in our MA experiment, demonstrating
that the results of our experiment cannot be interpreted as
a proxy for the effects of spontaneous mutation alone.

Beneficial mutations

Previous studies in Arabidopsis thaliana (Shaw et al. 2000),
Escherichia coli (Perfeito et al. 2007; Trindade et al. 2010),
Streptococcus pneumoniae (Stevens and Sebert 2011), and S.
cerevisiae (Joseph and Hall 2004; Dickinson 2008) have also
found evidence that beneficial mutations are fixed during
mutation accumulation experiments. Our experimental ap-
proach allowed us to experimentally demonstrate that it is
highly likely that at least 0.64% of the mutations that fixed
during our MA experiment were beneficial. For these muta-
tions to have been fixed by drift, the beneficial mutation rate
in a nonhypermutator population with a genomic mutation
rate of 33 1023 mutations/genome/generation would have
to have been �5 3 1026 mutations/genome/generation,

which is two to three orders of magnitude higher than exist-
ing estimates (Gerrish and Lenski 1998; Miralles et al. 1999;
Imhof and Schlotterer 2001; Rozen et al. 2002; Barrett et al.
2006; but for exceptions, see Perfeito et al. 2007). Instead,
we argue that positive selection was able to drive the fixa-
tion of beneficial mutations in our experiment. Consistent
with this idea, five of the six significantly beneficial muta-
tions that fixed were sufficiently beneficial that Nes was .1.

Tests for selection at a molecular level

In agreement with recent microbial mutation accumulation
experiments that have used whole genome resequencing,
we found no evidence of selection on base substitutions,
including nonsynonymous mutations (Lynch et al. 2008; Lee
et al. 2012; Ness et al. 2012; Sung et al. 2012a,b; Long et al.
2013). Additionally, we found no evidence of positive selec-
tion on the same genes in different MA lines. Surprisingly,
we found that nonsynonymous mutations in highly con-
served core genes can have strong deleterious effects on
fitness (Figure 2), and yet we found no evidence that these
mutations were removed by natural selection. The most
striking evidence of selection at a genetic level comes from
the lack of short indel mutations in coding regions. We es-
timate that negative selection prevented the fixation of at
least 50% of indels in coding regions. In contrast, we did not
find any evidence of an underrepresentation of base substi-
tutions that generated a premature stop codon, implying
that the absence of indels in coding regions is due to selec-
tion against frameshifts, and not selection against gene loss.

Despite strong selection, we still found that frameshifts
comprise 13.2% of all mutations in coding regions. This high
incidence of frameshifting could be because 95.3% of
frameshifts overlapped with homopolymeric tracts. Homo-
polymeric tracts are hypermutable: they are highly prone to
gaining or losing repeats through slippage, thereby pro-
ducing indels. Consistent with recent work (Orsi et al. 2010;
Lin and Kussell 2012), we found a significant overrep-
resentation of frameshifts at the 59 end of genes and un-
derrepresentation at the 39 end (given the distribution of
homopolymeric tracts in the PAO1 genome). Although the
reasons for the enrichment of 59 frameshifts is unclear, pos-
sible explanations include: (1) 59 frameshifts tend to create
shorter proteins and thus may be less prone to forming toxic
aggregations; (2) intergenic regions in P. aeruginosa are
very short and 39 indels may knock out downstream genes;

Figure 4 Changes in fitness for individual “steps.” The distribution of
fitness changes for each step in the mutation accumulation experiment
across all eight hypermutator lines. Each step represents the difference
in fitness between successive assays for an MA line (�8.4 mutations
accumulated/step). The solid line depicts no change in fitness and the
area between the dashed shaded lines is the area in which Nes , 1,
where Ne is the harmonic mean of population size over time (although
this may be an underestimate) (Otto and Whitlock 1997).

Table 1 Testing for selection on single base pair substitutions

Protein effect Observed Expected

Nonsynonymous 480 444.38
Intergenic 80 84.33
Stop-gain 14 8.94
Stop-loss 1 1.41

The number of observed single base pair substitutions relative to the neutral
expectation, as determined from the synonymous mutation rate and genome
composition of P. aeruginosa. The observed number of mutations does not differ
from the neutral expectation for any functional category of mutation.
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and/or (3) 59 indels are more likely to destroy gene func-
tion, which may be beneficial in some circumstances. For
example, Moxon et al. (2006) have proposed that simple
sequence repeats (such as homopolymeric tracts) are local-
ized hypermutation targets and a mechanism for adaptation.
Moreover, standing genetic variation in homopolymeric
tracts has been shown to drive the adaptation of Campylo-
bacter jejuni to a novel host (Jerome et al. 2011).

Implications for mutation accumulation experiments

It is important to emphasize that our experiment differed
from most previous MA experiments because we used
a hypermutator strain. To what extent is this likely to have
biased our results? Hypermutators produce an altered
spectrum of spontaneous mutations (e.g., bias toward tran-
sitions), which can have important evolutionary implications
when strong selection acts on a small number of sites in the
genome (Couce et al. 2013) (e.g., some cases of high-level
antibiotic resistance). In our system, frameshifts experi-
enced much stronger selection than any other class of mu-
tation, and it is possible that using a DmutS hypermutator
altered the rate of appearance of indel mutations relative to
base substitutions (Marvig et al. 2013). However, by using
a hypermutator we were able to detect a sufficiently large
number of mutations to analyze the effects of relatively rare
types of mutation, such as indels, which have traditionally
been overlooked in MA studies.

Conclusion

In conclusion, we find that fitness decays in recurrently
bottlenecked populations of hypermutator P. aeruginosa be-
cause of the fixation of many weakly deleterious mutations
and a few highly deleterious mutations. We argue that this
pattern of punctuated decay of fitness arises for two reasons.
First, most mutations carry little, if any, fitness cost in a lab-
oratory environment, but a substantial fraction of mutations

are highly deleterious. Our results suggest that weakly del-
eterious mutations tend to be intergenic and nonsynony-
mous mutations, while highly deleterious mutations tend
to be indels and mutations in core genes. Second, we find
that recurrent bottlenecking does not completely compro-
mise the efficacy of natural selection in microbial mutation
accumulation experiments, although large deleterious muta-
tions are unlikely to play a substantial role in the evolution
of natural populations. We hope that this study will pave the
way for future work aimed at understanding: (1) why
frameshift mutations are subject to such strong selection,
(2) how bacteria adapt to the deleterious effects of sponta-
neous mutations, and (3) how the molecular basis of spon-
taneous mutation is linked to the fitness effects of mutations
in natural populations.
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Figure S1   Testing for the presence of parallel evolution at the level of the gene. The observed and expected distributions of the 

number of mutations per gene are presented for (A) non‐synonymous and (B) synonymous mutations. 
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Figure S2   Genes that accumulated more mutations tended to be longer. Mutated genes were grouped according to the number of 

mutations that they experienced and their gene length distribution was compared to the distribution for non‐mutated genes. 

Differences between distributions were computed using Kolmogorov‐Smirnov tests; all pairwise comparisons were statistically 

significant (Kolmogorov‐Smirnov test: P<0.001).
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File S1 

Supporting Materials and Methods 

Whole genome re‐sequencing 

Genomic DNA was extracted using the Wizard® Genomic DNA Purification Kit (Promega, Madison, WI, USA) with the 

following amendments to the protocol: cells were pelleted by centrifuging for 2 minutes at 13,000 RPM; following the protein 

precipitation step solutions were vortexed for 30 seconds, incubated on ice for 10 minutes, and centrifuged for 10 minutes at 13,000 

RPM. Extracted DNA was rehydrated with 200‐300µL of “Buffer EB” (Qiagen, San Francisco, USA ‐ UK catalogue number: 19086) and 

DNA concentration was assessed using the QuantiFluor™ dsDNA System (Promega, Madison, WI, USA). Genomic DNA was then 

diluted in “Buffer EB” to 50 ng/µL. To ensure sample purity the diluted genomic DNA was run on a 0.7% agarose gel and a NanoDrop 

2000c Spectrophotometer (Thermo Scientific, USA) to ensure sample purity. All sequencing was conducted at the Welcome Trust 

Centre for Human Genetics using the HiSeq2000 instrument and 100bp paired‐end reads (24 samples) and the MiSeq instrument 

and 150bp paired‐end reads (2 samples). 

Sequencing data was initially filtered using the NGS QC Toolkit (PATEL and JAIN 2012), which discarded around 9% (± 0.392 

SD) of the reads for each sample. Reads were trimmed from the 5’ and/or 3’ end if the PHRED quality score was below 20. After the 

trimming step, reads shorter than 50bp (Hiseq) or 75bp (Miseq) were eliminated. Reads were also discarded if more than 2% of 

their bases were ambiguous or if more than 20% of their bases had a PHRED quality score below 20. 

Filtered reads were mapped to the P. aeruginosa PAO1 reference genome (NC_002516.2) using BWA (LI and DURBIN 2009). 

The average median depth of coverage across lines was 232‐fold (HiSeq) and 48‐fold (MiSeq) with a median of 99.1% (HiSeq) and 

98.9% (MiSeq) of the genome covered to a depth of at least 5 reads. Mapped reads were processed to increase the quality of the 

variant calling: 1) reads with multiple best hits were discarded; 2) duplicated reads were eliminated using the MarkDuplicates tool 

from the Picard package (http://picard.sourceforge.net); 3) reads were locally realigned around indels using RealignerTargetCreator 

and IndelRealigner from the GATK package (DEPRISTO et al. 2011) because these regions are prone to misalignment; and 4) reads 

mate information was fixed and sorted using the FixMateInformation command in the Picard package 

(http://picard.sourceforge.net). 

Variant calling was performed on the processed mapped reads using two different approaches: GATK’s Unified Genotyper 

(DEPRISTO et al. 2011) and Samtools’s mpileup (LI et al. 2009). VCFtools (vcf‐annotate) (DANECEK et al. 2011) and GATK toolkit 

(VariantFiltration) (DEPRISTO et al. 2011) were used to filter the raw variants for strand bias, end distance bias, base quality bias, SNPs 

around gaps, low coverage and erroneously high coverage. High quality variants were subsequently annotated using SnpEff 

(CINGOLANI et al. 2012). 
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Structural variants were detected using three different approaches. First, Breakdancer (CHEN et al. 2009) was used to 

predict five types of structural variants—deletions, insertions, inversions, inter‐ and intra‐chromosomal translocations—using 

information from read pair mapping. The output of Breakdancer was given to Pindel (YE et al. 2009), which can use calls from other 

programs to increase its performance. Pindel can infer deletions, short insertions, long insertions, inversions, tandem duplications, 

and breakpoints using a split‐read approach. Finally, Control‐FREEC (BOEVA et al. 2012) was used to detect copy number variants 

(CNVs). Control‐FREEC identifies CNVs using depth of coverage and normalization by GC content. Regions with low mappability can 

be excluded from the analysis by providing Control‐FREEC with mappability tracks. Mappability tracks were created using GEM 

library (gem‐mappability) (MARCO‐SOLA et al. 2012). 
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Table S1   Mutations verified by Sanger sequencing. 
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Table S2   Genes that were mutated during big fitness drops. Core genes are indicated in bold. 

Position  Reference  Alternative  Type of 
mutation 

Effect Gene ID Gene description 

Strain 2: day 4‐
6 

   

643143  C  T  SNP  Non synonymous  PA0584  multifunctional tRNA nucleotidyl 
transferase/2'3'‐cyclic 
phosphodiesterase/2'nucleotidase/ 
phosphatase 

2237340  A   G  SNP Non synonymous PA2044 Hypothetical protein 

3224190  G  A  SNP  Non synonymous  PA2871  Hypothetical protein 

4059231  G  A  SNP  Synonymous  PA3623  Hypothetical protein 

4424181  G  A  SNP  Synonymous  PA3946  two‐component sensor 

4433030  GCC  GC  Deletion:1 Frameshift PA3952 Hypothetical protein 

4620706  G  A  SNP  Non synonymous  PA4131  iron‐sulfur protein 

5085288  CGGGGGG  CGGGGG  Deletion:1  Frameshift  PA4541  Hypothetical protein 

5146358  GCCCCCCC  GCCCCCCCC  Insertion:1 Frameshift PA4594 ABC transporter ATP‐binding protein

Strain 5: day 
14‐16 

   

649784  CGGGGGG  CGGGGGGG  Insertion:1 Frameshift PA0590 diadenosine tetraphosphatase

685295  T  TG  Insertion:1  Frameshift  PA0625  hypothetical protein 

949677  G  A  SNP  Non synonymous  PA0868  peptidyl‐tRNA hydrolase 

2094973  C  T  SNP Non synonymous PA1920 anaerobic ribonucleoside triphosphate 
reductase 

3464663  G  A  SNP Non synonymous PA3086 hypothetical protein 

3912872  G  A  SNP  Non synonymous  PA3494  electron transport complex protein RsxE 

3976134  A  G  SNP  Non synonymous  PA3549  alginate o‐acetyltransferase AlgJ 

4015416  GCCCCCCC  GCCCCCCCC  Insertion:1 Frameshift PA3583 glycerol‐3‐phosphate regulon repressor

4747802  G  C  SNP Synonymous PA4233 major facilitator superfamily (MFS) 
transporter 

5336256  G  A  SNP Synonymous PA4751 cell division protein FtsH

5824015  G  A  SNP  Synonymous  PA5172  ornithine carbamoyltransferase 

Strain 6: day 0‐
2 

           

3270743  GCCCCCC  GCCCCC  Deletion:1 Frameshift PA2914 ABC transporter permease

3572693  G  A  SNP Synonymous PA3183 glucose‐6‐phosphate 1‐dehydrogenase

3856465  T  C  SNP  Synonymous  PA3451  hypothetical protein 

4183909  G  A  SNP  Non synonymous  PA3733  hypothetical protein 

4216781  T  C  SNP Non synonymous PA3763 phosphoribosylformylglycinamidine 
synthase 

5465991  GGCGCGCGC  GGCGCGC  Deletion:2 Frameshift PA4868 urease subunit alpha

6145798  G  A  SNP Non synonymous PA5455 hypothetical protein 

Strain 6: day 2‐
4 

           

729307  A  G  SNP  Non synonymous  PA0669  DNA polymerase subunit alpha 
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949967  A  G  SNP  Synonymous  PA0869  D‐alanyl‐D‐alanine endopeptidase 

1727169  A  G  SNP  Non synonymous  PA1586  dihydrolipoamide succinyltransferase 

2118685  TGGGGGGGG  TGGGGGGGG
G 

Insertion:1  Frameshift  PA1937  hypothetical protein 

5236051  A  G  SNP Non synonymous PA4667 hypothetical protein

5691426  G  A  SNP Non synonymous PA5051 arginyl‐tRNA synthetase

5940774  GCCCCCC  GCCCCCCC  Insertion:1  Frameshift  PA5275  frataxin‐like protein 

Strain 7: day 
20‐22 

           

278627  A  G  SNP  Non synonymous  PA0246  major facilitator superfamily (MFS) 
transporter 

1897501  C  T  SNP Non synonymous PA1758 para‐aminobenzoate synthase 
component I 

2627670  C  T  SNP Synonymous PA2376 transcriptional regulator

2645228  G  A  SNP  Synonymous  PA2390  protein PvdT 

3384594  G  A  SNP  Synonymous  PA3022  hypothetical protein 

3950587  C  T  SNP  Non synonymous  PA3531  bacterioferritin 
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Table S3   COG over‐ and under‐enrichment analysis. Significance was calculated using Fisher's exact test and corrected for multiple 

testing using the false discovery rate correction method (BENJAMINI and HOCHBERG 1995). 

 

COG Categories  N genes 
mutated 

N genes in 
PAO1 genome 

Fisher odds ratio Fisher p‐value  B‐H correction

K (transcription)  28 390 0.530 0.001  0.023

G (carbohydrate transport and 
metabolism) 

38  195  1.519  0.027  0.424 

LK (replication, recombination and 
repair + transcription) 

2  2  7.651  0.069  0.530 

M (cell wall/membrane/envelope 
biogenesis) 

39 224 1.351 0.093  0.530

KG (transcription + carbohydrate 
transport and metabolism) 

2  3  5.100  0.106  0.530 

C (energy production and conversion)  49  293  1.300  0.115  0.530 

EH (amino acid transport and 
metabolism + coenzyme transport 
and metabolism)  

6 21 2.192 0.120  0.530

CR (energy production and 
conversion + general function 
prediction) 

3  9  2.552  0.154  0.597 

H (coenzyme transport and 
metabolism) 

15 164 0.691 0.192  0.662

N (cell motility)  1  28  0.272  0.245  0.736 

EG (amino acid transport and 
metabolism + carbohydrate transport 
and metabolism) 

1 2 3.820 0.309  0.736

ET (amino acid transport and 
metabolism + signal transduction 
mechanisms) 

1  26  0.293  0.359  0.736 

E (amino acid transport and 
metabolism) 

59 399 1.142 0.360  0.736

MR (cell wall/membrane/envelope 
biogenesis + general function 
prediction) 

1  3  2.547  0.389  0.736 

CP   (energy production and 
conversion + inorganic ion transport 
and metabolism) 

1  3  2.543  0.389  0.736 

IR (lipid transport and metabolism + 
general function prediction) 

1  3  2.547  0.389  0.736 

KT (transcription+ signal transduction 
mechanisms) 

3  14  1.639  0.437  0.736 

GER (carbohydrate transport and 
metabolism + amino acid transport 
and metabolism + general function 
prediction) 

1 4 1.910 0.460  0.736

LR (replication, recombination and 
repair + general function prediction) 

1  4  1.910  0.460  0.736 

IQ (lipid transport and metabolism + 
secondary metabolites biosynthesis, 
transport and catabolism) 

3 16 1.433 0.478  0.736

J (translation, ribosomal structure 
and biogenesis) 

28  190  1.131  0.518  0.736 

KL (transcription + replication, 
recombination and repair) 

1  5  1.528  0.522  0.736 

F (nucleotide transport and 
metabolism) 

13 88 1.131 0.638  0.861

MU (cell wall/membrane/envelope 
biogenesis + intracellular trafficking, 
secretion and vesicular transport) 

3  19  1.206  0.735  0.916 
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I (lipid transport and metabolism)  25  180  1.063  0.739  0.916 

D (cell cycle control, cell division, 
chromosome partitioning) 

4 39 0.782 0.813  0.933

IQR (lipid transport and metabolism + 
secondary metabolites biosynthesis, 
transport and catabolism + general 
function prediction 

5 34 1.124 0.800  0.933

L (replication, recombination and 
repair) 

16 119 1.027 0.892  0.987

MG (cell wall/membrane/envelope 
biogenesis + carbohydrate transport 
and metabolism) 

1 11 0.694 1  1

ER (amino acid transport and 
metabolism + general function 
prediction) 

2  15  1.018  1  1 

HC (coenzyme transport and 
metabolism + energy production and 
conversion) 

1 11 0.694 1  1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


