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Summary

To avoid detrimental interactions with intestinal
microbes, the human epithelium is covered with a
protective mucus layer that traps host defence mol-
ecules. Microbial properties such as adhesion to
mucus further result in a unique mucosal microbiota
with a great potential to interact with the host.
As mucosal microbes are difficult to study in vivo,
we incorporated mucin-covered microcosms in a
dynamic in vitro gut model, the simulator of the
human intestinal microbial ecosystem (SHIME). We
assessed the importance of the mucosal environment
in this M-SHIME (mucosal-SHIME) for the colonization
of lactobacilli, a group for which the mucus binding
domain was recently discovered. Whereas the
two dominant resident Lactobacilli, Lactobacillus
mucosae and Pediococcus acidilactici, were both
present in the lumen, L. mucosae was strongly
enriched in mucus. As a possible explanation, the
gene encoding a mucus binding (mub) protein was

detected by PCR in L. mucosae. Also the strongly
adherent Lactobacillus rhamnosus GG (LGG) specifi-
cally colonized mucus upon inoculation. Short-term
assays confirmed the strong mucin-binding of both
L. mucosae and LGG compared with P. acidilactici.
The mucosal environment also increased long-term
colonization of L. mucosae and enhanced its stability
upon antibiotic treatment (tetracycline, amoxicillin
and ciprofloxacin). Incorporating a mucosal environ-
ment thus allowed colonization of specific microbes
such as L. mucosae and LGG, in correspondence
with the in vivo situation. This may lead to more in
vivo-like microbial communities in such dynamic,
long-term in vitro simulations and allow the study of
the unique mucosal microbiota in health and disease.

Introduction

The human intestinal tract is colonized by a complex
microbial community, which is mostly (> 90%) dominated
by microorganisms from two phyla, Bacteroidetes and
Firmicutes (the latter including for instance Lactobacilli)
(Eckburg et al., 2005). This organized microbiota renders
multiple benefits to the host such as induction of immu-
nological responses, breakdown of otherwise inacces-
sible food compounds and regulation of host metabolism
(Backhed et al., 2005; Turnbaugh et al., 2006). On the
other hand, as intestinal microbes may potentially also
invade the epithelium, the host has developed an efficient
mucosal defence barrier. A regularly replaced mucus layer
traps antimicrobial peptides and other immune effectors,
allowing the host to avoid direct microbial contact with the
underlying epithelium and mucosal tissues (Lievin-Le
Moal and Servin, 2006; Mukherjee et al., 2008).

As reviewed by Van den Abbeele and colleagues
(2011), specific microbial characteristics including for
instance adhesion to mucus, the ability to gain nutrients
from host-derived glycans or resistance to host defence
molecules, allow specific microbes to colonize this layer,
resulting in a distinct mucosa-associated microbial com-
munity (MAMC) (Zoetendal et al., 2002; Macfarlane,
2008; Schreiber, 2010). Colonization of this mucus layer
prolongs microbial colonization, as washout is counter-
acted and mucosal microbes are more protected from
disturbances in the lumen. The MAMC is important for the
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host as resident mucosal microbes might prevent patho-
gens from approaching and invading the epithelium, by
excreting antimicrobial compounds in the mucus layer or
by competing for adhesion (Kaur et al., 2002). Moreover,
mucosal microbes can interact more closely with the epi-
thelium than their luminal counterparts, which may be
crucial for achieving immunomodulatory effects (Sun
et al., 2010). Over the past few decades, strategies have
been developed to optimize or restore the intestinal micro-
bial balance. An important one is the use of probiotics,
which include specific Bifidobacterium spp. and Lactoba-
cillus spp. (FAO/WHO, 2002; O’Flaherty and Klaenham-
mer, 2010; Williams, 2010). Because of the mentioned
potential health benefits of mucosal microbes, probiotics
are often screened and selected for their adhesion capac-
ity to the intestinal surface (Ouwehand et al., 1999;
Tuomola et al., 2001).

Despite their physiological relevance, human interven-
tion studies are restricted to end-point measurements
regarding mucosal microbes (Alander et al., 1997; Zoet-
endal et al., 2002). Human studies are often restricted to
faecal samples, which do not provide information on pro-
biotic colonization of the mucus layer in different intes-
tinal regions (Alander et al., 1999; Tuomola et al., 2001;
Kankainen et al., 2009). In contrast, in vitro experiments
are well suited to screen the adhering potency of can-
didate probiotic strains. Such experiments include adhe-
sion assays to intestinal mucus (Ouwehand et al., 1999),
mucins (Kinoshita et al., 2007; Van den Abbeele et al.,
2009), colonic tissue (Ouwehand et al., 2002) and cell
lines (Laparra and Sanz, 2009). However, these models
only provide short-term information and often ignore
the interaction between luminal and mucosal microbial
communities. Long-term dynamic in vitro models do
allow dynamic monitoring in different intestinal regions
but typically do not incorporate a simulation of the
mucosal environment, which limits their representative
capacity. Indeed, the microbial community development
dynamic in vitro models was recently shown to go
along with distinct community shifts, such as increased
Bacteroidetes/Firmicutes ratios, lower numbers of
bacilli and an enrichment in propionate producers
(Clostridium cluster IX) compared with butyrate produc-
ers (Clostridium clusters IV and XIVa) leading to altered
SCFA ratios compared with the in vivo situation (Van
den Abbeele et al., 2010). As incorporating a mucosal
environment may avoid washout of adherent microbes
(e.g. Lactobacilli), a more accurate in vitro simulation of
the human intestinal microbial composition may be
obtained. Additionally, a mucosal environment is charac-
terized by a low shear stress that greatly activates the
microbial gene expression (Nickerson et al., 2004),
potentially resulting in a more in vivo-like behaviour of
the individual microbes.

The objective of this study was therefore to incorporate
a mucosal environment, containing mucin-covered micro-
cosms, in a dynamic in vitro gut model, i.e. the simulator
of the human intestinal microbial ecosystem (SHIME),
and assess its importance for the colonization of Lacto-
bacilli within the background of a complex microbial com-
munity. We focused on the Lactobacilli as a mucus
binding domain has recently been described for several
species belonging to this group (Boekhorst et al., 2006).
The aims of this study were (i) to quantify, identify and
isolate the dominant Lactobacilli, (ii) to evaluate the in
vitro adhesion capacity of the isolated bacteria to mucin
agar, (iii) to characterize the colonization capacity of the
model probiotic Lactobacillus rhamnosus GG (LGG), and
(iv) to investigate the resilience of the Lactobacilli com-
munity after administration of an antibiotic pulse.

Results

Colonization of the luminal and mucosal environment in
the M- and L-SHIME

One day after inoculation, DGGE analysis for the total
bacterial community revealed distinct differences
between the microbiota of the luminal and the mucosal
environment (< 60% similarity between mucus and
lumen) (Fig. 2A). Interestingly, both the M- and L-SHIME
contained fairly similar microbial communities in their
luminal environment (ª 90% similarity).

Analysis of the Lactobacillus-subgroup demonstrated
the distinct nature of the luminal and mucosal microbiota.
Plating of samples of the M- and L-SHIME on
Lactobacillus-specific growth medium revealed two pre-
dominant colony morphologies (Fig. 1). When these iso-
lates were analysed with Lactobacillus-specific DGGE,
both strains were found to cover the entire Lactobacillus-
specific DGGE profile (Fig. 2B). The first species was
associated with one band in the DGGE profile and was
identified as Pediococcus acidilactici (99.7%), a species
that strictly speaking should be regarded as a coccoid
Lactobacilli. The second species covered three bands
within the DGGE profile and was identified as Lactobacil-
lus mucosae (99.9%). DGGE analysis showed that
the colonization of the mucosal environment occurred
species specifically: both strains were detected in
the luminal content of the M- and L-SHIME (density
band P. acidilactici = 15.8%; density bands L. muco-
sae = 84.2%), whereas only L. mucosae was able to
establish in the mucin-adhered microbial community
(density band P. acidilactici = 1.4%; density bands L. mu-
cosae = 98.6%) (Fig. 2B).

Colonization of L. rhamnosus GG (LGG)

As the colony morphology of LGG, P. acidilactici and
L. mucosae on LAMVAB growth medium was distinguish-
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able (Fig. 1), it was possible to quantitatively estimate the
amounts of these three strains using plate counts. More-
over, after addition of LGG on day 3, the three Lactobacilli
species covered the entire range of the Lactobacillus-
specific DGGE profile. The results of the plate counts
were thus representative for the shifts within the Lactoba-
cilli community (Fig. 2B/C). One day after the administra-
tion (day 4), LGG was washed-out from both SHIME
systems at a comparable rate (ª factor 20 decrease)
(Table 1). However, 3 days after inoculation (day 6),
planktonic LGG was detected in slightly higher abun-
dances in the M-SHIME compared with the L-SHIME
(0.4% compared with 0.1% of total Lactobacilli, respec-
tively). The presence of LGG within the mucus was a
factor 26 higher compared with the lumen (10.7% com-
pared with 0.4% of total Lactobacilli, respectively). DGGE
analysis confirmed these results as 3 days after inocula-
tion (day 6), LGG could only be detected in the mucus
layer of the M-SHIME (Fig. 2C). Finally, 5 days after
administration of LGG (day 8), the abundance of LGG in

the mucus layer was also below the detection limit of
DGGE. Interestingly, the single dose of LGG on day 3
resulted in P. acidilactici to be outcompeted within 3 days
from the luminal content of both SHIME units.

Adhesion of Lactobacilli isolates to mucin agar

In order to compare the adhering potency of the isolated
Lactobacilli to mucins, a short-term in vitro adhesion
assay was performed. The first isolate was designated
P. acidilactici LB1 and the second L. mucosae LB2.
Whereas adhesion of L. mucosae LB2 to the mucin agar
(8.0 � 1.4%) was comparable with that of LGG
(10.9 � 2.0%), P. acidilactici LB1 adhered to a much
lower extent (1.8 � 0.4%) (Fig. 3).

Detection of a gene encoding for a mucus binding
protein in L. mucosae LB2

It has earlier been reported that L. mucosae strains can
carry mucus binding proteins similar to Mub in Lactoba-
cillus reuteri 1063 (Roos et al., 2000). The presence of
genes encoding Mub1 and Mub2 repeats in L. mucosae
LB2 was analysed by PCR. The mub1 primers generated
fragments of the same sizes from both L. mucosae LB2
and L. reuteri 1063 (approximately 600 bp), while the
mub2 primers gave a larger fragment from L. mucosae
LB2 (approximately 550 bp) than from L. reuteri 1063
(approximately 280 bp). The mub1 fragment from L. mu-
cosae LB2 was sequenced and the sequence was shown
to have 97.1% identity with the corresponding gene from
L. reuteri 1063. Thus, a gene with considerable similari-
ties to mub is present in L. mucosae LB2.

Resilience of the Lactobacilli communities after
administration of an antibiotic pulse

When determining the minimal inhibitory concentration
(MIC) values of amoxicillin, tetracycline and ciprofloxacin
for P. acidilactici LB1 and L. mucosae LB2 (Table 2), it
was observed that P. acidilactici LB1 was more resistant

Fig. 1. Suspensions from both the M- and L-SHIME, plated on
Lactobacillus-specific growth medium (LAMVAB) revealed two
predominant colony morphologies, identified as Pediococcus
acidilactici (1; big, smooth and circular) and Lactobacillus mucosae
(2; rough and irregular) by means of the 16S rRNA gene
sequencing. Upon inoculation, also Lactobacillus rhamnosus GG
had a distinct colony morphology (3; small, smooth and circular).

Table 1. Abundance of Pediococcus acidilactici (P. ac), Lactobacillus mucosae (L. muc) and Lactobacillus rhamnosus GG (LGG) (% of total
amount of lactobacilli) as determined with plate counts on a Lactobacillus-specific growth medium (LAMVAB) in the M-SHIME (lumen and mucus)
and L-SHIME (lumen), on day 3 (before and after administration of LGG), 4 and 6.

Time (days)

M-SHIME L-SHIME

Lumen Mucus Lumen

P. ac L. muc LGG P. ac L. muc LGG P. ac L. muc LGG

3 (before LGG) 7.7 92.3 0.0 6.6 93.4 0.0 12.4 87.6 0.0
3 (after LGG) 5.7 59.8 34.4 nd nd nd 3.7 29.0 67.3
4 1.0 97.0 2.0 0.5 97.8 1.7 3.5 93.3 3.2
6 0.1 99.4 0.4 0.2 89.2 10.7 0.0 99.9 0.1
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to these three antibiotics compared with L. mucosae LB2.
Especially amoxicillin inhibited the growth of L. mucosae
LB2 (MIC = 0.25 mg ml-1) while P. acidilactici LB1 was
quite resistant to this antibiotic (MIC = 4 mg ml-1).

Upon antibiotic supplementation (10 mg ml-1 of each
antibiotic) to the continuous model (day 28 and 29)
(Fig. 4), the amount of L. mucosae decreased below
detection limit (= 2 log cfu ml-1) in both the M- and
L-SHIME. In contrast, P. acidilactici was much less
affected by the antibiotic treatment and even increased
after the antibiotic treatment (P = 0.037 for both M- and
L-SHIME). One week after the antibiotic pulse, the Lac-
tobacilli communities in both units returned to their initial
composition. The presence of a mucosal compartment
allowed a faster and more complete recovery after the
antibiotic pulse. Interestingly, a 3 week stabilization

period allowed L. mucosae to dominate over P. acidilac-
tici within the M-SHIME, while the inverse was true for
the L-SHIME. The level of L. mucosae was significantly
higher in the M-SHIME compared with the L-SHIME
(P = 0.009).

Fig. 2. Clustering tree based on Pearson
and UPGMA correlation of total bacterial
(A) Lactobacillus-specific (B/C/D) DGGE
profiles of samples from the M-SHIME
(lumen and mucus) and L-SHIME (lumen)
on day 1 (A/B). On day 3, both the M- and
L-SHIME were inoculated with LGG and
samples were taken on day 4, 6 and 8 (C).
Finally, a long-term stabilized SHIME was
treated with 10 mg l-1 tetracycline,
amoxicillin and ciprofloxacin on two
consecutive days (day 28 and 29) and
samples were analysed on day 28 (before
treatment), 31 and 39 (D). The bands
corresponding to pure cultures of
Pediococcus acidilactici (1), Lactobacillus
mucosae (2) and Lactobacillus rhamnosus
GG (LGG; 3) are indicated with rectangle
1, 2 and 3 respectively.
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Table 2. MIC (mg ml-1) of Pediococcus acidilactici LB1 and Lactoba-
cillus mucosae LB2 for tetracycline, amoxicillin and ciprofloxacin,
determined on Mueller-Hinton agar.

Antibiotic
Pediococcus
acidilactici

Lactobacillus
mucosae

Tetracycline 16 8
Amoxicillin 4 0.25
Ciprofloxacin 16 8

The MIC value is the lowest concentration with no visible growth.
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Discussion

In this study, we designed a dynamic gut model that is
more representative for the in vivo situation than earlier
models that only mimic the luminal microbiota and its

associated functionalities. Incorporation of a mucosal
environment allowed colonization and development of
specific microorganisms that benefit from mucosal adhe-
sion, in correspondence with the in vivo environment. This
method allows evaluating the long-term colonization of
the luminal and mucosal region in a multistage gas-
trointestinal in vitro simulator. In contrast to previous in
vitro adhesion studies, this strategy allowed to unravel the
adhesion capability of (potential) probiotic Lactobacilli,
while accounting for their long-term interaction with
the resident, luminal and mucosal intestinal microbial
communities.

To evaluate the in vitro mucosal environment consisting
of mucin-covered microcosms, colonization of the model
probiotic and generally strongly adherent LGG was exam-
ined. Human in vivo studies showed that LGG effectively
colonizes the colonic mucus layer after oral administration
(Alander et al., 1997). Interestingly, LGG remained
present in the mucus layer of most subjects 1 week after
the end of LGG administration, whereas it was hardly
detected in faeces (Alander et al., 1999). LGG thus needs
a surface to which it can adhere in order to increase its
ecological fitness. This in vivo finding was consistent with
the observations in our M-SHIME model. Three days after
inoculation, LGG was strongly enriched in the mucosal
compartment of the M-SHIME compared with the lumen of
both M- and L-SHIME (Table 1 and Fig. 2C). The strong
mucus-adhering potency of LGG has been attributed to a
SpaC pilin, which is located on the top of the pili and
exerts a strong mucus binding activity, thus allowing LGG
to colonize within an established mucosa-associated
microbiota (Kankainen et al., 2009). The preferential colo-
nization of the mucus by LGG was thus confirmed in the
newly developed in vitro model.

Besides the preference of LGG to colonize the mucosal
environment, a species-specific colonization of the
mucosal environment was also demonstrated for other
Lactobacilli. Both L. mucosae and P. acidilactici were
detected in the luminal environment, but only L. mucosae
was detected in the mucus (Fig. 2B). These results were
confirmed during a short-term adhesion assay to mucin
agar (Fig. 3), showing that L. mucosae adheres at a com-
parable rate as LGG, while P. acidilactici does not display
significant adhesive potential. Interestingly, almost every
study on L. mucosae spp. of human origin has pointed out
the preference of this species to reside in the mucosal or
tissue-bound intestinal microbiota. L. mucosae was previ-
ously isolated from human biopsies together with 29 other
Lactobacillus strains and was found to be the second
most adhesive strain (Kinoshita et al., 2007). Further-
more, when isolating Lactobacilli attached to the in vivo
intestinal epithelium, 11 strains were isolated of which 8
were identified as L. mucosae (Fakhry et al., 2009). The
strong mucus adhesion of L. mucosae was reported to be
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Fig. 3. Proportion of bacteria (%) that adhered to mucin agar for
Pediococcus acidilactici, Lactobacillus mucosae and Lactobacillus
rhamnosus GG. Significant differences are indicated with a different
superscript.
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Fig. 4. Abundance of Pediococcus acidilactici and Lactobacillus
mucosae (log cfu ml-1) as determined with plate counts on a
Lactobacillus-specific growth medium (LAMVAB) in the luminal
content of the M-SHIME (A) and L-SHIME (B). Results are
represented in function of the time after inoculation (days). An
antibiotic pulse with 10 mg l-1 tetracycline, amoxicillin and
ciprofloxacin was applied on two consecutive days (day 28 and 29
after inoculation). The detection limit of the plate count-method was
2 log cfu ml-1.
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related to the mucus binding (mub) gene, which encodes
for a cell-surface protein with mucus binding activity (Roos
and Jonsson, 2002), probably common among all L. mu-
cosae strains. Roos and colleagues (2000) assumed that
L. mucosae is the source of the mub gene and (few) other
Lactobacilli such as some L. reuteri strains were recipient
during the course of evolution. In the present study we
could also show that L. mucosae LB2 harbours a gene
with considerable similarities to mub from L. reuteri and it
is hypothesized that this gene is involved in the adhesion
of LB2 to mucus and its colonization of the mucosal envi-
ronment. L. mucosae is thus well equipped to reside in the
MAMC. These traits of L. mucosae indicate that specific
adhesion mechanisms are involved in the colonization
and development of the in vitro mucosal microbiota.

The mucosal environment also influenced the long-term
colonization of L. mucosae in the luminal compartment
and enhanced its stability upon antibiotic treatment.
Twenty-eight days post inoculation, the M-SHIME was
enriched with the strongly adhesive L. mucosae, while the
less adhesive P. acidilactici was more abundant in the
L-SHIME. L. mucosae decreased below detection limit
during the antibiotic treatment, while it was again detected
when the antibiotic stress was removed. The recovery in
the M-SHIME was more sudden and complete compared
with the L-SHIME where it was more delayed (Fig. 4). This
shows that the support of a mucosal environment might
enhance community stability upon antibiotic treatment.

During the antibiotic treatment, the antibiotic-resistant
P. acidilactici increased in abundance, while its abun-
dance decreased afterwards. This finding is consistent
with the recently proposed existence of an evolutionary
stable strategy within the intestinal microbiota (Van den
Abbeele et al., 2011), meaning that the intestinal micro-
biota are a resilient microbial association. In the case of
an antibiotic treatment, the antibiotic will directly or indi-
rectly affect a vast amount of microbes so that their cor-
responding functions are endangered (e.g. L. mucosae).
In contrast, functionally redundant microbes that were
initially present in low amounts become more abundant
and thus compensate this loss of function in order to
maintain community functionality (e.g. P. acidilactici ). After
the perturbation, the existing evolutionary stable strategy
may lead to a restoration of the initial community compo-
sition. This suggests that after further characterization
P. acidilactici might be used during antibiotic treatments in
order to maintain the Lactobacilli community and its asso-
ciated functionalities.

Different L. mucosae strains have been shown to
possess several characteristics, which support also their
potential use as probiotic. First, L. mucosae could reach
the colon upon oral administration as it survives the acidic
conditions in the stomach and bile secretions in the small
intestine (Beasley et al., 2006; Fakhry et al., 2009). In

addition, we confirmed the strong mucus binding capabil-
ity of L. mucosae, allowing the bacterium to reside in the
mucus layer and prolong its colonization. Moreover, as
L. mucosae has been show to produce antimicrobial com-
pounds (other than pH lowering) towards pathogenic bac-
teria (Tzortzis et al., 2004; Beasley et al., 2006; Fakhry
et al., 2009) it could secrete these antimicrobial agents in
the mucus layer, thus impacting the composition of the
mucosal microbiota and avoiding interaction between
pathogenic bacteria and the host. Additionally, L. muco-
sae can also bind to epithelial cells in vitro (without cyto-
toxic effects) and in vivo (Fakhry et al., 2009), therefore
having a great potential to closely interact with the host
and modify the host’s immune system. Although probiotic
effects should not be generalized among strains of the
same species, these findings suggest that L. mucosae
could be a next-generation probiotic.

The new methodology using mucin-covered micro-
cosms allowed a more relevant study of the long-term in
vitro microbial colonization of the mucus layer, in the
presence of a complex intestinal microbiota. The selective
colonization of the mucosal region by the probiotic LGG
was a first validation of our in vitro model. With this
approach, we also found a species-specific colonization
of the mucosal compartment by L. mucosae, a strain with
promising probiotic properties. It will be interesting to
unravel how other microbial groups colonize this in vitro
model in order to obtain a more in vivo-like overall micro-
bial community composition and activity. The model may
be particularly useful when studying the composition and
function of the mucosal microbiota during treatments with
antibiotics or functional foods. Further, by inoculating with
samples of healthy and diseased human subjects,
mucosal microbes associated with particular diseases
may be investigated. The model may also be applied to
study mutants of microbes isolated from humans as it is
ethically not allowed to test such mutants in their natural
human host. In conclusion, incorporation of a mucosal
environment in dynamic gut models may be a powerful
tool to obtain a more realistic view on processes that drive
the gastrointestinal microbiota.

Experimental procedures

Preparation of growth media and bacterial solutions

Unless stated otherwise, chemicals were obtained from
Sigma (Bornem, Belgium). The SHIME feed contained (in
g l-1) arabinogalactan (1.0), pectin (2.0), xylan (1.0), starch
(3.0), glucose (0.4), yeast extract (3.0), peptone (1.0), mucin
(4.0) and cystein (0.5). Pancreatic juice contained (in g l-1)
NaHCO3 (12.5), bile salts (6.0) (Difco, Bierbeek, Belgium)
and pancreatin (0.9). Mucin agar was prepared by boiling
autoclaved distilled H2O containing 5% porcine mucin type II
and 1% agar. The pH was adjusted to 6.8 with 10 M NaOH.

Incorporating a mucosal environment in a gut model 111

© 2011 The Authors
Microbial Biotechnology © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd, Microbial Biotechnology, 5, 106–115



Pure cultures of Lactobacilli were grown overnight in MRS
medium at 37°C under aerobic conditions.

Dynamic gut model (SHIME) and simulation of a
mucosal environment

The SHIME is a dynamic in vitro model of the human intes-
tinal tract, composed of five double-jacketed vessels, respec-
tively simulating the stomach, small intestine and the three
colon regions. In this experiment, only the first colon com-
partment was used (Fig. 5). Two SHIME units were used in
parallel (’Twin-SHIME’) in order to obtain identical environ-
mental conditions and identical microbial composition and
activities for both units (Van den Abbeele et al., 2010).
Whereas the first unit consisted of the conventional set-up
that only harbours luminal microbes (= luminal SHIME or
L-SHIME), the second unit was modified by incorporating a
mucosal environment (= mucosal SHIME or M-SHIME). In
order to achieve a representative mucosal surface in the
M-SHIME, 100 mucin-covered microcosms were added per
500 ml luminal suspension. The microcosms (length =
7 mm, diameter = 9 mm, total surface area = 800 m2/m3,
AnoxKaldnes K1 carrier, AnoxKaldnes AB, Lund, Sweden)

were coated by submerging them in mucin agar. To simulate
the renewal of the mucus layer, half of the mucin-covered
microcosms were replaced daily by sterile ones.

The ascending compartment (500 ml) from both SHIME
units was inoculated with 40 ml of a 1:5 dilution of fresh stools
provided by a healthy human volunteer (25 years) who had
no history of antibiotic treatment 6 months before the study.
Inoculum preparation was done as previously described by
Possemiers and colleagues (2004). Three times per day,
140 ml SHIME feed and 60 ml pancreatic juice were added to
the stomach and small intestine respectively.

Experimental design

In a first experiment, the luminal and mucosal microbiota
were sampled 1 day after inoculation for total and
Lactobacillus-specific community analysis. The dominant
Lactobacilli were isolated and the following characteristics
were determined: (i) preferential colonization of mucosal
environment compared with luminal content, (ii) adhesion
capacity to mucin agar, and (iii) MIC for tetracycline, amox-
icillin and ciprofloxacin. In a second experiment, the luminal
and mucosal microbiota were allowed to stabilize during 3
days after inoculation after which a single dose (5 ¥ 107
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Fig. 5. The new experimental design was based on the SHIME, a dynamic in vitro model of the human gastrointestinal tract, composed of
several double-jacketed vessels, simulating the stomach, small intestine and three main colon regions. In this experiment, only the first colon
compartment (ascending colon) was used and inoculated with a human faecal microbiota. The first ascending colon unit consisted of the
conventional set-up that only harbours luminal microbes (= luminal SHIME or L-SHIME), whereas the second unit was modified by
incorporating a mucosal compartment (= mucosal SHIME or M-SHIME), which contained 100 mucin-covered microcosms per 500 ml
suspension. Both units were run in parallel in order to attain identical environmental conditions and identical microbial composition and
activities for both units.
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cfu ml-1) of L. rhamnosus GG (LGG – LMG 18243) was
administered. Samples for Lactobacilli community analysis
were collected on day 3 (both before and after inoculation of
LGG), 4, 6 and 8. For a third experiment, the microbiota were
allowed to stabilize during 28 days after which an antibiotic
pulse was applied on two consecutive days (28 and 29). For
the antibiotic pulse, 1 ml of stock solution (1 mg ml-1 tetracy-
cline, 1 mg ml-1 amoxicillin and 1 mg ml-1 ciprofloxacin) was
added per 100 ml SHIME suspension, thus reaching a final
concentration of 10 mg ml-1 for each antibiotic. During all
experiments, the luminal and mucosal Lactobacilli communi-
ties were monitored by means of culture-based quantification
(plate counts) and DNA-based fingerprinting analysis
(DGGE).

Microbial community analysis: plate counts, DGGE and
flow cytometry after live–dead staining

Lactobacilli were isolated or quantified by selective plating on
LAMVAB agar (Hartemink et al., 1997). Luminal samples
were serially diluted in physiological solution (8.5 g l-1 NaCl),
transferred to the plates and incubated aerobically at 37°C
during three days (n = 3). Mucosal samples were suspended
in physiological solution (2 g in 20 ml) and homogenized with
a stomacher before preparing the serial dilutions.

Denaturing Gradient Gel Electrophoresis (DGGE) was
applied to monitor qualitative shifts within the mixed microbial
community. DNA extractions on luminal (1 ml) and mucosal
samples (0.5 g) were performed on according to Boon and
colleagues (2003). DGGE was applied to separate PCR
products of 16S rRNA genes of the total community obtained
with general bacterial primers (338F-GC and 518R) or PCR
products of the Lactobacilli community obtained with nested
PCR (PCR with Lactobacillus-specific primers SGLAB0159F
SGLAB0667R, 1:100 dilution, PCR with general bacterial
primers) (Possemiers et al., 2004). Gels had a denaturating
gradient from 45% to 60% and were run on an Ingeny PhorU
apparatus (Ingeny International, Goes, The Netherlands).
Further analysis was carried out using BioNumerics software
version 5.10 (Applied Maths, Sint-Martens-Latem, Belgium).
Pearson correlation and UPGMA clustering algorithm were
used to calculate dendrograms, taking into account both
band position and band density.

Pure cultures were quantified with flow cytometry after
live–dead staining. 10 ml bacterial suspension was added to
960 ml filter-sterilized (0.22 mm) Evian mineral water, 10 ml
Na2EDTA (500 mM, pH 8.0), 10 ml Cytocount beads (Dako,
Glostrup, Denmark) and 10 ml staining stock solution
(1 ml = 970 ml filtered DMSO, 10 ml SYBR Green and 20 ml
Propidium Iodide) (Invitrogen, Merelbeke, Belgium). After
15 min in the dark, live/dead cells and beads were counted
with a CyAnADP flow cytometer (Dako, Glostrup, Denmark).

Adhesion experiment on mucin agar

Overnight-grown microbial cultures were diluted to an optical
density (610 nm) of 0.5 with filter-sterilized Evian using a
Sunrise multi-well spectrophotometer (Tecan, Mechelen,
Belgium). The mucin adhesion assay was performed as
recently described (Van den Abbeele et al., 2009). Briefly,
bacterial cells were washed three times with physiological

solution and immediately thereafter, 1 ml of bacterial suspen-
sion and 2 ml of physiological were added to six-well microti-
tre plates covered with mucin agar. The bacteria were
allowed to adhere to this mucin layer under anaerobic con-
ditions, at 37°C and under slight agitation. After 80 min incu-
bation, non-adhered bacteria were removed, each well was
rinsed three times and the remaining adhered bacteria were
detached using Triton X-100. The amount of initially added
and adhered bacteria was quantified using flow cytometry
after live–dead staining.

Determination of the MIC

Minimal inhibitory concentration values for tetracycline,
amoxicillin and ciprofloxacin were determined on Mueller-
Hinton agar plates containing twofold serial antibiotic dilu-
tions ranging from 128 to 0.06 mg ml-1. The antibiotics were
dissolved in appropriate solvents and further diluted in dis-
tilled water as outlined in the National Committee for Clinical
Laboratory Standard guidelines (NCCLS). The reference
strains used for determination of MIC values were Escheri-
chia coli (ATCC 25922) and Staphylococcus aureus (ATCC
29213). Bacteria were suspended in physiological solution to
an optical density of 0.5 and diluted 1:10. Approximately 105

cfu were inoculated on the plates, which were incubated for
24 h under anaerobic conditions and at 37°C. The MIC was
defined as the lowest concentration producing no visible
growth.

16S rRNA gene sequencing

To obtain phylogenetic information of the isolates, almost full
16S rRNA gene sequences were determined as described by
Eeckhaut and colleagues (2008). Briefly, DNA of colonies
was extracted with an alkaline lysis procedure and amplicons
were obtained using primers fD1 and rD1. Purified amplicons
were sequenced using the BigDye Terminator sequencing kit
(primers pD, Gamma*, 3 and O*) on an ABI PRISM 310
Genetic Analyzer. Sequences with the highest similarity were
found using the National Centre for Biotechnology BLAST

search. Sequences generated in the study were submitted to
the European Nucleotide Archive under accession numbers
FR693800 (L. mucosae LB2) and FR693801 (P. acidilactici
LB1).

Detection of mucus binding protein genes

Presence of the mucus binding protein gene, mub, earlier
characterized in L. reuteri 1063 (Roos and Jonsson, 2002)
were examined by PCR using primers slightly modified from
MacKenzie and colleagues (2010). Bacteria were grown
anaerobically on MRS agar for 16 h at 37°C. Bacterial colo-
nies (1 ml) were collected with a sterile plastic loop and sus-
pended in 100 ml sterile water. The PCR was run using
PuReTaq Ready To Go PCR beads (GE HealthCare) and
primers detecting mub1 (MucB1-RVIfm 5′-CAAGAAGCTC
AAGCCATC-3′ and MucB2-RVIrm 5′-ATCAAGCTTCTTGT
AGGT-3′) and mub2 repeats (MucB2-R4fm 5′-GGTACGAA
GACGCTGAC-3′ and MucB2-R4rm 5′-GGCATCAGCCGTG
TAGA-3′) (0.4 mM of each). Bacterial suspension (0.5 ml) was
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added to the PCR mix and the reaction included following
program 95°C, 5 min; 35 ¥ (95°C, 30 s; 48°C, 30 s; 72°C,
60 s); 72°C, 10 min. L. reuteri 1063 was used as a positive
control. The PCR products were separated and visualized
using standard agarose gel electrophoresis. The fragment
obtained with the mub1 repeat primers was sequenced using
the same primers as in the PCR and the sequence of L. mu-
cosae LB2 has been deposited to GenBank and has the
accession number HQ326232.

Statistics

All data were analysed using SPSS 16 software (SPSS,
Chicago, USA). Before investigating probability of intergroup
differences, normality and homogeneity of variances were
studied with a Kolmogorov–Smirnov and Levene test respec-
tively. If so, an Anova with (post hoc) Bonferroni test was
performed, while otherwise a Kruskal–Wallis with Mann–
Whitney test was applied. Differences were considered sig-
nificant if P < 0.05.
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