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Nitric oxide (dNO) is a biologically important short-lived free radical signaling molecule. Both the

enzymatic synthesis and the predominant forms of cellular metabolism of dNO are oxygen-dependent.

For these reasons, changes in local oxygen concentrations can have a profound influence on steady-

state dNO concentrations. Many proteins are regulated by dNO in a concentration-dependent manner,

but their responses are elicited at different thresholds. Using soluble guanylyl cyclase (sGC) and p53 as

model dNO-sensitive proteins, we demonstrate that their concentration-dependent responses to dNO

are a function of the O2 concentration. p53 requires relatively high steady-state dNO concentrations

(4600 nM) to induce its phosphorylation (P-ser-15), whereas sGC responds to low dNO concentrations

(o100 nM). At a constant rate of dNO production (liberation from dNO-donors), decreasing the O2

concentration (1%) lowers the rate of dNO metabolism. This raises steady-state dNO concentrations and

allows p53 activation at lower doses of the dNO donor. Enzymatic dNO production, however, requires

O2 as a substrate such that decreasing the O2 concentration below the Km for O2 for nitric oxide

synthase (NOS) will decrease the production of dNO. We demonstrate that the amount of dNO

produced by RAW 264.7 macrophages is a function of the O2 concentration. Differences in rates of dNO

production and dNO metabolism result in differential sGC activation that is not linear with respect to

O2. There is an optimal O2 concentration (E5–8%) where a balance between the synthesis and

metabolism of dNO is established such that both the dNO concentration and sGC activation are

maximal.

& 2013 The Authors. Published by Elsevier B.V. All rights reserved.
1. Introduction

Nitric oxide (nitrogen monoxide, dNO) is a short-lived signaling
molecule involved in regulating numerous physiological and
pathological functions. Nitric oxide is synthesized by nitric oxide
synthase (NOS) of which there are three main isoforms (iNOS,
eNOS, nNOS). The substrates for this enzyme are arginine and
oxygen (O2). Also, NADPH, FMN, BH4, and FAD are required as
cofactors. Not surprisingly, changes in the availability of any one of
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these substrates or cofactors can affect the rate of dNO production.
When there is an abundance of cofactors, the rate of dNO synthesis
will be a function of both the arginine and O2 concentrations.
Arginine availability can vary based on cellular uptake and com-
peting consumptive pathways (i.e. arginase and the urea cycle).
The O2 availability in tissues is a function of its rate of delivery
from the vasculature and the rate at which it is consumed locally
via mitochondrial respiration. The Km’s for arginine and O2 are
different for each NOS isoform, thus changes in substrate concen-
trations will alter the dNO output in an isoform-dependent
manner. The Km’s for O2 for eNOS, iNOS and nNOS are 23 mM,
135 mM and 350 mM respectively. These differences indicate that
for a given O2 concentration the rate of dNO synthesis from nNOS
will be dramatically affected while production from eNOS will
remain comparatively constant [1]. Since many phenotypic
responses to dNO occur in a concentration-dependent manner
[2], the cellular response to dNO produced in a relatively hypoxic
environment could be substantially different than in tissues which
are well oxygenated even if they express an equivalent amount and
type of NOS.

The steady-state concentration of dNO ([dNOss]) is determined
by the balance between its rate of production and its rate of
disappearance. Although several studies have attempted to eluci-
date the mechanism(s) of cellular dNO metabolism, to date the
dominant pathway(s) for this process remains undetermined.
ts reserved.
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We and others have shown, however, that metabolism of dNO by
non-erythroid cells is an O2-dependant process. Kinetic studies
indicated that, although dNO metabolism requires O2, it is not a
direct reaction of dNO with O2 (autooxidation) [3]. Herein, we
demonstrate that the local O2 concentration determines [dNO]SS

which differentially regulates signaling responses to dNO.
2. Materials and methods

2.1. Chemicals

(Z)-1-[N-(2-aminoethyl)–N-(2-ammonioethyl)amino]diazen-
1-ium-1,2-diolate (DETA/NO) and (Z)-1-[N-[3–aminopropyl]–N-
[4-(3-aminopropylammonio)butyl]-amino]diazen-1-ium-1,2-dio-
late (Sper/NO) were generous gifts from Dr. Joseph Hrabie
(National Institutes of Health, NCI). 1H-[1,2,4]Oxadiazolo
[4,3–a]quinoxalin-1-one (ODQ), lipopolysaccharides (LPS) and
aminoguanidine hydrochloride were purchased from Sigma. All
cell culture reagents were purchased from Invitrogen.

2.2. Cell culture

MCF-7 human breast carcinoma cells and RAW 264.7 murine
macrophages were cultured in DMEM supplemented with 10% fetal
bovine serum and 1% penicillin/streptomycin. All cells were grown
to 85% confluence and MCF-7 cells were serum-starved overnight
prior to treatment. To achieve a hypoxic environment (o21% O2),
cells were grown in a hypoxic chamber glove-box (Coy Scientific) at
37 1C and 5% CO2. Oxygen concentration was constantly monitored
and regulated by purging with nitrogen gas. RAW 264.7 cells were
activated using LPS (1 mg/ml) to induce iNOS expression. For
coculture experiments, activated RAW 264.7 cells were trypsinized,
counted and added at indicated densities to MCF-7 cells in serum
free media in the presence or absence of aminoguanidine (1 mM), an
iNOS inhibitor. To inhibit sGC, MCF-7 cells were pretreated with
10 mM ODQ for 30 minutes prior to addition of RAW 264.7 cells.

2.3. Western Blotting

Whole cell lysates were collected using CellLytic
TM

M Cell Lysis
Reagent (Sigma), supplemented with 1% protease inhibitor cock-
tail (Calbiochem) and 1 mM PMSF (Sigma). Proteins were trans-
ferred to polyvinylidene difluoride (PVDF) membranes using the
iBlot transfer system (Invitrogen). The membranes were blocked
with 5% nonfat dry milk in Tris-glycine–SDS containing 0.1%
Tween 20 for 1 h at room temperature. They were then incubated
overnight at 4 1C with suitable primary antibodies: p53 P-Ser-15,
p53, b-actin (Cell Signaling Technology, Beverly, MA, USA) or iNOS
(Santacruz Biotechnology, Santa Cruz, CA, USA). After incubation
with horseradish peroxidase-conjugated secondary anti-rabbit
antibody (Cell Signaling Technology, Beverly, MA, USA) for 1 h,
the blots were analyzed in a Fluor Chem HD2 imager (Alpha
Innotech) using SuperSignal West Femto Maximal Sensitivity
Substrate (Thermo Scientific).

2.4. cGMP Measurements

MCF-7 cells were grown to 50% confluency in 96-well microtiter
plates. Cells were serum-starved overnight and treated with
various concentrations of Sper/NO or cocultured with activated
RAW 264.7 macrophages at different densities. After the removal of
dNO source, MCF-7 cells were lysed at the indicated time points,
and cell extracts were assayed for cGMP by enzyme immunoassay
(Amersham Biosciences).
2.5. Cellular dNO metabolism

Rates of disappearance of dNO were measured as described
previously [4]. RAW 264.7 cells were trypsinized and put into a
reaction chamber at 6�106 cells/ml of serum-free media. Cell
suspensions were constantly stirred in a sealed, water-jacketed,
temperature-controlled (37 1C) chamber. The reaction chamber was
equipped with both dNO and O2 electrodes connected to an Apollo
4000 free radical analyzer (World Precision Instruments, Sarasota,
FL, USA). Headspace in the vessel was negligible compared to the
vessel volume to ensure that the rate of dNO volatilization was
insignificant compared with its reaction in solution. Reactions were
initiated by injection of a saturated dNO solution with a gas-tight
syringe, and dNO metabolism was measured using an dNO-selective
electrode (amiNO-700, response time of o0.2 s, sensitivity of
25 nM; Innovative Instruments, Tampa, FL, USA).

2.6. Real-time dNO measurements

MCF-7 cells were grown in 10 cm culture dishes and an
dNO-selective electrode (amiNO-700, Innovative Instruments)
connected to an Apollo 4000 free radical analyzer (World Preci-
sion Instruments) was positioned �1 mm above, and perpendi-
cular to the cellular monolayer. After equilibration for 2 h at 37 1C,
dNO donor compounds were added and steady-state dNO con-
centrations were measured over time.

2.7. NO2
�/NO3

� measurements

Accumulation of dNO metabolites in the media was measured
by chemiluminescence with a Sievers nitric oxide analyzer 280i.
25 ml aliquots of media were injected into a reaction chamber
containing vanadium chloride in HCl as described previously [4].

2.8. Statistics

Significance was determined using either t-test or one way
ANOVA with Bonferoni post-hoc analysis. Error bars indicate SEM.
3. Results

3.1. Proteins respond to dNO in a concentration-dependent manner

We and others have shown that the tumor suppressor protein
p53 is phosphorylated at the serine 15 residue (p53 P-Ser-15) in
response to relatively high steady-state concentrations of dNO
(4600 nM [dNO]SS) [5]. Conversely, relatively low concentrations
of dNO (o100 nM [dNO]SS) activate soluble guanylyl cyclase
(sGC) [6]. The differing sensitivities of these proteins to dNO makes
them, in effect, biological dNO dosimeters. We treated MCF-7 cells
with increasing concentrations of the dNO-donor Sper/NO and
measured changes in p53 P-Ser-15 and cGMP production. When
the Sper/NO concentration was increased, the [dNO]ss concentration
rose in a corresponding manner (Fig. 1A). As predicted, p53 was
phosphorylated at the highest concentration of Sper/NO which
produced [dNO]ss concentrations approaching 1 mM (Fig. 1B). Next,
cGMP was measured in these cells as an indicator of sGC activation
(Fig. 1C). Very low dNO concentrations were sufficient for maximal
sGC activation (E5 mM Sper/NO, o50 nM [dNO]SS).

3.2. The impact of O2 concentration on [dNO]ss

We have previously shown that, for a given cell type and density,
the rate of cellular dNO metabolism displays first-order kinetics
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(A) Measurement of [dNO]ss in media (dNO selective electrode, �1 mm above monolayer). (B) Immunoblot demonstrating p53 P-Ser-15 accumulation (t¼2 h). (C) Measurement
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which is a function of the both the dNO and O2 concentrations
(Eq. 1) [3].

�
d½NO�

dt
¼ kobs O2½ � NO½ � Cells

� �
ð1Þ

Using an dNO-selective electrode, we measured differences in
dNO metabolism after either bolus addition or continuous expo-
sure to dNO at 1% and 21% O2. For the purposes of this study,
metabolism is defined as the disappearance of dNO in the
presence of cells. Fig. 2A demonstrates that when cells in
suspension received a 1000 nM dNO bolus, dNO metabolism
was slower at 1% than at 21% O2 (t1/2¼260s vs. 45 s). We also
measured [dNO]ss in the culture media of cells treated with the
dNO-donor DETA/NO at either 1% or 21% O2. The rate of dNO
liberation from diazeniumdiolates such as DETA/NO is a function
of pH and temperature and it is not affected by differences in O2

concentration [7]. For an equivalent concentration of DETA/NO
(500 mM), the [dNO]ss was greater at 1% O2 than it was at 21% O2

(Fig. 2B). These observed differences in [dNO]ss at 1% vs. 21% O2

can be partially attributed to differences in the rates of dNO
metabolism which decreases as the O2 concentration is lowered.

For cell culture experiments, the volume of media far exceeds
the volume of cells. Therefore, in addition to cellular metabolism,
the disappearance of dNO can result from other consumptive
processes such chemical reactions in the media. The predominant
reaction of dNO in the media is with dissolved O2 through the
autooxidation reaction [8]. This reaction is first-order with
respect to the O2 concentration (Eq. 3) and, therefore, its rate
will vary based on differences in O2. We calculated the contribu-
tion of this reaction to the observed differences in the rates of
dNO disappearance at both O2 concentrations. Autooxidation
occurs with the following overall stoichiometry [8]:

4NOþ O2þ 2H2O-4Hþ þ 4NO�2 ð2Þ
The rate of disappearance of dNO through this reaction is given
by

�
d½NO�

dt
¼ 4k½NO�2 O2½ � ð3Þ

where k¼1.8–6.6�106 M�2s�1.
Calculations of dNO disappearance via the autooxidation

reaction at 1% and 21% O2 are shown in Fig. 2C and D. These
illustrate the well-known fact that the half-life of dNO is inversely
correlated to the dNO concentration and the O2 concentration. At
1% O2, the half-life of dNO is on the order of hours to days at
1000 nM dNO (Fig. 2C). At 21% O2, the half-life of dNO is reduced
to minutes or hours (Fig. 2D). These calculations reveal that, at 1%
O2, 1000 nM dNO disappears E58 times slower via the autoox-
idation reaction than in the presence of cells (Fig. 2A) and E15
times slower at 21% O2. The lower the dNO concentration,
however, the less autooxidation contributes to the observed
differences in the rates of dNO disappearance in the presence of
cells because autooxidation is second order in dNO. This is
exemplified in Fig. 2E, which demonstrates that the disappear-
ance of 200 nM dNO is negligible in the absence of cells.

In addition to cellular consumption and autooxidation, there
are other means by which dNO can disappear in cell culture
experiments. These include volatilization from the culture flask
and reactions with other components in the media [7]. In
comparison to the reaction of dNO with cells or O2, the disap-
pearance of dNO via other mechanisms should be constant at any
O2 concentration. As a result, these other consumptive pathways
should not be a confounding factor when observing differences in
the rates of dNO disappearance at different O2 concentrations.
Our data indicate that the dominant mechanism of dNO loss is via
cellular metabolism, which prevails over other processes includ-
ing autooxidation.
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3.3. Oxygen modulates dNO signaling processes

At a constant rate of dNO production (i.e. from dNO-donor
compounds), the [dNO]ss is predominantly a function of the
O2-dependant rate at which it is metabolized by cells (Fig. 2B).
We set out to determine if the effect of O2 on [dNO]ss would
differentially affect dNO-regulated signaling. To test this, we
measured the accumulation of p53 Ser-15 phosphorylation in
MCF-7 cells treated with increasing concentrations of the dNO-
donor Sper/NO at either 1% O2 or 21% O2 for 2 h. Fig. 3 demon-
strates that, at 1% O2, the concentration of Sper/NO necessary to
induce p53 P-Ser-15 is only one fourth of the amount required at
21% O2. For a given Sper/NO concentration, the rate of dNO
production is the same at both O2 concentrations, yet the [dNO]ss

is greater at 1% O2 due to differences in the rates of cellular dNO
metabolism. Since p53 phosphorylation requires a specific thresh-
old concentration of dNO (Fig. 1B), this implies that the [dNO]ss

from 25 mM Sper/NO at 1% O2 is roughly equivalent to what is
achieved at 21% O2 from 100 mM Sper/NO. This demonstrates that,
at a constant rate of dNO production, it is the O2 concentration
that ultimately determines the extent of dNO signaling.
3.4. Oxygen determines the rate of enzymatic dNO synthesis

Unlike the liberation of dNO from synthetic donors, the biolo-
gical production of dNO is enzymatic and requires molecular O2 as
a substrate. For a given NOS isoform, changes in O2 concentrations
will affect enzymatic dNO production. To demonstrate this, we
cultured RAW 264.7 macrophages over a range of O2 concentra-
tions and stimulated them with LPS to induce iNOS expression and
dNO production. The total amount of enzymatic dNO synthesis
was determined by measuring the accumulation of NO3

�/NO2
� in

the media over time. In Fig. 4A it can be seen that, as expected,
there was a temporal and linear increase in dNO production as the
O2 concentration rose from 1–8%. More importantly, however,
above 8% O2 no further increase in the rate of dNO production
was observed. This indicates that O2 is no longer a limiting factor
for dNO synthesis at concentrations greater than 8%.

Hypoxia is known to affect the magnitude of iNOS expression
which could potentially influence the overall amount of dNO
synthesis [4]. We examined this possibility by culturing RAW
264.7 cells over a range of O2 concentrations and measuring the
levels of iNOS expression subsequent to LPS stimulation. Fig. 4B
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demonstrates that decreasing the O2 concentration increased the
magnitude of iNOS expression. Next, we set out to compare
the effects of enzyme concentration vs. O2 concentration on the
amount of dNO produced. Activated RAW 264.7 cells were
cultured at 1% and 21% O2 for 16 or 24 h and the amount of
NO2
�/NO3

� was measured (Fig. 4C, columns 1,2,4,5). At both time
points, the amount of dNO synthesis was considerably higher at
21% O2 than at 1% O2 as seen in Fig. 4A.

To understand the effects of differences in enzyme expression
on dNO synthesis, we cultured RAW 264.7 cells for 16 h at 1% O2.
This resulted in a substantial increase in cellular iNOS protein
expression (Fig. 4B). After 16 h these cells were moved to 21% O2

for an additional 8 h (24 h total) and NO2
�/NO3

� was measured
(Fig. 4C, column 3). This resulted in a dramatic increase in dNO
production at 21% O2 that we attributed to the hypoxia-mediated
increase in iNOS expression (Fig. 4C, compare columns 1, 2 and 3).
0 1 10 25 100
0
1
2
3
4
5
6
7

0 10 25 100
0
1
2
3
4
5
6 21% O2 1% O2

Sper/NO (µM)

p53 P-Ser-15
Total p53

NO NO

[Sper/NO] µM [Sper/NO] µM

A
U A
U

**

**

**

53 kDa

53 kDa

Fig. 3. Low O2 decreases the dose of dNO-donor compound required for p53

activation. MCF-7 cells were treated with increasing concentrations of Sper/NO

(0–100 mM) at 21% O2 or 1% O2 for 2 h. Immunoblot demonstrating accumulation

of p53-Ser-15 phosphorylation. n¼3, nnindicates po0.01 with respect to

untreated controls which are arbitrarily set to 1.0.

20
30

40

48121620

0

10

20

30

40

Oxygen %

N
O

2
- /N

O
3

- µM

Tim
e (

h)

21%  10%  5%   

iNOS

O2

Actin

21 10 5

1.0

1.2

1.4

1.6

1.8

Oxygen (%)

A
U *

Fig. 4. The rate of dNO synthesis is a function of both the NOS and O2 concentrations.

LPS (t¼0 h). The rate of dNO synthesis was measured by quantifying NO2
�/NO3

� accum

temporal relationship between changing O2 concentrations and rates of dNO synthe

decreasing O2 concentrations (t¼10 h). (C) (columns 1, 2, 4, & 5) Cells were grown at 21

were grown at 21% O2 or 1% O2. After 16 h the cells at 21% O2 were moved to 1% O2 and

additional eight hours (24 h total) and NO2
�/NO3

� was measured. Values given at 24 h ar
nnindicates po0.01 with respect to untreated controls which are arbitrarily set to 1.0.
This experiment was repeated, but the order of oxygen exposure
was reversed; 21% O2 for 16 h followed by 8 h at 1% O2 (Fig. 4C,
column 6). Under these conditions, total dNO synthesis was
substantially diminished (Fig. 4C, compare columns 3,6). Together
these results indicate that at 21% O2 enzyme concentration is the
major limiting factor for dNO synthesis whereas at 1% O2, oxygen
is the major limiting factor. Therefore, the oxygen concentration
can influence dNO production by changing the amount of iNOS
expressed or as a limiting substrate for this enzyme.

3.5. Oxygen regulates the magnitude of dNO signaling

Having determined that changes in O2 concentration could
influence both the rate of enzymatic dNO production and dNO
metabolism, we went on to examine the impact of these pro-
cesses on dNO signaling. For these experiments we developed a
co-culture model in which MCF-7 cells were cultured in the
presence of dNO-producing RAW 264.7 cells. After isolation of
the MCF-7 cells, sGC activation was measured by monitoring the
cGMP production. Fig. 5A demonstrates that sGC in the target
MCF-7 cells was activated in response to RAW 264.7-derived
dNO. Cyclic GMP production in the MCF-7 cells was not detected
when cells were treated with ODQ, co-cultured with non-
activated RAW 264.7 cells or activated RAW cells treated with
the iNOS inhibitor aminoguanidine (Fig. 5A). Next, we altered
oxygen levels by culturing the cells at different O2 concentrations
(1–21%) and modulated the dNO concentration by changing the
ratio of RAW 264.7/MCF-7 cells. We then repeated the co-culture
experiment over a range of O2 and dNO concentrations. Fig. 5B
demonstrates that sGC activation was dependent on both the O2

concentration and the number of dNO-producing cells. Interest-
ingly, the optimal O2 concentration for maximal cGMP production
was at E5–8% O2. This suggests that at this O2 concentration dNO
production and dNO consumptive processes are optimized to
maximize steady-state dNO concentration and sGC activation.
4. Discussion

Nitric oxide is a small, uncharged, freely diffusible gas that
under biological conditions reacts with other free radicals (includ-
ing oxygen) and metals. Its unique biochemical properties allow it
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264.7 cells were removed and cGMP production was measured in the MCF-7 cells by ELISA. (B) Increasing amounts of activated RAW 264.7 cells were cocultured in serum

free media with MCF-7 cells over a range of O2 concentrations (0.5–21%). After 30 min the RAW 264.7 cells were removed and cGMP production was measured in the

MCF-7 cells by ELISA. Contour plot demonstrating the relationship between cGMP production, O2 concentration, and different densities of dNO-producing RAW 264.7 cells.
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regulate, and sometimes disrupt, numerous aspects of cell phy-
siology. In addition to dNO’s ability to activate signal transduction
cascades, it can also directly inhibit respiration and sequester
cellular iron. Unfortunately, the same properties that confer this
diversity of function also make it extremely challenging to predict
its exact [dNO]ss in cells and tissues. It is well-known that both
dNO synthesis and dNO consumption are O2-dependent, and thus
the oxygen concentration will influence the rates of both of these
processes. We investigated the overall ability of O2 to modulate
dNO signaling events. If the rate of dNO synthesis is greater than
the rate of cellular dNO consumption, [dNO]ss concentrations will
increase. Conversely, if the rate of dNO consumptive processes
predominate over its rate of synthesis, [dNO]ss levels will
decrease. Oxygen largely dictates the [dNO]ss and ultimately the
magnitude of dNO signaling. We and others have demonstrated
previously that the [dNO]ss is a significant determinant of cell
signaling effects; the various dNO-mediated signaling pathways
require different threshold concentrations of dNO for activation.
Although many of these concepts have been described previously,
our results link dNO concentration, O2 concentration, dNO synth-
esis, and dNO metabolism into a unified theory.

Many in vivo studies use the expression levels of NOS as
justification for dNO-attributable responses [9]. It is often not
appreciated that the overall amount of synthesized dNO cannot
easily be inferred solely by examining the levels of NOS protein.
Our results demonstrate that both the O2 concentration and the
amount of NOS protein are equally important determinants of the
amount of dNO synthesized. The relative contribution of both of
these parameters varies with the O2 concentration. At high O2,
dNO synthesis is dependent on the amount of enzyme present,
while at low O2, oxygen itself becomes the limiting factor.

We used a dNO-selective electrode to measure the [dNO]ss in
the dNO-donor treated media of cells grown in monolayer. Since
dNO is freely diffusible into cells, its steady-state concentration in
the media is in equilibrium with its concentration in the cells.
This allows for a precise measurement of [dNO]ss and the
identification of signaling cascades that correspond to specific
dNO concentrations. As we have previously reported, dNO-
mediated cellular signaling is stratified with numerous signaling
pathways being activated by differential [dNO]ss [2]. Our current
study builds on these findings by demonstrating how dNO
signaling can be significantly modified by the O2 concentration.
In many ways these results are expected given the ability of O2 to
modulate dNO concentrations. However, our results demonstrate
that changes in dNO signaling do not always change linearly with
changing O2 concentrations.

When the rate of dNO production is constant, its steady-state
concentration is predominantly a function of its O2-dependant
rate of metabolism. We demonstrate that, at lower O2 concentra-
tions, dNO metabolism is considerably slower, and thus [dNO]ss is
higher. This inverse relationship has a direct effect on dNO
signaling. Activation of p53 Ser-15 phosphorylation at 1% O2, for
example, is possible with one-fourth the dose of Sper/NO neces-
sary to achieve the same effect at 21% O2. This indicates that, for a
given rate of dNO production (synthesis), lowering the O2 con-
centration will enable activation of signaling pathways that are
not obtainable at higher O2 concentrations.

In addition to dNO consumptive pathways, we show that O2

concentrations influence [dNO]ss by affecting its rate of enzymatic
synthesis. Oxygen is a necessary substrate for NOS, and the
oxygen gradient itself regulates iNOS expression [4]. Our data
reveals that, in dNO-producing RAW 264.7 cells, the rate of dNO
synthesis increases in a linear fashion from 1–8% O2. Above this
amount of O2, further increases in the rate of dNO synthesis were
not observed. When sGC activation by dNO was examined under
changing O2 concentrations, we noted maximal activation at 5–8%
O2. At O2 concentrations higher or lower than these amounts,
there was a decrease in sGC activation. We suggest that the
balance between O2 availability and enzyme expression at 5–8%
O2 is optimized such that the rate of dNO production versus its
rate of metabolism synergize to achieve maximal [dNO]ss. At
higher O2 concentrations, dNO production is maximal but so is its
metabolism. At lower O2 concentrations, dNO metabolism is
slowest but so is its enzymatic synthesis.
5. Conclusions

These findings highlight the importance and dependence of O2

on biological responses to dNO. The principals discussed in this
study are important to consider when assigning a functional role
to dNO in the context of numerous normal and disease conditions
where oxygen gradients exist. The tissue microenvironment will
drive [dNO]ss, thereby modifying which signal transduction cas-
cades are triggered to ultimately influence cellular phenotype.
Some of the disparities seen in dNO signaling are thus the result
of O2 mediated changes in [dNO]ss. These are important factors to
consider when trying to elucidate the biochemical responses to
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dNO synthesis and also the effects of therapeutic dNO donors
especially in the context of changing oxygen environments.
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