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Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) has caused a high mortality rate since its emergence in 2012 in 
the Middle East. Currently, no effective drug or vaccine is available for MERS-CoV. Supportive care and prevention are the 
only ways to manage infection. In this study, we identified an epitope-based vaccine that could be an optimal solution for the 
prevention of MERS-CoV infection. By deploying an immunoinformatics approach, we predicted a subunit vaccine based 
on the surface glycoprotein (S protein) of MERS-CoV. For this purpose, the proteome of the MERS-CoV spike protein was 
obtained from the NCBI GenBank database. Then, it was subjected to a check for allergenicity using the Allergen FP v.1.0 
tool. The Vaxijen v.2.0 tool was used to conduct antigenicity tests for binding with major histocompatibility complex class I 
and II molecules. The solidity of the predicted epitope-allele docked complex was evaluated by a molecular dynamics simu-
lation. After docking a total of eight epitopes from the MERS-CoV S protein, further analyses predicted their non-toxicity 
and therapeutic immunogenic properties. These epitopes have potential utility as vaccine candidates against MERS-CoV, 
to be validated by wet-lab testing.
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Introduction

Middle East respiratory syndrome coronavirus (MERS-
CoV) has been identified as a novel human coronavirus 
that poses a major threat to global public health, calling 
for the urgent development of effective and safe vaccines. 
MERS-CoV is correlated with an unusually high death rate 
of almost 35% (Alqahtani et al. 2018; Bermingham et al. 

2012; Zaki et al. 2012). The first known infections of MERS-
CoV were detected in Saudi Arabia in 2012, and the virus 
later spread to other countries. Worldwide, 27 countries have 
reported cases since 2012. In the Western Pacific Region, 
countries that have experienced imported cases of MERS 
include China, Malaysia, the Philippines, and the Republic 
of Korea. The importation of the virus into the Republic of 
Korea in 2015 led to the largest MERS outbreak outside of 
the Middle East. This outbreak resulted in 186 laboratory-
confirmed cases and 36 deaths (Durai et al. 2015; Ki 2015).

MERS-CoV was determined to be different from all 
other coronavirus strains that have been found in humans, 
including the severe acute respiratory syndrome coronavi-
rus (SARS-CoV) and SARS-CoV-2 strains that caused the 
SARS (LeDuc and Barry 2004) and coronavirus disease 
2019 (COVID-19) epidemics, respectively. So far, various 
types of vaccines targeting SARS-CoV and SARS-CoV-2 
have been developed and tested in preclinical models. 
These include protein subunit vaccines, virus-like particle 
vaccines, DNA vaccines, RNA vaccines, viral vector vac-
cines, inactivated whole-virus vaccines, and live-attenuated 
virus vaccines (Anderson et al. 2020; Folegatti et al. 2020; 
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Jackson et al. 2020; Keech et al. 2020; Logunov et al. 2020; 
Mulligan et al. 2020; Sahin et al. 2020; Walsh et al. 2020; 
Zhu, et al. 2020a, b; Zhu, et al. 2020a, b). However, only 
DNA- and viral vector-based vaccine candidates have been 
tested in preclinical models for MERS-CoV (Modjarrad 
et al. 2019; Xia et al. 2020, 2021).

In recent studies, epitope-based vaccine candidates were 
successfully developed against SARS-CoV-2, human cyto-
megalovirus, Tropheryma whipplei, nervous necrosis virus, 
candida fungus, and dengue virus (Akhtar et al. 2021a, b, c; 
Sunil Krishnan et al. 2020; Jain et al. 2021; Joshi et al. 2020; 
Joshi and Kaushik 2020; Krishnan et al. 2021). Subunit vac-
cines have been clinically approved for use against pertus-
sis, influenza, Streptococcus pneumoniae, and Haemophilus 
influenzae type b (Folegatti et al. 2020; Koch et al. 2020). 
To our knowledge, such protein subunit vaccines are easy to 
produce and relatively safe and well-tolerated compared to 
whole-virus vaccines and viral vector vaccines. They con-
sist of viral antigenic fragments produced by recombinant 
protein techniques. Thus, our study predicted epitope-based 
vaccine peptides that have therapeutic properties against 
MERS-CoV, however, experimental evaluations remain nec-
essary to verify the exact safety and immunogenicity profile 
of this vaccine.

Materials and Methods

Proteomic Data Retrieval

The MERS-CoV surface glycoprotein (S protein) sequence 
was obtained from the National Center for Biotechnology 
Information (NCBI) database (http:// www. ncbi. nlm. nih. 
gov/) using the accession ID ALW82742.1. The experimen-
tally derived 3D structure of the MERS-CoV S protein was 
retrieved from the Protein Data Bank (PDB ID: 5X59).

Evaluation of Protein Physicochemical Properties

Using the online program ProtParam, the protein sequence 
was examined for chemical and physical characteristics such 
as grand average of hydropathicity (GRAVY), half-life, 
molecular weight, stability index, and amino acid atomic 
composition (Gasteiger et al. 2005).

Antigenicity Tests

The Vaxijen v.2.0 server (Doytchinova and Flower 2007; 
http:// www. ddg- pharm fac. net/ vaxij en/ VaxiJ en/ VaxiJ en. 
html) was used to conduct antigenicity tests. For predicting 

allergenicity, the protein sequence was expanded for further 
analysis based on Allergen FP v.1.0. (Dimitrov et al. 2013).

B‑Cell Epitope Prediction

B-cell epitopes were predicted using the free web server 
ABCpred (Saha and Raghava 2006; http:// crdd. osdd. net/ 
ragha va/ abcpr ed/). The criteria were established at 75% 
specificity, and 12-residue-long epitopes were deemed suf-
ficient to induce a protective immune response. The top 
results ranked from 1 to 10 were considered.

T‑Cell Epitope Prediction

Epitopes of cytotoxic T lymphocytes (CTLs) are impor-
tant in vaccine development. Most importantly, it saves 
money and time as compared to wet-lab studies. Thus, CTL 
epitopes of target proteins of major histocompatibility com-
plex (MHC) classes I and II were predicted using two dif-
ferent internet tools, the NetMHCpan 4.1 (http:// www. cbs. 
dtu. dk/ servi ces/ NetMH Cpan-4. 1/) and NetMHCIIpan 4.0 
servers (http:// www. cbs. dtu. dk/ servi ces/ NetMH CIIpan- 4.0/; 
Reynisson et al. 2020). Because these techniques consider a 
large number of human leukocyte antigen (HLA) alleles dur-
ing calculation, the results are highly significant. All alleles 
were chosen for prediction and the sequence was supplied 
in a simple format.

Toxicity Profiling for Selected Epitopes

After finalizing the epitopes of both MHC class I and class II 
alleles, the ToxinPred server (Gupta et al. 2013) was used for 
in silico analysis to differentiate non-toxic and toxic peptides 
(http:// crdd. osdd. net/ ragha va/ toxin pred/). Only non-toxic 
epitopes were chosen for further investigation.

Molecular Docking

The 3D structures of HLA alleles were retrieved from the 
Research Collaboratory for Structural Bioinformatics PDB 
(RCSB PDB) database (Berman 2000), and used for subse-
quent molecular docking purposes. The PatchDock server 
(Duhovny et al. 2002; Schneidman-Duhovny et al. 2005a, b) 
was used for conducting docking experiments (https:// bioin 
fo3d. cs. tau. ac. il/ Patch Dock/ php. php). Thereafter, the Fire-
Dock server (Mashiach et al. 2008) was used to screen the 
best-docked results based on atomic contact energy (ACE; 
https:// bioin fo3d. cs. tau. ac. il/ FireD ock/ php. php).

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://crdd.osdd.net/raghava/abcpred/
http://crdd.osdd.net/raghava/abcpred/
http://www.cbs.dtu.dk/services/NetMHCpan-4.1/
http://www.cbs.dtu.dk/services/NetMHCpan-4.1/
http://www.cbs.dtu.dk/services/NetMHCIIpan-4.0/
http://crdd.osdd.net/raghava/toxinpred/
https://bioinfo3d.cs.tau.ac.il/PatchDock/php.php
https://bioinfo3d.cs.tau.ac.il/PatchDock/php.php
https://bioinfo3d.cs.tau.ac.il/FireDock/php.php
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MD Simulations

The MDWeb tool (Hospital et al. 2012) was deployed for 
conducting molecular dynamics and simulation studies for 
obtaining the best-docked complexes (https:// mmb. irbba 
rcelo na. org/ MDWeb/). Trajectory analysis produced root-
mean-square deviation (RMSD) and B-Factor plots that 
demonstrated the integrity and stability of complexes under 
simulated environments.

Results

Protein Evaluation

From the protein sequence of the MERS-CoV S protein, 
various physicochemical properties were computed using 
ProtParam. AllergenFP v.1.0 results indicated that the pro-
tein had non-allergenic properties as it held a higher Tani-
moto similarity index of 0.84. Vaxijen v.2.0 analysis with 
a threshold of 0.4 revealed an antigenicity of 0.4829, indi-
cating that the sequence was a probable antigen. Thus, we 
confirmed that the MERS-CoV S protein sequence can well 
be considered for epitope prediction. The abovementioned 
properties are summarized in Table 1.

T‑Cell Epitope Prediction

T-cell epitopes were predicted from the S protein using the 
NetMHCpan 4.1 server for MHC Class I HLA proteins and 
the NetMHCIIpan 4.0 server for MHC Class II HLA proteins 
as both servers work efficiently based on an artificial neural 

network schematic framework. Tables S1 and S2 present the 
screened epitopes based on the binding affinity and rank gen-
erated by the NetMHC servers. Supplementary Excel Sheets 
1 and 2 present the full T-cell epitopes for both MHC I and 
MHC II HLA allelic determinants.

B‑Cell Epitope Prediction

The ABCpred tool was deployed for B-cell epitope predic-
tion. B-cell epitopes bind to B-cell receptors (BCRs) and 
induce immune responses against MERS-CoV. Along with 
T-cell epitopes, B-cell epitopes are highly useful in generat-
ing immunogenicity (Table S3).

Toxicity and Antigenicity Tests

Allergenicity prediction using AllergenFP v.1.0 revealed 
that the complete S protein sequence represented a prob-
able non-allergen. Vaxijen v.2.0 analysis of T-cell and B-cell 
epitopes from the MERS-CoV S protein using a threshold of 
1.1 facilitated the screening of epitopes of high antigenicity, 
indicating that the selected protein had probable antigenic 
and immunogenic properties. Thus, we confirmed that the 
protein sequence can be considered for epitope prediction. 
After this analysis, the screened epitopes were analyzed 
using the ToxinPred tool that further confirmed their non-
toxic features (Table 2).

MHC Proteins and BCR Structure Retrieval

All receptor structures were retrieved from the RCSB 
PDB database. The structural files for MHC class II HLA 
DRB1:0101 (PDB ID: 1AQD), MHC Class I HLA-A*0101 

Table 1  Physicochemical 
properties of the MERS-
CoV S protein (GenBank ID: 
ALW82742.1)

Criteria Value

Number of amino acids 1353
Molecular weight 149,368.04
Total number of negatively charged residues (Asp + Glu) 112
Total number of positively charged residues (Arg + Lys) 95
Formula C6682H10245N1735O2029S63

Total number of atoms 20,754
Aliphatic index 82.71
Theoretical pI 5.70
Estimated half-life 30 h (Mammalian reticulo-

cytes, in vitro) > 20 h (yeast, 
in vivo)

 > 10 h (Escherichia coli, 
in vivo)

Grand average of hydropathicity (GRAVY) − 0.074
Allergenicity Non-allergen
Antigenicity using the VaxiJen sever Antigen (VaxiJen score 0.4829)

https://mmb.irbbarcelona.org/MDWeb/
https://mmb.irbbarcelona.org/MDWeb/
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(PDB ID: 1W72), and BCR (PDB ID: 5IFH) were down-
loaded successfully.

Molecular Docking Studies

Molecular docking studies were conducted using the Patch-
Dock and FireDock tools (Dina Schneidman-Duhovny et al. 
2005a, b). Figure 1 presents all 11 docked complexes, of 
which eight complexes had suitable ACE values from − 9 
to − 5 kcal/mol (Krishnan et al. 2021). The eight selected 
complexes are presented in Table 3. 

The obtained results also indicated perfect binding 
between the ligand and receptor as presented in Fig. 2. 
Two B-cell epitopes, LEPRSGNHCPAG and QNCTAVG-
VRQQR, bound to the BCR_FAB domain during molecular 
docking and showed chemical interactions in visualizations 
with PyMOL.

Similarly, the T-cell epitopes GRGVFQNCTAVGVRQ 
and EGGGWLVASGSTVAM interacted with MHC class 
II HLA determinants (Fig. 3A and B). Additionally, the 
T-cell epitopes YSNITITYQGLF, YIDLKELGNYTY, 
SYIDLKELGNYT, and PTNFSFGVTQEY were observed 
to interact with MHC class I HLA determinants (Fig. 3C–F). 
All such T-cell epitope interactions were observed in the 
binding pocket of core protein receptors using the PyMOL 
visualization tool.

MD Simulations

For epitopes interacting with the HLA allele structures, the 
RMSD values and atomic fluctuation per amino acid residue 
were acquired, allowing for ideal pair selection and confir-
mation. The MDWeb tool was deployed for this purpose, 
and RMSD and B-factor values in the appropriate range 
were successfully obtained (Sunil Krishnan et al. 2020). 
The RMSD and B-factor plots of the B-cell epitope with the 

lowest ACE value interacting with the BCR_FAB domain 
are indicated in Fig. 4.

Figures 5 and 6 present RMSD and B-factor plots, respec-
tively, for all T-cell epitopes interacting with MHC class I 
and class II HLA determinants. The obtained results indi-
cated perfect molecular stability in the docked complex in 
short-run simulations using the MDWeb tool.

Discussion

MERS-CoV and SARS-CoV-2 are emerging infectious 
viruses that are extremely harmful to humans. Effective 
immunization and protective measures against these infec-
tions are still largely undiscovered. Gaps in our understand-
ing of these pathogens’ protective immunity pose challenges 
to vaccine development (Sunil Krishnan et al. 2020; Park 
et al. 2019).

This study aimed to use immunoinformatics approach to 
screen of vaccine epitopes to identify the most antigenic 
protein of MERS-CoV as well as the B- and T-cell epitopes 
that map onto this protein. The immunoinformatics method, 
which is based on bioinformatics breakthroughs, is a viable 
and necessary tool for developing vaccines against new, 
highly dangerous microorganisms. In this investigation, criti-
cal dominant immunogens were screened against MERS-
CoV using an immunoinformatics-driven strategy.

The results revealed that the S protein was a superior anti-
genic protein. Indeed, all current MERS vaccination trials 
focus on the S protein of MERS-CoV, which facilitated the 
identification of the host cell DPP4 receptor and causes a 
strong immune response (Wang et al. 2013). After docking 
a total of eight epitopes from the MERS-CoV S protein, 

Table 2  Toxicity results

Epitopes ToxinPred SVM 
score

Toxicity

YSNITITYQGLF − 1.28 Non-toxin
NITITYQGLFPY − 1.13 Non-toxin
PTNFSFGVTQEY − 1.68 Non-toxin
PPLMDVNMEAAY − 1.26 Non-toxin
TQINTTLLDLTY − 1.53 Non-toxin
SYIDLKELGNYT − 1.23 Non-toxin
YIDLKELGNYTY − 1.10 Non-toxin
EGGGWLVASGSTVAM − 0.94 Non-toxin
GRGVFQNCTAVGVRQ − 1.07 Non-toxin
LEPRSGNHCPAG − 0.85 Non-toxin
QNCTAVGVRQQR − 1.14 Non-toxin

Table 3  Molecular docking results: selection of best-docked com-
plexes based on ACE value

Receptor–ligand complex Atomic contact 
energy (Kcal/
mol)

Inference

BCR_FAB-LEPRSGNHCPAG − 6.39 Selected
BCR_FAB-QNCTAVGVRQQR − 6.14 Selected
HLADRB1:0101-GRGVFQNCTAVG-

VRQ
− 8.85 Selected

HLADRB1:0101-EGGGWLVASGST-
VAM

− 8.61 Selected

HLA_A0101-NITITYQGLFPY − 2.76 Rejected
HLA_A0101-YSNITITYQGLF − 5.51 Selected
HLA_A0101- YIDLKELGNYTY − 7.58 Selected
HLA_A0101-SYIDLKELGNYT − 6.26 Selected
HLA_A0101-TQINTTLLDLTY − 3.95 Rejected
HLA_A0101-PPLMDVNMEAAY − 3.36 Rejected
HLA_A0101-PTNFSFGVTQEY − 5.28 Selected
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analyses predicted that these epitopes are non-toxic and have 
therapeutic immunogenic properties. Two B-cell epitopes, 
LEPRSGNHCPAG and QNCTAVGVRQQR, bound to the 
BCR_FAB domain during molecular docking. Additionally, 
the T-cell epitopes GRGVFQNCTAVGVRQ and EGGGWL-
VASGSTVAM interacted with MHC class II HLA deter-
minants. Similarly, the T-cell epitopes YSNITITYQGLF, 
YIDLKELGNYTY, SYIDLKELGNYT, and PTNFSFG-
VTQEY were observed to interact with MHC class I HLA 

determinants. Recent studies using a similar approach suc-
cessfully identified epitope-based vaccine candidates against 
SARS-CoV-2, human cytomegalovirus, Tropheryma whip-
plei, nervous necrosis virus, candida fungus, and dengue 
virus (Akhtar et al. 2021a, b, c; Sunil Krishnan et al. 2020; 
Jain et al. 2021; Joshi et al. 2020; Joshi and Kaushik 2020; 
Krishnan et al. 2021). Thus, the identified T-cell and B-cell 
epitopes have therapeutic potential against the MERS virion.

Fig. 1  ACE plot for 11 docked 
complexes

Fig. 2  B-cell epitopes interact-
ing with BCRs. A BCR_FAB-
LEPRSGNHCPAG, B BCR_
FAB-QNCTAVGVRQQR
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Fig. 3  T-cell epitopes interacting with MHC class II receptors (A, B). 
A HLADRB1:0101-GRGVFQNCTAVGVRQ, B HLADRB1:0101-
EGGGWLVASGSTVAM. T-cell epitopes interacting with MHC 

class I receptors (C–F). C HLA_A0101-YSNITITYQGLF, D HLA_
A0101-YIDLKELGNYTY, E HLA_A0101-SYIDLKELGNYT, F 
HLA_A0101-PTNFSFGVTQEY
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Fig. 4  RMSD plot (A) and 
B-factor plot (B) for the B-cell 
epitope with the lowest ACE 
value interacting with the BCR 
BCR_FAB-LEPRSGNHCPAG
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Fig. 5  RMSD plot of docked T-cell epitopes. A HLADRB1:0101-GRGVFQNCTAVGVRQ, B HLADRB1:0101-EGGGWLVASGSTVAM, C 
HLA_A0101-YSNITITYQGLF, D HLA_A0101-YIDLKELGNYTY, E HLA_A0101-SYIDLKELGNYT, F HLA_A0101-PTNFSFGVTQEY
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Conclusions

MERS-CoV causes a severe respiratory disorder, and better 
vaccines need to be developed to control this pathogen. The 
main target of this study was to identify peptide epitopes 

from MERS-CoV for both T cells and B cells that have ther-
apeutic potential. Our modern in silico study demonstrates 
a fast strategy for vaccine development against MERS-CoV 
that nevertheless requires wet-lab testing for final validation.

Fig. 6  B-factor plot of docked T-cell epitopes. A HLADRB1:0101-GRGVFQNCTAVGVRQ, B HLADRB1:0101-EGGGWLVASGSTVAM, C 
HLA_A0101-YSNITITYQGLF, D HLA_A0101-YIDLKELGNYTY, E HLA_A0101-SYIDLKELGNYT, F HLA_A0101-PTNFSFGVTQEY
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