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Abstract: In a number of circumstances, the Kachanov–Rabotnov isotropic creep damage constitutive
model has been utilized to assess the creep deformation of high-temperature components. Secondary
creep behavior is usually studied using analytical methods, whereas tertiary creep damage constants
are determined by the combination of experiments and numerical optimization. To obtain the tertiary
creep damage constants, these methods necessitate extensive computational effort and time to
determine the tertiary creep damage constants. In this study, a curve-fitting technique was proposed
for applying the Kachanov–Rabotnov model into the built-in Norton–Bailey model in Abaqus. It
extrapolates the creep behaviour by fitting the Kachanov–Rabotnov model to the limited creep data
obtained from the Omega-Norton–Bailey regression model and then simulates beyond the available
data points. Through the Omega creep model, several creep strain rates for SS-316 were calculated
using API-579/ASME FFS-1 standards. These are dependent on the type of the material, the flow
stress, and the temperature. In the present work, FEA creep assessment was carried out on the SS-316
dog bone specimen, which was used as a material coupon to forecast time-dependent permanent
plastic deformation as well as creep behavior at elevated temperatures and under uniform stress. The
model was validated with the help of published experimental creep test data, and data optimization
for sensitivity study was conducted by applying response surface methodology (RSM) and ANOVA
techniques. The results showed that the specimen underwent secondary creep deformation for most
of the analysis period. Hence, the method is useful in predicting the complete creep behavior of the
material and in generating a creep curve.

Keywords: creep deformation; regression analysis; Kachanov–Rabotnov model; damage evolution;
creep rupture

1. Introduction

In materials, creep deformation can be divided into three stages: primary, secondary,
and tertiary [1]. At low temperatures and modest stresses, the primary creep regime
dominates. Primary creep strain accumulates in high-temperature alloys, but it is generally
undetectable in studies. At a low-to-intermediate stress and temperature, the secondary
creep regime dominates [2]. This is the most stable domain, in which a balance of strain-
hardening and recovery mechanics makes creep deformation prediction simple. The
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tertiary creep regime dominates at intermediate to high temperatures and stresses. The
non-linear accumulation of creep-damage ruptures, which contributes to massive creep
deformation, characterizes this regime.

Since the advent of continuum damage mechanics (CDM) in 1967–68, major effort has
gone into applying CDM to the assessment of creep damage in high-temperature compo-
nents, as described by Chaboche [3]. According to Murakami [4], the CDM approach has
been utilized to solve high-temperature engineering challenges in the aerospace, nuclear,
and power-generating industries. Engineers can utilize CDM-based creep constitutive
models to anticipate not only the material’s constitutive reaction but also the material’s sub-
sequent rupture through damage evolution. As Betten [5] researched, the CDM system has
previously been used to model elastic–brittle, elastic–plastic, fatigue, creep, creep–fatigue,
iso-thermal and iso-thermomechanical, anisotropic, corrosion, and irradiation-induced
damage. The CDM effective stress concept can be used to characterize the damage pro-
cess in materials from crack initiation through ruptures. A continuous damage variable
is connected with the constitutive model’s viscosity function in the CDM technique to
incorporate the impacts of microstructural damage into the constitutive response. As
documented by Kachanov [6], the damage variable is expected to grow from zero (no
damage) to unity (rupture).

According to Skrzypek [7], within CDM, the smallest volume statistically represen-
tative of the mean constitutive response including a representative number of micro-
heterogeneities is called a representative volume element (RVE). The effective stress concept
allows transformation from the physical space of the heterogeneously damaged RVE to
an effective space of homogeneous undamaged RVE including damage through effective
stress increase. Damage is an irreversible representation of heterogeneous micro-processes
that occur during the deformation of a material, and its distribution and evolution are
influenced by strain history, boundary conditions, time, and the environment. While the
physical damage is difficult to quantify, Gordon and Stewart [8] examined it and found that
it may be defined as a reduction in area due to internal and surface defects. The effective
stress notion may be analytically inferred using this concept to obtain the net/effective
stress, as shown in Equation (1):

σ= σ× A0

Anet
=

σ(
1− A0−Anet

A0

)= σ

(1−ω)
(1)

where Anet is the current area, A0 is the initial area, σ is the equivalent stress, σ is the
net/effective stress, and ω represents the damage or reduction in area. Physical damage is
replaced with an increase in the applied stress, which is more effective [9]. By equating
finite element methods to RVE and using the effective stress concept, the CDM theory can
be implemented into FEM codes.

Several material models have been developed since 1929 to provide predictions for
creep behavior of the materials. These models were developed under certain boundary
conditions, and, for that, the models may possess some limitations, as explained by Yao
et al. [10]. Three established models are discussed in this article, and a method is being
devised to predict the material’s creep response and behavior in the tertiary stage through
a damage evolution parameter [11]. Starting with the Norton–Bailey (NB) model, also
known as Norton’s power law, it is integrated in finite element Abaqus software and is
widely used for creep analysis in combination with other models developed by Bailey
and Norton [12]. The NB model works as a benchmark for the development of other
models. The creep deformation behavior of materials displaying time-dependent, inelastic
deformation can be predicted using the model. It is useful in predicting material’s creep
behavior in the secondary creep regime. On the other hand, the Omega model developed
by the Material Properties Council offers a good prediction model; it is widely used due to
its simplicity and its lower dependency on material constants. Prager [13] proposed the
model in 1995, and it is a well-documented creep evaluation process with an excellent track
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record for associated property relations covering a wide range of materials. The Omega
model is a method for calculating the remaining life of a component that is working in
the creep zone at high temperatures and pressures. According to Yeom et al. [14], a strain
rate parameter and a multi-axial damage parameter are used to forecast the rate of strain
accumulation, creep damage accumulation, and the remaining time to failure as a function
of the stress state and the temperature. It models primary and secondary creep regime
deformations and is good in predicting material’s rupture time at lower temperatures [15].
The other important model is the Kachanov–Rabotnov model, which is one of the earliest
implementations of the continuum damage mechanics (CDM) approach for creep, as
proposed by Kachanov and Rabotnov [6]. Secondary and tertiary creep deformation can
be modelled using the set of coupled equations. Significant efforts have been made to
improve the KR law, and variations of the KR law have been developed in recent years
to generate contour deformation maps [8]. To define transversely isotropic creep damage
properties and to estimate stress-independent tertiary creep damage constants using both
strain- and damage-based analytical approaches, methods are being devised by Stewart
and Gordon [16]. Another significant creep prediction model is theta projection, which
can be employed under creep conditions. Evans and Wilshire [17] presented the theta
projection model in 1985 to predict multistage creep deformation (primary, secondary,
and tertiary). A modified form of the theta projection model, which is specific for steel
sheets, was investigated and applied by Alipour and Nejad [18] to ferritic steel alloys. The
hyperbolic model, developed by Stewart in 2013 [19], is the latest development to creep
prediction models, which was effectively utilized by Alipour and Nejad [20] for ferritic
steels at elevated temperatures. The three-stage creep damage model has the ability to
simulate primary, secondary, and tertiary creep with better accuracy.

Several researchers found that each creep prediction model has proved to be accurate
for specific materials under certain stress levels and temperature conditions, but neither
single model can precisely predict the creep behavior for variations of material alloys nor
can any model meet expectations for service conditions as investigated by Benallal [21].
For example, the Norton–Bailey model only models the secondary creep regime with no
prediction for the other regimes. It produced an overall error when primary and tertiary
creeps were dominant. Batsoulas [22] highlighted the limitations of the Norton–Bailey
creep model by arguing that the use of this relation in the design indicated that (i) the creep
curve is a straight line, (ii) primary and tertiary creeps are neglected, and (iii) the rate of
secondary creep is defined as the exclusive designing parameter, which is definitely not the
case. According to May and Furtado [23], material constants in the Norton–Bailey equation
are heavily dependent upon temperature, and, because of that, the model is unable to
produce accurate results at higher temperatures.

The fracture strain in the MPC Omega model is difficult to estimate for the equipment
under service conditions due to limited temperature-dependent materials data at elevated
temperatures. As pointed out by Maruyama et al. [24], the model also lacks any methods
of indicating prior and ongoing damage in the material where the fracture begins and will
most likely expand. The model was also unable to predict accurate creep results for high-
temperature and high-stress applications, which highlights its major drawback. In the case
of creep life prediction for dissimilar P91/12Cr1MoV-steel-welded joints, as investigated
by Chen et al. [25], the accuracy of the predicted rupture time became much closer to the
actual values at the lower stress level. The error was 12.7% at a stress of 160 MPa, and it
increased to 75.4% at a stress of 220 MPa under the same temperature conditions of 550 ◦C.

The model proposed by Kachanov–Rabotnov (KR) is promising, but it involves a large
number of material constants, and the formulation does not consider the primary creep
regime for the analysis. KR emulates both continuum creep damage and discontinuous
plastic damage at rupture within a continuous function, in which the model complexities
have proven difficult for integration in FE analysis [26]. The difficulty in finding the
tertiary creep damage constants is another key drawback of the KR model. Haque and
Stewart [27] conducted a comparative analytical case study of sine-hyperbolic (sin-h) and
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Kachanov–Rabotnov (KR) creep damage models in forecasting the minimum creep strain
rate, creep deformation, damage progression, and the rupture of 304 stainless steel at
600 ◦C and 700 ◦C. Because the KR rupture predictions are linear on a log–log scale, they
cannot adequately explain the sigmoidal behavior seen in the experimental data. The
KR-model can be re-calibrated to meet either high- or low-stress environments, but it
cannot model both at the same time. At the yield strength, the sin-h rupture predictions
approach a value less than unity but close to the nominal ultimate tensile strength of 304SS.
As the rupture time approached zero, the KR rupture prediction approached an accuracy
value of 1.35 times greater than the ultimate tensile strength [27]. Haque and Stewart [28]
and Stewart and Gordon [29] eventually identified the faulty character of the KR model
and named it as a “brittle curve” phenomenon. The KR model was adjusted to handle
the high stress to low stress bend by adding extra factors and material constants while
keeping the flaw that critical damage is less than unity. In brief, those models have dealt
with the issue of nucleation and plasticity for crack initiation and growth at some success
level, but limitations in accurately detecting and identifying creep crack growth are still
apparent [30].

Little attention has been paid to designing optimization and sensitivity analyses in-
volving all design parameters for creep prediction, especially in the tertiary creep stage [31].
In this article, a curve-fitting technique is proposed for applying the Kachanov–Rabotnov
model into the embedded Norton–Bailey FEA model. The creep parameters involving
the damage evolution parameter are regressed to represent a material’s behavior in the
tertiary creep stage. The extrapolation of creep behavior has been performed by fitting
different forms of creep models, Kachanov–Rabotnov in this case, with a small number
of creep data sets and then simulating beyond the available data points, as explained by
Brown et al. [32]. Comparative assessment of the proposed Kachanov–Rabotnov model
curve fitting-technique was then preformed with other creep damage models, Omega and
Norton–Bailey, to highlight its significances.

The purpose of the study was to identify tertiary creep damage constants, which are
difficult to determine for the materials at high temperatures. This research has significance
as it provides a method to determine the tertiary stage constants and to analyze material’s
behavior at the tertiary creep stage. The extrapolations were based on the assumption that
the existing trend in the available data set will continue and that the model’s functional
form appropriately captures the creep behavior in the extrapolated region. Extrapolations
are generally unreliable and difficult to assess [33]. The 0% and 100% dependability
bands for creep–rupture expand when the applied stress is lowered, to the point that the
bands may differ decades apart at low stress levels and elevated temperatures [34]. The
uncertainty of extrapolations paired with material performance necessitates the use of
generous safety factors in design. There is no guarantee of reliability for a new material
with 30,000 h of creep data extrapolated to 100,000 h [28].

In this case study, FEA creep assessment was performed on the material SS-316 dog
bone specimen, which was considered as a material coupon to predict time-dependent
plastic deformation along with the creep behavior at an elevated temperature of 650 ◦C
and under constant stresses [35]. A data-optimization and sensitivity study was conducted
by applying response surface methodology along with the ANOVA technique to track the
material’s creep behavior for the three creep damage models [36]. The results indicated
that the specimen underwent steady secondary creep deformation for most of the analysis
period. Hence, the method is useful in predicting the complete creep behavior of the
material and in generating a complete creep curve covering the primary, secondary, and
tertiary creep stages. The uncertainty of the material’s behavior in the tertiary stage near to
rupture can be predicted accurately [37].
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2. Theoretical Framework

This section describes the theoretical framework of the creep material models, their
mathematical formulation, and their combined implementation for the prediction of a
material’s creep behavior, SS-316 in this case.

2.1. Norton Bailey Model

The most famous and common minimum creep strain rate law is Norton’s power
law (1929), which was based on the Arrhenius rate equation [38] and which is depicted in
Equation (2).

.
εcr = B′σnexp

(
−Qc /RT

)
tm (2)

where
.
εcr represents the minimal creep strain rate, B′ represents the material constant, σ is

the applied stress, n represents the power law exponent, Qc represents the activation energy,
R is the universal gas constant, and T represents the applied temperature. Equation (2) is
further simplified at a constant temperature, taking the form of Equation (3).

.
εcr = A σntm (3)

without considering time, Equation (3) becomes:

.
εcr = Aσn (4)

where,
A = B′exp

(
−Qc /RT

)
(5)

It is worth noting that A, n, and m are temperature-dependent material constants that
are not affected by stress. While n and m are unitless, A has units that are consistent to
those of time t and stress σ. The time-differentiated version of Equation (3) is often referred
to as the time-hardening formulation of the power-law creep [39].

2.2. Omega Model

In the Omega model, the life fraction used (or damage parameter, ω) is defined as in
Equation (6):

ω =
t
tr

=

.
εΩt

1 +
.
ε Ωt

(6)

where t is the current time, tr is the rupture life,
.
ε is the current creep strain rate, and Ω is

the material creep damage constant. When the current time approaches the rupture, then
(t I tr & t/tr I 1) and Equation (6) collapses. Thus, the life fraction evolves from zero
to near unity (0 ≤ t/tr < 1). Prager [15] has proposed that the creep strain will have the
following relation as in Equation (7):

1− .
ε0Ωt = 1/e

.
εΩ (7)

where
.
ε is the creep strain,

.
ε0 is the initial creep strain rate constant, and Ωt is the damage

constant with respect to time. Taking the natural logarithm on both sides and rearranging
gives Equation (8):

.
εC0 =

−1
Ω

ln
(
1− .

ε0Ωt
)
, (8)

Equation (8) can be further simplified by taking derivatives with respect to time and
replacing (1 − .

ε0 Ωt) as follows:
.

εc =
.
εc0 eεcΩ (9)

The Omega model, as can be shown from Equation (9), assumes that the creep strain
rate is proportional to the exponent of the accumulated creep strain and ignores the primary
creep stage. The Omega model is easy to apply as it only requires two constants: ε0 and
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Ω [24]. The constant Ω can be obtained from experimental data using Equation (7). The
large value of Ω indicates that most of the life spent by the material is at a low creep strain
rate followed by a rapid increase in the creep strain rate before failure. A low value of Ω
indicates that most of the time spent is in the tertiary creep regime [40]. The initial strain
rate ε0 and the omega (Ω) values are dependent on stress and temperature and can be
expressed as a creep power law in Equations (10) and (11):

ε0 = A0σn0 exp
(
−Q0

RT

)
, (10)

Ω = AΩσnΩ exp
(
−QΩ

RT

)
. (11)

where A0 and AΩ are stress coefficients, n0 and nΩ are stress exponents, Q0 is the apparent
activation energy, and QΩ is the value indicating the temperature dependence of Ω [24]. It
can be seen that the magnitude of the Ω value increases with the decrease in both stress
and temperature, which corresponds to the descriptions of Ohgeon [41].

2.3. Kachanov–Rabotnov Model

The classic Kachanov–Rabotnov law consists of the coupled strain rate and damage
evolution equations, which are as follows in Equations (12) and (13) [29].

.
ε= A(

σ

1−ω
)n (12)

.
ω =

M σx

(1−ω)∅
, 0 < ω < 1 (13)

where M, χ, and ∅ are tertiary creep damage constants, and the creep strain is similar
to Norton’s power law for secondary creep with the same A and n as secondary creep
constants. Isochoric creep behavior is assumed, and the secondary and tertiary creep
damage constants can be calculated analytically [42]. Equations (14) and (15) were obtained
by taking Equation (13) and conducting a separation of variables, indefinite integration,
and simplifications.

t(ω, σ) =
1− (1−ω)∅+1

(∅+ 1)M σx , (14)

ω(t, σ) = 1− [1− (∅+ 1)M σx t]
1

∅+1 , (15)

where t is the current time and ω represents the current damage. These equations can
be used to calculate the current time from the current damage and stress, or the current
damage from the current time and stress. Stewart and Gordon [16] developed two useful
techniques for analyzing and implementing the Kachanov–Rabotnov model: the strain
approach (SA) and the damage approach (DA). The techniques are implemented depending
on the material’s analysis for secondary and tertiary creep stages.

3. Methodology

This section explains the methodology adapted for implementing the curve-fitting
method for creep prediction by the combination of creep models through regression and
their comparison.

3.1. Analytical Creep Strain

For finding creep strain and the creep strain rate, the research study is divided into
two sections. First, the creep strain was calculated analytically, using the creep material
model from the Omega model formulation based on ASME FFS-1/API-579 standards [43]
for the SS-316 dog bone specimen. Secondly, creep strains were calculated through FEA
simulation in Abaqus using material model properties obtained from ASME BPVC section
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II part D, sub-part 2 standards [44]. Regression analysis was also implemented to obtain
the creep parameter (A) and the stress exponent (n) for the Omega-Norton–Bailey and
Kachanov–Rabotnov–Norton–Bailey regression models for the material coupon SS-316 in
Abaqus. The results were later compared and validated with the experimental creep tests,
as conducted by Christopher et al. [45].

The ASME FFS-1/API-579 standards [43] are designed to assist in the material’s data
selection for the fitness-for-service assessment (FFS) of creep damage. It covers situations
involving creep damage and flaws encountered in equipment exposed to service conditions
for long periods of time, under high temperatures and pressures. The MPC Omega creep
data are material-dependent, and a wide range of materials were described in ASME
FFS-1/API-579 ranging from carbon steel to stainless steels and alloys. In this research
study and analysis, material type SS-316 was selected. The coefficients in Table 1 are the
estimates of typical material behavior used in the analytical calculations. Coefficient values
were derived after extensive examining of the material behavior and were obtained from
ASME FFS-1/API-579 standards [43].

Table 1. MPC Omega model material coefficients for material type SS-316 (MPa, ◦C) [43].

Strain Rate Parameter—εc0 Omega Parameter—Ω

A0 −18.9 B0 −4.163
A1 41,230.11 B1 16,793.192
A2 −12,446.783 B2 −10,221.744
A3 1299.221 B3 1634.960
A4 111.222 B4 222.222

The parameters and formulations are defined in ASME FFS-1/API-579 standards
specifically for the MPC Omega model. It should be emphasized that the MPC Omega
model does not take into account the impacts of primary creep. When the stress from
the applied load is less than or equal to 50% of the minimum yield strength at the assess-
ment temperature [12], the effect becomes negligible. The analytical creep strain for dog
bone specimen, material coupon SS-316 was calculated using the following closed-loop
Equations (16)–(22) taken from the ASME FFS-1/API-579 standards [43].

log10
[ .
εc0
]
= −[(A0 + ∆sr

Ω) + (
A1 + A2 S1 + A3S2

1 + A4 S3
1

Tre f + T
)], (16)

Ωm = ΩδΩ+1
n + αΩ + nBN , (17)

log10[Ω]= [(B0 +∆cd
Ω ) + (

B1 + B2 S1 + B3S2
1 + B4 S3

1
Tre f + T

), (18)

δΩ = βΩ.(
σ1 + σ2 + σ3

σe
− 1), (19)

nBN= −(
A2 + 2A3 S1 + 3 A4S2

1
Tre f + T

), (20)

Tre f= 460 for ◦F, Tre f = 273for ◦C

S1= log10[σe], (21)

σe=
1√
2

[
(σ1 − σ2)

2 + (σ1 − σ3)
2 + (σ2 − σ3)

2
]1/2

. (22)

3.2. Finite Element Simulation—The Regression Model

The creep assessment model defined in the API 579-1/ASME FFS-1 standards use
the MPC Omega model for inelastic analysis. Regression analysis proved to be an impor-
tant statistical tool for estimating the relationships between dependent and independent
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variables, and the curve fitting may offer an effective means for reducing the number of
datasets [46]. There are two approaches to lessen experimental creep deformation and
data extracted from a normal creep experiment. The first method, known as the time-
hardening formulation, involves maintaining constant time increments and monitoring
strain at each point across different loads. The second technique, known as the strain
hardening formulation, includes measuring the time it takes to reach the desired set of
strain increments [39]. Figure 1 provides an overall process flow methodology to obtain the
creep data based on the Omega-Norton–Bailey Regression Model [13] and the development
of the dog bone specimen in Abaqus. The extracted data were then later input in Abaqus
with other parameters for running the FEA simulation and for obtaining the creep and
plastic strain results [47].
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model for the Abaqus dog bone specimen.

The details of the procedures are provided in the following steps [48]:
(i) The MPC Omega creep strain data were generated from Equation (9) discussed

above for the Omega model. The strain rate from the MPC Omega model was stress- and
temperature-dependent [24].

(ii) By considering the temperature as a constant, the strain rate can be calculated. The
Norton–Bailey creep in Equation (4) discussed above was implemented for calculating the
strain rate. Since the Norton–Bailey model is based on the creep power law, the equation
for a general non-linear power law regression fit can be used.

(iii) By comparing the general power law regression equation with the Norton–Bailey
power law, curve fitting can be executed for varying stresses and at different tempera-
tures [39]. Extrapolation assumes that the current trend in the material’s behavior prevails
over a period of time for the analysis [33]. The equation for general power law regression
is represented in Equation (23) as:

y = A′xB (23)
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where y is the criterion variable and prediction response, A′ is the curve coefficient, and B
is the exponent of x, the predictor variable, which was compared with the Norton–Bailey
power law regression in Equation (4). The parameter B, in Equation (24a), was compared
with the derived stress exponent n′, in Equation (24b), for creep.

B =
n′ ∑(ln x ln y)−∑(ln x)∑(ln y)

n′ ∑[(ln x)2]−[ (∑(ln x)2]
(24a)

n =
n′ ∑

(
ln σln

.
ε
)
−∑(ln σ)∑

(
ln

.
ε
)

n′ ∑[(ln σ)2]−[ (∑(ln σ)2]
(24b)

Similarly, the curve coefficient A′, in Equation (25a), was compared with the Norton–
Bailey creep parameter A, in Equation (25b), for finding the parameters.

A′ = e
∑ (ln y)−B ∑ (ln x)

n′ (25a)

A = e
∑ (ln

.
ε)−n ∑ (ln σ)

n′ (25b)

where x and σ are independent variables, y and
.
ε are dependent variables, and n′ represents

the number of samples. For the regression analysis [49], the stress is an independent
variable, whereas the strain rate is a dependent variable. The stress range was set based on
the accuracy of regression. A better curve fit can be obtained with a larger stress range of
the sample data.

Case I—Omega Model

(iii-a) The regression Equations (24b) and (25b) were used to determine creep parame-
ter A, and n was the stress exponent for the Omega model [50].

Case II—Kachanov–Rabotnov model
(iii-b) The Equations (24b) and (25b) were modified for the Kachanov–Rabotnov model

in order to derive constants in the equation and by introducing the damage evolution
parameter ω as follows in Equations (26) and (27):

n =
n′ ∑

(
ln( σ

1−ω ) ln
.
ε
)
−∑

(
ln

.
ε
)

∑
(
ln σ

1−ω

)
n′ ∑[

(
ln σ

1−ω )2
]
− (∑ ln σ

1−ω )2 (26)

A = e
∑ (ln

.
ε)−n ∑ (ln σ

1−ω
)

n′ (27)

Figure 2 illustrates the strain rate against stress plots for the Omega and Norton–Bailey
models obtained from the curve-fitting procedures. It was observed that curve fitting was
achieved accurately for the given stress–strain values. The power law regression provides
an accurate fitting, especially for the exponential data [39]. The coefficient of determination
R2 value, which quantifies the best-fitted plot and which is used effectively as an acceptance
criterion for the prediction plot, was found to be 0.9803, which is well above the acceptance
criterion for this plot as per ASME FFS-1/API-579 standards.

Again, Figure 3 depicts the strain rate against stress plots for the Omega-Kachanov–
Rabotnov to Norton–Bailey models, which was obtained from the curve-fitting procedures
by taking damage evolution parameter ω as 0.05. Damage evolution parameter ω or the
tertiary creep damage constant was introduced to determine the effects of material damage
at the tertiary stage for SS-316 material. The coefficient of determination R2 value was
found to be 0.99.
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3.3. Development of Model in Finite Element Analysis

The dog bone specimen FEA model was developed based on ASTM ISO 204 & ISO
R/206 E-139 standards for tensile creep testing in Abaqus [51]. The FEA model geometry
was developed with the help of the sketcher toolbox in the Abaqus solver. Material prop-
erties for creep and plasticity were employed by section assignment. Similar, boundary
conditions of the experiment were applied to the model. In the analysis step, maximum
number of increments was set to 1000, with an increment size of 30,000 h. The reference
point was selected for the direction of model displacement when the load applied. An
appropriate mesh size was selected for proper convergence of the specimen. The Norton–
Bailey model available in the Abaqus material library was employed for modelling the
creep. Given the assumptions made for the FEM assessment, SS-316 isotropic material
was selected for the analysis. A uniaxial load was applied on the specimen under defined
boundary conditions and a thermal field. Material properties remained the same, irrespec-
tive of the load applied in any direction. An elastic perfectly plastic model was selected
for plasticity and permanent plastic deformation. One end of the specimen was fixed, and
the displacement was set at the other end with an amplitude of 2 mm/min. The thermal
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environment was created by applying predefined thermal fields throughout the model,
with the temperature ranging from 0 ◦C–700 ◦C for the material SS-316 constant through
the region [52]. Once the target temperature was obtained, a continuous longitudinal load
was applied, resulting in the material’s grain structure dislocation and distortion. The load
was maintained for the period of the test or until the specimen ruptured with a pre-stress
of 35% UTS [53]. During the test, the data were continuously monitored and recorded to
qualify for the stability of the temperatures, the load, and the specimen’s elongation [51].
The model was developed based on ASTM standards and as per the dimensions mentioned
in Figure 4a. An example of the sample photo is presented in Figure 4b.
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The physical properties for the isotropic material SS-316, Young’s modulus, and
Poisson’s ratio were taken from ASME BPVC section II part D, sub-part 2 standards [44] for
elasticity, which were temperature dependent. The values are depicted in Table 2. It is to be
noted that there was a continuous decrease in Young’s modulus as the temperature of the
material rose. The data for yield stress and plastic strain for plasticity were extracted again
from ASME BPVC section II part D, sub-part 2 standards with respect to temperature [44].
As per the graph in Figure 5, it was observed that the material’s yield strength reduced
as the temperature rose during the simulated creep test. The ASME standard values were
devised after rigorous examination of the material behavior during exposure to varying
temperatures and pressures and at different operating conditions.

Table 3 values, the creep parameter (A), and the stress exponent (n) were calculated by
curve fitting for damage evolution through regression analysis for the Kachanov–Rabotnov
model to the embedded Norton–Bailey creep law for SS-316 material. The values were
obtained by keeping in view the effects of tertiary stage creep and the material behavior
until rupture.

The damage paramter ω values were taken arbitrarily with the range from 0.05 to 0.40,
as aligned with the work done by Christopher et al. [45], at a fixed temperature of 650 ◦C.
The plot in Figure 6 displays the effects of damage evolution ω on the constants, the stress
exponent, and the creep parameter of SS-316 material in the tertiary stage of creep at a
fixed temperature of 650 ◦C. It is estimated that the rupture due to creep in the material
usually occurs when the damage parameter reaches unity. From the graph it is clear that by
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increasing the value of damage parameter ω, there was a continuous decrease in the creep
parameter (A), whereas the stress exponent (n) varied with respect to the rising damage
parameter values.

Table 2. Physical properties for SS-316 at selected temperatures [44].

Young’s Modulus (MPa) Poisson’s Ratio Temperature (◦C)

134,000 0.31 −25
128,000 0.31 65
120,000 0.31 100
115,000 0.31 125
111,000 0.31 150
104,000 0.31 200
97,600 0.31 250
93,100 0.31 300
90,700 0.31 325
88,400 0.31 350
86,600 0.31 375
84,700 0.31 400
83,500 0.31 425
82,300 0.31 450
80,500 0.31 475
79,100 0.31 500
77,800 0.31 525
76,800 0.31 550
74,700 0.31 575
70,000 0.31 600
55,300 0.31 625
42,900 0.31 650
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Table 3. Material SS-316 constants for creep at temperatures 630–675 ◦C, ω = 0.05.

Creep Parameter A Stress Exponent n Temperature ◦C

1.71460 × 10−24 9.37430 630
2.96370 × 10−24 9.32270 635
5.09125 × 10−24 9.27170 640
8.70190 × 10−24 9.22120 645
1.47830 × 10−23 9.17100 650
2.48800 × 10−23 9.12180 655
4.19040 × 10−23 9.07300 660
7.00796 × 10−23 9.02400 665
1.1612 × 10−22 8.97670 670
1.9187 × 10−22 8.92940 675
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After running the simulations, with pre-defined boundary conditions, the model was
validated with the creep experimental test as per Christopher et al. [45]. The comparative
assessment of the results was made among three creep models, Omega, Norton–Bailey
and Kachanov–Rabotnov models, based on the proposed curve-fitting technique. The
data were optimized later by using response surface methodology and the ANOVA tech-
nique to further analyze the results and for sensitivity studies of creep models for better
damage prediction.

3.4. Sensitivity Analysis Using RSM and ANOVA

In this case study, a response surface methodology (RSM) model for creep strain
was developed by using design expert software version 13 and by analysing simulation
results obtained from Abaqus for the model. The corresponding design matrix, considering
four independent design factors, which are represented as A: stress, B: stress exponent, C:
creep parameter, and D: damage parameter, and one response: strain were analyzed. The
response variable, strain, had a non-linear relationship with the independent variables,
which happened to be a source of non-linearity in the selected model. In this case, a
quadratic model was selected for best describing the relationship between the independent
factors and the response variable. The design equations were solved to insert the data in
the relevant slots of the design matrix for the response. Based on the statistical evaluation,
the quadratic model was found to be significant, with the value of the coefficient of
determination R2 approaching 0.80. After the model selection, 3D surface plots illustrating
the correlation between design factors and responses were analyzed [54]. These plots were
used to comprehend the behavior of all the responses. Eventually, the optimization criteria
for each design parameter were specified with the desired degree of importance. The
subsequent surface plots indicated the optimum values of design parameters.

The analysis of variance (ANOVA) statistical technique was also applied to determine
the difference between two or more means or variables through significance tests, as it
provides a way to make multiple comparisons of several population means [55]. After
assigning low and high levels of designated factors, the design matrix comprised of
28 simulation runs was generated [56]. This matrix also included replicates of the central
points in the attempt to have more reliability in the design and the analysis, as depicted in
Table 4 [57].
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Table 4. Design matrix of factors and response.

Std Run
Factor 1

A: Stress, σ
(MPa)

Factor 2
B: Stress

Exponent, n

Factor 3
C: Creep Parameter,

A (MPa−n h−1)

Factor 4
D: Damage

Parameter (ω)

Response:
Strain (ε)

29 1 42 9.17485 7.29825 × 10−24 0.25 5.40131 × 10−9

3 2 3 9.176 9.65 × 10−26 0.05 1.97521 × 10−21

26 3 42 9.17485 7.29825 × 10−24 0.25 5.40131 × 10−9

21 4 42 9.17485 2.17017 × 10−23 0.25 1.6061 × 10−8

5 5 3 9.1737 1.45 × 10−23 0.05 2.96056 × 10−19

23 6 42 9.17485 7.29825 × 10−24 0.65 4.94469 × 10−9

15 7 3 9.176 1.45 × 10−23 0.45 7.79436 × 10−20

25 8 42 9.17485 7.29825 × 10−24 0.25 5.40131 × 10−9

17 9 120 9.17485 7.29825 × 10−24 0.25 8.53267 × 10−5

14 10 81 9.1737 1.45 × 10−23 0.45 4.43651 × 10−6

12 11 81 9.176 9.65 × 10−26 0.45 2.98253 × 10−8

24 12 42 9.17485 7.29825 × 10−24 0.25 5.40131 × 10−9

9 13 3 9.1737 9.65 × 10−26 0.45 5.17613 × 10−22

10 14 81 9.1737 9.65 × 10−26 0.45 2.95257 × 10−8

13 15 3 9.1737 1.45 × 10−23 0.45 7.7776 × 10−20

18 16 42 9.17255 7.29825 × 10−24 0.25 5.35515 × 10−9

19 17 42 9.17715 7.29825 × 10−24 0.25 5.44787 × 10−9

28 18 42 9.17485 7.29825 × 10−24 0.25 5.44787 × 10−9

27 19 42 9.17485 7.29825 × 10−24 0.25 5.44787 × 10−9

4 20 81 9.176 9.65 × 10−26 0.05 3.12123 × 10−8

1 21 3 9.1737 9.65 × 10−26 0.05 1.97031 × 10−21

6 22 81 9.1737 1.45 × 10−23 0.05 4.64277 × 10−6

11 23 3 9.176 9.65 × 10−26 0.45 5.18728 × 10−22

22 24 42 9.17485 7.29825 × 10−24 −0.15 5.89512 × 10−9

2 25 81 9.1737 9.65 × 10−26 0.05 3.08984 × 10−8

16 26 81 9.176 1.45 × 10−23 0.45 4.48152 × 10−6

7 27 3 9.176 1.45 × 10−23 0.05 2.96794 × 10−19

8 28 81 9.176 1.45 × 10−23 0.05 4.68992 × 10−6

3.5. Model Validation

The proposed model based on the curve-fitting technique was validated by the actual
experimental creep test conducted by Christopher et al. [45]. The results showed good
agreement between the predicted and the actual creep strain results. The predicted FEA
creep strain was obtained between stress values ranging from 100 to 200 MPa at various
time increments, with pre-defined boundary conditions and at a fixed temperature of 650 ◦C.
The creep strain and creep strain rate were compared with the actual creep experiments [45].
There was a good agreement between the simulated and the experimental creep strain
results at various stresses, as shown in the combined Figure 7. Because the deformation in
the primary creep stage was negligible, it can be ignored.

Damage evolution parameter ω values were taken arbitrarily in the range from 0.05
to 0.40, as the tertiary stage creep damage was constant for SS-316 material, in order to
track the behavior in that creep stage. The ω value helps in predicting the minimum creep
strain, the creep deformation, and the rupture of the material. The graph in Figure 8a was
plotted for different ω values for predicted creep strain versus time while running the
simulation. It shows good agreement with the graph in Figure 8b [45] for various ω values,
thus tracking material behavior in the tertiary stage of creep deformation.

The ratio between the strain rate and the damage rate was obtained and plotted
against damage variables to show the impact of the damage rate on the strain rate. From
the graphs, the dominance of the damage rate was visible, which is in good agreement for
the simulation and the experimental results in the combined Figure 9 [45]. Thus, the model
based on the proposed curve-fitting technique was validated for the analysis.
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4. Results
4.1. Dog Bone Specimen Simulation

Von Mises stresses were developed in the specimen after running the simulation
for 30,000 h under the defined boundary conditions for creep. Von Mises stresses were
obtained by selecting the point at the center in the red zone of the specimen where high
creep strain occurred. It was observed that the induced stresses were reduced gradually as
the time progressed from 200 MPa to around 100 MPa, which was until the completion of
the visco-elastic plastic run time of 30,000 h and as per the graph in Figure 10a. The relaxed
stresses are the observed decrease in stresses, in response to the strain generated in the
specimen. As per the graph in Figure 10b, the relaxed stresses were developed as the dog
bone specimen endured creep strain due to permanent plastic deformation and rupturing
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Figure 10. (a) Von Mises stress distribution. (b) Relaxed stress with the visco-elastic plastic run time of 30,000 h.

The deformation was apparent as the load was applied continuously, exceeding the
material’s yield stress and the ultimate tensile strength leading to fracture. The model was
under uniaxial tensile load to exhibit creep phenomena for SS-316 material. The effect of the
deformation was obvious at the lower end of the specimen, which was fixed by applying
symmetric boundary conditions. Figure 11a depicts the creation of a thermal environment
with boundary conditions, fixing one end and with the load applied at the other end with
meshed geometry. Figure 11b shows the Von Mises stress distribution on the specimen
after running the simulation up to the defined time period of 30,000 h. The concentration
of the stresses was at a maximum at the center and then concentrated around the fixed end
of the specimen; the lower stresses were induced at the free end of the specimen. As the
load was applied the deformation started as soon as the material entered from the elastic
to the plastic region under the influence of the thermal environment and with the defined
boundary conditions.

4.2. Creep and Plastic Strain Initiation and Propagation

The specimen underwent creep deformation, as depicted in Figure 11c, leading to
material rupture. Due to the continuous loading, the material surpassed its yield strength
and ultimate tensile strength limits, leading to material rupture. The deformation was
initiated and then propagated throughout the model, as the constant uniaxial load was
applied at one end of the specimen, resulting in model displacement from the other end. It
was observed that the amount of plastic strain accumulation was dependent on the load
applied, the boundary conditions, and the thermal environment, which was maintained
throughout the analysis. In this analysis, the elastic perfectly plastic model was employed
for the plasticity. Fracture strain occurred at the surface starting from the center of the
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specimen initiating with necking. The creep deformation occurred by atoms’ dislocation
and due to grain boundary sliding. It was observed that the material behavior was
governed by the type of the material, the thickness of the sample, the sample size, and the
amount of the load applied.

Materials 2021, 14, 5518 18 of 29 
 

 

 

Figure 11. (a) FE model of specimen. (b) Induced Von Mises stress in the specimen after running simulation. (c) Creep 

strain (CEEQ) for the applied stresses. 

4.2. Creep and Plastic Strain Initiation and Propagation 

The specimen underwent creep deformation, as depicted in Figure 11c, leading to 

material rupture. Due to the continuous loading, the material surpassed its yield strength 

and ultimate tensile strength limits, leading to material rupture. The deformation was in-

itiated and then propagated throughout the model, as the constant uniaxial load was ap-

plied at one end of the specimen, resulting in model displacement from the other end. It 

was observed that the amount of plastic strain accumulation was dependent on the load 

applied, the boundary conditions, and the thermal environment, which was maintained 

throughout the analysis. In this analysis, the elastic perfectly plastic model was employed 

for the plasticity. Fracture strain occurred at the surface starting from the center of the 

specimen initiating with necking. The creep deformation occurred by atoms’ dislocation 

and due to grain boundary sliding. It was observed that the material behavior was gov-

erned by the type of the material, the thickness of the sample, the sample size, and the 

amount of the load applied. 

The total inelastic strain was obtained by super-imposing the creep and the plastic 

strains. Figure 12 exhibits the comparison plot for total inelastic strain, creep strain, and 

plastic strain. The creep strain remained almost zero initially but increased slowly for 

some time and then increased rapidly, until it finally became steady; the plastic strain 

exhibited the same behavior. The total inelastic strain was within the standard strain range 

values given in the ASME FFS-1/API 579-1 standards for the specific material SS-316 and 

the temperature. From the plot, it was clear that slow creep strain occurred in the begin-

ning, which became consistent at secondary-stage creep deformation for the rest of the 

visco-elastic plastic run time of 30,000 h until the material ruptured. 
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strain (CEEQ) for the applied stresses.

The total inelastic strain was obtained by super-imposing the creep and the plastic
strains. Figure 12 exhibits the comparison plot for total inelastic strain, creep strain, and
plastic strain. The creep strain remained almost zero initially but increased slowly for
some time and then increased rapidly, until it finally became steady; the plastic strain
exhibited the same behavior. The total inelastic strain was within the standard strain
range values given in the ASME FFS-1/API 579-1 standards for the specific material SS-316
and the temperature. From the plot, it was clear that slow creep strain occurred in the
beginning, which became consistent at secondary-stage creep deformation for the rest of
the visco-elastic plastic run time of 30,000 h until the material ruptured.

4.3. Omega, Norton–Bailey, and Kachanov–Rabotnov Models Comparison

Comparison of creep strain rates vs time at a temperature of 650 ◦C for SS-316 material
between Norton–Bailey and Kachanov–Rabotnov–Norton–Bailey regression models ex-
hibited good agreement with some discrepancies, as per the graph in Figure 13. However,
results obtained from the Omega model showed more deviation than the other two models.
It is evident that creep strain rates followed the same path for all three cases initially, but,
beyond 5000 h, the results started to deviate slowly. By increasing the sample size of the
creep data with more stress points, a better curve fit may be achieved for predicting the
material’s creep behavior accurately. With the identification of the tertiary creep stage
constant, the damage evolution parameter ω in the Kachanov–Rabotnov model, a com-
plete creep curve can be obtained for this model representing the three creep stages of
the material.
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Similarly, the plot in Figure 14 for the creep strain versus time for the analytical Omega,
Norton–Bailey and Kachanov–Rabotnov regression models, at an elevated temperature of
650 ◦C for the specimen SS-316, followed similar curve paths. After 5000 h, they had started
to deviate into the material’s secondary creep deformation stage. It was observed that most
of the time spent by the material was in the secondary stage of creep, under continuous
loading with slow and steady deformation. It was also noticed that the decrease in stress
levels resulted in a decrease in the creep strain and an increase in thecreep rupture life.
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4.4. Data Optimization by Statistical Modelling

In this study, a quadratic regression model was selected for the response analysis:
strain. The appropriateness of the chosen regression models was validated through the
regular coefficient of determination (R2), the adjusted coefficient of determination (adjusted
R2), and the predicted coefficient of determination (predicted R2). The fit statistics for
the response strain are enlisted in Table 5 and were obtained from a central composite
design. The significance of the model is evident from the values of R2 (0.76), the adjusted
R2 (0.52), the predicted R2 (−0.94), and the adequate precision (9.78). Moreover, the values
of adjusted R2 and the predicted R2 were in proximity to each other. Adequate precision
compares the predicted values, called signal, and the average prediction error, called noise.
The appropriate relationship between signal and noise is confirming the effectiveness of
the model [58].

Table 5. Fit statistics for strain (ε).

Statistical Parameters Values Remarks

R2 0.7643 The quadratic model is
significant to search the

design space

Adjusted R2 0.5286
Predicted R2 −0.9414

Adequate Precision 9.7876

Table 6 depicts the model summary statistics for the response strain. The F and
p values are indicating that the model is suitable for searching the design space, under the
given conditions.

Table 6. Model summary statistics for response strain (ε).

Source Sum of Squares df Mean Square F-Value p-Value

Mean vs. Total 3.713 × 10−10 1 3.713 × 10−10

Suggested
Aliased

Linear vs. Mean 1.679 × 10−9 4 4.198 × 10−10 1.90 0.1439
2FI vs. Linear 2.056 × 10−11 6 3.427 × 10−12 0.0117 1.0000

Quadratic vs. 2FI 3.654 × 10−9 4 9.112 × 10−10 7.74 0.0017
Cubic vs.

Quadratic 1.648 × 10−9 8 2.060 × 10−10 4.352 × 10−9 <0.0001

Residual 2.84 × 10−19 6 4.734 × 10−20

Total 7.364 × 10−9 29 2.539 × 10−10
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To verify the adequacy of the developed model, the predicted versus actual responses
were plotted. Figure 15a shows the normal plot for residuals for the response strain.
Figure 15b shows, graphically, the actual and predicted values for the response strain. The
predicted and actual values for the concerned response, as depicted by the graph, were
in close agreement with each other. The distribution of data points along the run order
suggests that there was no significant increase or decrease in the values predicted by the
model [59].
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Figure 15. (a) Normal plot of residuals for the response strain. (b) Actual and predicted values for the response strain (ε).

Most of the values were in close proximity to the central line with random scattering.
No specific pattern of residuals above and below the central line was observable, in this
case, which leads to the conclusion that the run order of the design process had little
influence on the data; therefore, the model is significant [60].

ANOVA was used to determine the statistical parameters and the synergistic ef-
fects of each element. Various ANOVA adequacy tests (the lack-of-fit test, the F-value,
and the p-value) recommend the regression model’s applicability and suitability.
Table 7 shows the results of a statistical analysis using ANOVA to establish the degree
of significance for thechosen model based on the agreement between anticipated and
experimental/simulated responses.

The 3D model evaluated the response’s behaviour and demonstrated the independent
factors’ synergistic impacts on the chosen response. Generally, the 3D model represents
each response as a function of two independent factors where the remaining two factors
are kept constant at their mean coded values. The interrelationship between the factors
and the responses in RSM are best described by surface plots. A three-dimensional surface
plot shows the functional relationship between the designated dependent variables and
the corresponding independent variable. The response surface plot shows the combined
effects of the variation of the stress exponent, the creep parameter, the stress and the
damage parameter on the individual response strain, as in Figure 16a and the contour
creep deformation map in Figure 16b.

4.5. Discrete Effects of Factors on the Response

The optimization ramps for design parameters are shown in Figure 17. The criteria
defined for optimizing the responses are depicted by each ramp. The value of one of the



Materials 2021, 14, 5518 21 of 27

independent variables was bound to vary within the specified range, while the other was
set to be maximized. The red pointer indicates the optimum value for each factor, while
the blue one disseminates the same information about the response [61].

The perturbation graph is an essential diagram depiction to analyse the influence of all
variables at a given location in the design space. Figure 18 shows the plot of perturbation of
the four variables on the strain response. It was observed that the parameter A: stress had
a maximum effect on the response: strain, whereas the creep parameter: C had the least
effect on the response. The other two parameters, the stress exponent: B and the damage
parameter: D, had nominal effects on the response strain [62].

Figure 16. (a) The combined effect of design factors on the response strain (ε), (b) contour creep
deformation map.
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Table 7. ANOVA for the quadratic model (response: strain, ε).

Source Sum of Squares df Mean Square F-Value p-Value

Model 5.345 × 10−9 14 3.818 × 10−10 3.24 0.0176
A-Stress 2.428 × 10−10 1 2.428 × 10−10 2.06 0.1729

B-Stress Exponent n 3.601 × 10−16 1 3.601 × 10−16 3.059 × 10−6 0.9986
C-Creep Parameter A 1.376 × 10−11 1 1.376 × 10−11 0.1169 0.7375
D-Damage Parameter

ω
7.326 × 10−15 1 7.326 × 10−15 0.0001 0.9938

AB 5.380 × 10−16 1 5.380 × 10−16 4.570 × 10−6 0.9983
AC 2.054 × 10−11 1 2.054 × 10−11 0.1745 0.6825
AD 1.089 × 10−14 1 1.089 × 10−14 0.0001 0.9925
BC 5.239 × 10−16 1 5.239 × 10−16 4.450 × 10−6 0.9983
BD 2.917 × 10−19 1 2.917 × 10−19 2.478 × 10−9 1.0000
CD 1.060 × 10−14 1 1.060 × 10−14 0.0001 0.9926
A2 3.235 × 10−9 1 3.235 × 10−9 27.48 0.0001
B2 1.824 × 10−10 1 1.824 × 10−10 1.55 0.2337
C2 1.824 × 10−10 1 1.824 × 10−10 1.55 0.2337
D2 1.824 × 10−10 1 1.824 × 10−10 1.55 0.2337

Lack of fit (LOF) 1.648 × 10−9 9 1.831 × 10−10 Insignificant LOF shows a good fit for the model

Figure 17. Optimization criteria for factors and response.
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5. Conclusions

The significance of the study conducted was to curve-fit damage evolution parameters
through regression analysis. The technique was suitable in analyzing the tertiary creep
damage behavior of any material. The creep parameters obtained by curve fitting are
vital, as they are required as inputs while defining material properties in the FEA package
Abaqus. The problem with the creep tests include the fact that they are expensive and take
a long time to complete; therefore, there is always a scarcity of creep data and results for
any material. The following conclusions were made from this research study:

(1) The method formulated in this article can be applied to curve-fit tertiary creep damage
evolution parameters and to run creep analysis by finite element methods for any
material. By deriving a damage evolution constant in the equation, a material’s
behavior in the tertiary stage can be identified and predicted. A complete creep curve
can be obtained covering all three stages by applying this technique.

(2) From the results it is clear that the Omega model can work as a tool, because creep
strain analytical data can be extracted from ASME FFS-1/API-579 standards and
applied to embedded Norton–Bailey and Kachanov–Rabotnov models by regression
analysis in Abaqus for any material. Obtained creep parameters work as inputs
along with other parameters in the FEA package for damage evolution. Comparative
assessment for creep strain was made among the Omega, Kachanov–Rabotnov, and
Norton–Bailey models based on the proposed curve-fitting technique.

(3) The fit statistics for the quadratic model of creep strain points revealed that the
anticipated and simulated/actual values were more closely aligned. This proved
that the quadratic model could navigate the design space effectively. Furthermore,
as evidenced by their p-values, the interaction terms of mixing conditions had a
substantial influence on the variables and the response.

(4) Detailed statistical analysis and successive geometric optimization were performed
using the response surface modelling approach and the ANOVA technique. The re-
sulting 3D surface plot was analysed to comprehend the combined effect of the design
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factors: stress, the stress exponent, the creep parameter, and the damage evolution
parameter on the relevant response: strain. The impact on the strain response was
analysed and investigated with the help of contour creep deformation maps.

(5) The FEA model was validated with the published experimental creep test, and the
results showed good agreement between simulated and experimental results. Hence,
the model was validated and applied. The combined effects in uncertainties can be
removed by increasing the sample size of the creep data and for further extrapolation
for creep prediction.
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Nomenclature

A Norton’s power law constant
R Universal gas constant
T Temperature
tr rupture time
Q activation energy
Qc Norton’s activation energy
σ1, σ2 & σ3 principal stresses
S1 Stress parameter
δΩ Omega parameter
α Triaxiality parameter
ε0 Initial creep strain
n Norton’s power law constant
ω Omega damage parameter
εt Creep strain rate
Ω Omega material damage constant
σe Effective stress
Ωm Omega multiaxial damage parameter
Ωt Omega material damage constant with respect to time
Ωn Omega uniaxial damage parameter
∆cd Adjustment factor for creep ductility
εΩ Accumulated creep strain
A0 Stress coefficient
AΩ Stress coefficient
QΩ Temperature dependence of Ω
∆cd

n Creep rupture life
nBN Norton–Bailey coefficient
Trefa Reference temperature
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βΩ Omega parameter to 0.33
FEA Finite element analysis
FFS Fitness for service
API American Petroleum Institute
MPC Material Properties Council
UTS Ultimate tensile strength
BPVC Boiler and pressure vessel codes
ASME American Society for Mechanical Engineers
ASTM American Standards for Testing of Materials
UTS Ultimate tensile strength
SS Stainless steel
CDM Continuum damage mechanics
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