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Many psychological phenomena have a multilevel structure (e.g., individuals within
teams or events within individuals). In these cases, the proportion of between-
variance to total-variance (i.e., the sum between-variance and within-variance) is of
special importance and usually estimated by the intraclass coefficient (1) [ICC(1)]. Our
contribution firstly shows via mathematical proof that measurement error increases the
within-variance, which in turn decreases the ICC(1). Further, we provide a numerical
example, and examine the RMSEs, alpha error rates and the inclusion of zero in
the confidence intervals for ICC(1) estimation with and without measurement error.
Secondly, we propose two corrections [i.e., the reliability-adjusted ICC(1) and the
measurement model-based ICC(1)] that yield correct estimates for the ICC(1), and prove
that they are unaffected by measurement error mathematically. Finally, we discuss our
findings, point out examples of the underestimation of the ICC(1) in the literature, and
reinterpret the results of these examples in the light of our new estimator. We also
illustrate the potential application of our work to other ICCs. Finally, we conclude that
measurement error distorts the ICC(1) to a non-negligible extent.

Keywords: intraclass coefficient, measurement error, within-variance, between-variance, reliability

INTRODUCTION

Many psychological phenomena have a multilevel structure (e.g., Nezlek, 2001, 2008; Fleeson,
2004, 2017); observations on a micro-level are nested in a macro-level (e.g., individuals within
teams or events within individuals). The intraclass coefficient (1)1 (ICC(1)) reflects the degree
of resemblance of micro-level units (e.g., events) within macro-level units (e.g., individuals),
and is calculated as between-variance (e.g., variance, existing between groups or individuals)
divided by total-variance (e.g., the sum of between-variance and the variance existing within
groups or individuals; e.g., Fisher, 1934; Shrout and Fleiss, 1979; Snijders and Bosker, 2012). It
is often used to provide insights of the magnitude of variance on different levels to test and
inform psychological theories (e.g., Bliese et al., 2002; Castro, 2002; Nook et al., 2018; Kivlighan
et al., 2019; Podsakoff et al., 2019). For example, Podsakoff et al. (2019) showed that many

1 The ICC shows up in two distinct areas in statistics: reliability and clustered data. We refer to the ICC in the area of clustered
data (e.g., Raudenbush et al., 1991; Snijders and Bosker, 2012).
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psychological constructs (e.g., personality, coping, or job
characteristics) vary substantially within-person (at least
40%), even though they “have historically been treated as
between-person phenomena” (Podsakoff et al., 2019, p. 737).
Hence, Kivlighan et al. (2019) showed that group therapy
members mutually influence their group posttreatment outcomes
(e.g., depression, etc.), and found that group membership
explains about 6% of variance [ICC(1) = 0.06; Cohen’s
d of about 0.47].

However, the estimate of the ICC(1) is more informative, if
its bias is small or zero [i.e., the estimated ICC(1) is close to
the population parameter of the ICC(1)]. Therefore, researchers
examined the behavior of the ICC(1) estimator under different
scenarios, such as different numbers of groups and group sizes
(Bliese and Halverson, 1998), varying numerical value of the
population ICC(1), equal or unequal group sizes (Shieh, 2012),
different missing value patterns (Newman and Sin, 2009) or
varying number of response options in the Likert-type scale
(Beal and Dawson, 2007).

We aim to address an additional factor. In psychology,
variables or constructs are almost never measured without
measurement error (e.g., Lord and Novick, 2008), and
the presence of measurement error increases the variable’s
variance (e.g., Ree and Carretta, 2006). We argue that
measurement error represents a largely overlooked factor
that induces bias in ICC(1) estimation. In particular, we
aim to show that measurement error does not affect the
between-variance, but increases the within-variance. It
therefore induces a downward bias in ICC(1) estimation.
We provide a numerical example that quantifies the severity
of bias under different numerical values of the population
ICC(1); level 1 and level 2 sample sizes; and different
reliabilities2, and examine the RMSEs, alpha error rates and
the inclusion of zero in the confidence intervals for ICC(1)
estimation with and without measurement error. As our
main contribution, we propose two correction-procedures
that yield estimates robust to measurement error: The
reliability-adjusted ICC(1) and the measurement model-
based ICC(1). These ICC(1) estimators allow a correct
interpretation of the proportion of between-variance to
total-variance, as they remain unbiased with increasing
measurement error.

The article is structured in five main sections. The
first section introduces the ICC(1). The second section
proves that measurement error increases the estimated
within-variance, which in turn decreases the ICC(1)
expression, and provides a numerical example. The third
section proves that an unbiased ICC(1) can be recovered,
when the measurement error-affected within-variance is
multiplied by the construct’s reliability, whereas the fourth
section concerns the estimation of an unbiased ICC(1),
relying on a measurement model. Finally, we discuss the
study’s implications, limitations and provide directions for
future research.

2The lower the variance of the measurement error, the higher the reliability, and
vice versa (e.g., Lord and Novick, 2008).

INTRACLASS COEFFICIENT(1)

Data often have a hierarchical or clustered structure (e.g.,
occasions nested in individuals, individuals nested in groups,
groups nested in organizations or in general terms micro-units
nested in macro-units). The ICC(1) represents the ratio of
between-variance to total-variance (i.e., the sum of the macro-
unit variance and the micro-unit variance)3 and assumes values
between zero and one. The closer the value to one, the more
variance on the macro-level. The closer the value to zero,
the more variance on the micro-level (e.g., Shrout and Fleiss,
1979; Commenges and Jacqmin, 1994; McGraw and Wong,
1996). Throughout the article, macro-units and micro-units refer
to individuals and occasions, respectively, for the purpose of
illustration. Consequently, we use the terms between-variance
(i.e., macro-unit variance) and within-variance (i.e., micro-unit
variance) from now on.

An exemplary random variable yij of interest (see Eq. 1)
can be defined by a constant, γ00, the individual effect, Uj
(that creates between-variance), and the occasion effect, uij (that
creates within-variance).

yij = γ00 + Uj + uij i = 1, . . . ,m j = 1, . . . , n (1)

The random variables, Uj and uij, are independent, and normally
distributed with a mean of zero and variances of σ 2

b(etween) and
σ 2

w(ithin), respectively. Furthermore, we assume equal sample sizes
for the observations within individuals (for formulas for unequal
group sizes, see for example Snijders and Bosker, 2012). The
population ICC(1) is defined as:

ρ(y) =
σ 2

b
σ 2

b + σ
2
w

(2)

where σ 2
b and σ 2

w denote the population between-variance and
population within-variance, respectively (Fisher, 1934; Shrout
and Fleiss, 1979; McGraw and Wong, 1996). In the sample, the
estimated within-variance, σ̂ 2

w, is defined by:

σ̂ 2
w =

1
nm− n

n∑
j=1

m∑
i=1

(
yij − yj

)2
(3)

where n represents the number of different individuals observed
(the sum of unique js), m represents the number of observed
occasions per individual, and yj represents the person mean
(for the definitions of the means, see the Supplementary
Appendix 1).

The between-variance, σ 2
b , can be estimated in the sample by:

S2
b =

1
n− 1

n∑
j=1

(
yj −

=y
)2

(4)

where =y represents the grand mean (for the definitions of the
means, see the Supplementary Appendix 1).

3ICCs can be defined in various ways, given there are more than two-levels (e.g.,
McGraw and Wong, 1996; Baguley, 2012).
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However, S2
b is biased because of sampling error (according

to the law of summing normally distributed variances; see for a
review Searle, 1995). A correct estimate for σ 2

b is

σ̂ 2
b = S2

b −
σ̂ 2

w
m

(5)

In general, variances corrected for sampling error can become
negative. For example, if the S2

b is small, the σ̂ 2
w is large and m is

small, the corrected between-variance, σ̂ 2
b , likely becomes smaller

than zero. This violates the definition of the ICC(1), as it cannot
assume negative values. Therefore, many researchers set negative
values of the between-variance to zero (Shieh, 2012)4.

An estimate for the ICC(1) of the variable y is completely
defined by:

ρ̂(y) =
σ̂ 2

b
σ̂ 2

b + σ̂
2
w

(6)

THE EFFECT OF MEASUREMENT
ERROR ON THE ICC(1)

In this section, we demonstrate that measurement error induces
a positive bias in the within-variance estimation that in turn
decreases the ICC(1) expression, whereas it does not induce bias
in the between-variance. Firstly, we define the random variable yij
with measurement error as:

y
∗

ij = yij + εij (7)

where we assume the measurement error, εij, to be independently,
normally distributed with a mean of zero and a variance of σ 2

ε ,
satisfying the classical measurement error assumptions (Lord and
Novick, 2008). Throughout this article, the star signifies that
the variable contains measurement error or that the estimator is
applied to a variable with measurement error from now on.

Secondly, and most importantly, we prove that the presence
of measurement error leads to an overestimation of the
within-variance.
Theorem 1 Let y

∗

be a random variable, consisting of a random
variable y with two-levels (e.g., Eq. 1) and some measurement
error, ε, then the expectation of the estimator for the within-
variance of variable y

∗

, σ̂
∗2
w (see Eq. 8), equals the sum of the

within-variance, σ 2
w, and the variance of the measurement error,

σ 2
ε .

E(σ̂
∗2
w ) = σ

2
w + σ

2
ε

Theorem 1 highlights that the within-variance estimator applied
to a variable, contaminated by measurement error yields
biased estimates.

Proof. We define σ̂
∗2
w , as the estimator of the within-variance

for the random variable y
∗

:

σ̂
∗2
w =

1
nm− n

n∑
j=1

m∑
i=1

(
y
∗

ij − yj

)2
(8)

4Shieh (2012) notes that truncating the between-variance induces positive bias, in
particular when the population ICC(1) small.

which – if we substitute y
∗

ij with yij + εij and expand the
product – yields:

σ̂
∗2
w =

1
nm− n

n∑
j=1

m∑
i=1

((
yij + εij − yj

) (
yij + εij − yj

))
(9)

which can be rewritten as:

σ̂
∗2
w =

1
nm− n

n∑
j=1

m∑
i=1

(
y2

ij + ε
2
ij + y2

j + 2yijεij − 2yijyj − 2εijyj

)
(10)

and

σ̂
∗2
w =

1
nm− n

n∑
j=1

m∑
i=1

(
yij − yj

)2
+

1
nm− n

n∑
j=1

m∑
i=1

ε2
ij

+
1

nm− n

n∑
j=1

m∑
i=1

(
2yijεij − 2εijyj

)
(11)

Eq. 11 proves that applying the standard estimator of the
within-variance to a variable, contaminated by measurement
error overestimates the within-variance. The standard estimator
contains the within-variance of the original variable (without
measurement error), expressed by the first summation on the
right hand side, but also measurement error-induced bias,
expressed by the second and third summation on the right hand
side. Taking the expectation of σ̂

∗2
w (see Eq. 12), E

(
σ̂ 2

w
)

converges
to the true within-variance, E(σ̂ 2

ε ) converges to the true variance
of the measurement error, and E

(
residual

)
converges to zero,

since εij is assumed to be independent of yij and yj. We conclude
that σ̂

∗2
w is biased, unless the variance of the measurement error

is equal to zero.

E(σ̂
∗2
w ) = E(σ̂ 2

w)+ E(σ̂ 2
ε )+ E(residual) = σ 2

w + σ
2
ε (12)

This completes the proof.
Thirdly, we prove that measurement error does not affect

the sampling error-corrected between-variance estimator (see
Eq. 5). The measurement error does not affect the estimation
of averages, such as the grand mean and the person mean
(Ree and Carretta, 2006). However, creating the person
mean induces sampling error in the between-variance, as the
occasions are averaged. The variance of y

∗

j consists of four
parts (see Eq. 13): the constant γ00, the variable Uj, the
average of the variable uij, and the average of the variable εij.

y
∗

j =
1
m

m∑
i=1

(γ00 + Uj + uij + εij)

= γ00 + Uj +
1
m

m∑
i=1

(uij)+
1
m

m∑
i=1

(εij) (13)
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As the variables γ00, Uj, uij, and εij are independent, we can
write the variance of y

∗

j as the sum of its components (see
Eq. 14).

Var
(

y
∗

j

)
= Var

(
Uj
)
+ Var

(∑m
i=1 uij

m

)
+ Var

(∑m
i=1 εij

m

)

= Var
(
Uj
)
+

Var
(
uij
)
+ Var

(
εij
)

m
= σ̂ 2

b +
σ̂ 2

w + σ̂
2
ε

m
(14)

Var (γ00) is zero. Eq. 14 shows that the variance of y
∗

j equals

the between-variance, σ̂ 2
b , plus the sampling error σ̂ 2

w+σ̂
2
ε

m , which

equals σ 2
b +

σ
∗2
w
m (see Theorem 1). As the estimated between-

variance (see Eq. 5) is corrected for sampling error, it is unaffected
by measurement error.

This completes the proof.
We have shown that measurement error induces bias in

the within-variance estimator, but not in the between-variance
estimator. Now, we can show the effect of measurement error
on ICC(1) estimation. Based on Theorem 1 (based on sample
analogs), we derive Corollary 1.
Corollary 1 Let y be a random variable with two levels (e.g., Eq. 1)
and let y

∗

be the same variable plus some additional measurement
error, ε, then the estimate of the ICC(1) of variable y

∗

is smaller
than (or equal to) the estimate of the ICC(1) of variable y (if
σ̂ 2
ε = 0; see Theorem 1).

ρ̂(y
∗

) =
σ̂ 2

b
σ̂ 2

b + σ̂
2
w + σ̂

2
ε

≤ ρ̂(y) =
σ̂ 2

b
σ̂ 2

b + σ̂
2
w

Corollary 1 highlights that the ICC(1) estimator underestimates
the ICC(1), if applied to a variable with measurement error, as
shown by the comparison of ρ̂(y

∗

) and ρ̂(y). All in all, our
results highlight the need to derive an estimator of the within-
variance, robust to measurement error, which in turn allows
ICC(1) estimation, robust to measurement error.

Numerical Example of the Effect of
Measurement Error on ICC(1) Estimation
In order to illustrate the effect of measurement error on ICC(1)
estimation, we created a numerical example, which compares the
ICC(1) estimation with and without measurement error.

Firstly, we examine the performance of ICC(1) estimation,
using the root mean square error (RMSE). Secondly, we examine
the alpha error rate, using confidence intervals (based on the
exact confidence limit equation; Searle, 1997). The alpha error
rate is crucial for inference based on ICC(1) estimation. Thirdly,
we examine the inclusion of zero in the confidence intervals,
which is important as many researchers use the ICC(1) to
understand whether or not their data are independent.

Setup of the Numerical Examples
We created a numerical example with different setups for sample
sizes, different numerical values of the population ICC(1), and
reliabilities, which were performed with R Cran (R Core Team,

2015). We defined the data-generating process for the variable
y
∗

ij according to Eq. 7, where Uj and uij are drawn from different
normal distributions; each with a mean of zero and a different
value for the standard-deviation [i.e., equivalent to a population
ICC(1) of 0.1, 0.3, 0.5, 0.7, and 0.9]. The constant, γ00, is set
to zero. The measurement error is normally distributed with a
mean of zero and a standard deviation, equivalent to reliabilities
of approximately 1, 0.9, 0.7, and 0.5 for y

∗

ij. Those values reflect
no measurement error, substantial reliability, moderate reliability
and fair reliability (Shrout, 1998), respectively. Reliability is
defined in Eq. 15 later in the manuscript. We use the model with
a reliability of 1 as a reference model. We simulated samples from
these models for different numbers of individuals and events (i.e.,
25, 40; 50, 20; 100, 10; 125, 8; and 250, 4), as ICC(1) estimation
has been shown to be sensitive to group sizes (Shieh, 2012). We
repeated this process 5.000 times for each of the configurations
[i.e., 5 different ICC(1), 3 different reliabilities, and 5 different
sample size configurations].

Results
Table 1 shows the comparison of the RMSE of ICC(1) estimation
without and with measurement error. The accuracy of ICC(1)
estimation deteriorates with increasing measurement error.
For a reliability of 1, the RMSEs, averaged over the sample
configurations range from 0.018 to 0.048. For a reliability
of 0.9, the RMSEs, averaged over the sample configurations
range from 0.023 to 0.057. For a reliability of 0.7, the RMSEs,
averaged over the sample configurations range from 0.037 to
0.104. For a reliability of 0.5, the RMSEs, averaged over the
sample configurations range from 0.052 to 0.176. Moreover, the
RMSEs of the ICC(1) become larger with decreasing sample
sizes on level 2 and increasing sample size on level 1 in the
sample configurations for all degrees of measurement error.
Moreover, RMSEs become smaller, the more the population
ICC(1) diverges from 0.5.

Table 2 shows the comparison of the alpha error rate of ICC(1)
without and with measurement error. The averaged alpha error
rate for ICC(1) without measurement error equals roughly the
expected 5%. For the ICC(1) estimation with measurement error,
we observe increasing alpha error rates with decreasing reliability.
For a reliability of 0.9, the alpha error rates, averaged over the
sample configurations equal 6.1 to 9.8%, and is thus higher than
5%. For reliabilities of 0.7, and 0.5, the alpha error rates, averaged
over the sample configurations increase further, and range from
16.6 to 56.1%, and 43.3 to 89.4%, respectively. Moreover, the
alpha error rate becomes larger with increasing sample size on
level 2 and decreasing sample size on level 1 in the sample
configurations. Additionally, the higher the numerical value of
the population ICC(1), the higher the alpha error rate.

Table 3 shows the comparison of the inclusion of zero in the
confidence interval of the ICC(1) estimation without and with
measurement error. For the inclusion of zero in the confidence
interval, only population ICC(1) of 0.1 appears to be of interest.
Our analysis reveals that zero is included in confidence interval
more often with increasing measurement error. For ICC(1)
without measurement error, the confidence intervals included
zero – on average over the sample configurations – 1.2% of
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TABLE 1 | RMSE of ICC(1) estimation without measurement error, ρ̂, and with measurement error, ρ̂ *.

25, 40 50, 20 100, 10 125, 8 250, 4

ICC(1) Rel ρ̂ ρ̂ * ρ̂ ρ̂ * ρ̂ ρ̂ * ρ̂ ρ̂ * ρ̂ ρ̂ *

0.9 0.9 0.031 0.037 0.020 0.025 0.014 0.019 0.013 0.018 0.010 0.015

0.9 0.7 0.031 0.060 0.020 0.049 0.014 0.043 0.013 0.042 0.010 0.040

0.9 0.5 0.031 0.104 0.020 0.093 0.014 0.088 0.013 0.087 0.010 0.084

0.7 0.9 0.067 0.077 0.046 0.055 0.034 0.043 0.030 0.040 0.024 0.035

0.7 0.7 0.067 0.117 0.045 0.099 0.034 0.091 0.030 0.089 0.024 0.086

0.7 0.5 0.066 0.187 0.046 0.175 0.033 0.169 0.030 0.168 0.024 0.166

0.5 0.9 0.074 0.082 0.054 0.062 0.042 0.051 0.038 0.048 0.032 0.043

0.5 0.7 0.076 0.121 0.055 0.107 0.041 0.099 0.038 0.098 0.032 0.095

0.5 0.5 0.075 0.186 0.054 0.177 0.041 0.173 0.039 0.172 0.032 0.171

0.3 0.9 0.064 0.067 0.048 0.052 0.038 0.044 0.036 0.042 0.035 0.042

0.3 0.7 0.064 0.092 0.049 0.084 0.039 0.078 0.037 0.078 0.034 0.078

0.3 0.5 0.065 0.134 0.048 0.130 0.038 0.128 0.037 0.128 0.034 0.128

0.1 0.9 0.032 0.032 0.026 0.027 0.026 0.027 0.026 0.027 0.030 0.032

0.1 0.7 0.032 0.039 0.027 0.036 0.025 0.036 0.025 0.036 0.030 0.040

0.1 0.5 0.032 0.052 0.027 0.051 0.026 0.052 0.026 0.052 0.030 0.055

The term Rel abbreviates the term reliability.

TABLE 2 | Alpha error rate of ICC(1) estimation without measurement error, ρ̂, and with measurement error, ρ̂ *.

25, 40 50, 20 100, 10 125, 8 250, 4

ICC(1) Rel ρ̂ ρ̂ * ρ̂ ρ̂ * ρ̂ ρ̂ * ρ̂ ρ̂ * ρ̂ ρ̂ *

0.9 0.9 0.052 0.061 0.048 0.068 0.050 0.096 0.054 0.112 0.055 0.155

0.9 0.7 0.048 0.189 0.051 0.350 0.053 0.626 0.049 0.722 0.046 0.916

0.9 0.5 0.053 0.571 0.048 0.903 0.048 0.996 0.049 0.999 0.049 1.000

0.7 0.9 0.052 0.058 0.051 0.066 0.051 0.096 0.047 0.099 0.051 0.143

0.7 0.7 0.056 0.183 0.047 0.338 0.053 0.582 0.052 0.670 0.048 0.860

0.7 0.5 0.050 0.558 0.053 0.880 0.051 0.993 0.050 0.998 0.049 1.000

0.5 0.9 0.046 0.052 0.047 0.066 0.052 0.091 0.049 0.101 0.046 0.128

0.5 0.7 0.049 0.173 0.052 0.315 0.047 0.523 0.047 0.589 0.050 0.746

0.5 0.5 0.046 0.546 0.049 0.852 0.048 0.982 0.054 0.990 0.046 0.998

0.3 0.9 0.050 0.061 0.047 0.060 0.046 0.077 0.047 0.081 0.053 0.098

0.3 0.7 0.048 0.170 0.050 0.290 0.052 0.414 0.048 0.474 0.053 0.513

0.3 0.5 0.055 0.495 0.048 0.784 0.048 0.927 0.050 0.948 0.046 0.961

0.1 0.9 0.053 0.053 0.049 0.060 0.056 0.067 0.051 0.064 0.050 0.062

0.1 0.7 0.049 0.137 0.051 0.175 0.046 0.190 0.045 0.178 0.052 0.148

0.1 0.5 0.055 0.352 0.052 0.471 0.054 0.506 0.052 0.479 0.045 0.356

The term Rel abbreviates the term reliability.

the times. For a reliability of 0.9, 0.7, and 0.5, the confidence
interval of the ICC(1) included zero – on average over the sample
configurations – 2.3, 6.7, and 18.8% of the times, respectively.
Moreover, the confidence interval includes zero more often with
increasing sample size on level 2 and decreasing sample size on
level 1 in the sample configurations.

Preliminary Discussion of the Effect of
Measurement Error on the ICC(1)
We have proven mathematically that measurement
error induces a negative bias in ICC(1) estimation
(see Corollary 1). In particular, the between-variance
remains unbiased even with increasing measurement

error. Averaging over the occasion creates sampling error,
but the between-variance is corrected for it. Correcting
for sampling error automatically corrects for eventual
measurement error, if it is corrected by the biased
within-variance.

By contrast, measurements error induces positive bias
in the within-variance estimation, since it consists of
the variable’s actual within-variance and the variance
of the measurement error (see Theorem 1). This
explains why measurement error induces negative bias in
ICC(1) estimation, as the within-variance is part of the
denominator. The increase in the denominator reduces the
ICC(1) expression.
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TABLE 3 | The inclusion of zero in the confidence interval of ICC(1) estimation without measurement error, ρ̂, and with measurement error, ρ̂ *.

25, 40 50, 20 100, 10 125, 8 250, 4

ICC(1) Rel ρ̂ ρ̂ * ρ̂ ρ̂ * ρ̂ ρ̂ * ρ̂ ρ̂ * ρ̂ ρ̂ *

0.9 0.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.9 0.7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.9 0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.7 0.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.7 0.7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.7 0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.5 0.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.5 0.7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.5 0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.3 0.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.3 0.7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.3 0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.1 0.9 0.001 0.002 0.000 0.001 0.002 0.005 0.004 0.009 0.054 0.096

0.1 0.7 0.001 0.004 0.000 0.007 0.001 0.030 0.004 0.050 0.055 0.243

0.1 0.5 0.001 0.029 0.000 0.049 0.001 0.145 0.003 0.214 0.055 0.501

The term Rel abbreviates the term reliability.

The numerical example provides an illustration of the
effect of measurement error on ICC(1) estimation under
various values of the population ICC(1), level 1 and level 2
sample size configurations and reliabilities. The analysis of the
RMSE revealed small to severe distortions of the estimated
ICC(1), which has already been derived by Corollary 1. The
distortion of the ICC(1) becomes larger the more the population
ICC(1) diverges from 0.5. Hence, the distortion of the ICC(1)
becomes smaller (larger) for larger (smaller) level 2 sample
sizes and smaller (larger) level 1 sample sizes in the sample
size configurations.

The analysis of the alpha error rate shows that inference
based on the ICC(1), affected by the measurement error, is
often seriously misleading. In particular, the larger the variance
of measurement error, the larger the alpha error rate. The
distortion of the alpha error rate becomes smaller (larger) for
smaller (larger) population ICC(1). However, the distortion of
the alpha error rate becomes smaller (larger) for smaller (larger)
level 2 sample sizes and larger (smaller) level 1 sample sizes
in the sample configurations. Accordingly, studies with small
level 1 sample sizes are more prone to conclude that their
data is independent.

The analysis of the inclusion of zero in the confidence
interval shows that the ICC(1), affected by measurement
error is often not significantly different from zero, even
though, the population ICC(1) equals 0.1. The larger
the measurement error, the higher the frequency of the
inclusion of zero in the confidence interval. In those cases,
many researchers may falsely conclude that their data are
independent. With increasing level 2 sample size and decreasing
level 1 sample size in the sample configurations, the effect
becomes more severe.

All in all, our results highlight the need to derive an estimator
of the within-variance, robust to measurement error, which in
turn allows ICC(1) estimation, robust to measurement error.

THE RELIABILITY-ADJUSTED ICC(1)
ESTIMATOR

In this section, we propose a correction for the ICC(1) estimator,
based on a construct’s reliability5. Firstly, reliability reflects
“the degree of true-score variation relative to observed-score
variation” (Lord and Novick, 2008, p. 61). In other words, it
reflects the degree to which a measure is free from error. In the
current context, we can define the population within-reliability
(e.g., Raudenbush et al., 1991; Lord and Novick, 2008; Bonito
et al., 2012; Nezlek, 2017) as:

α =
σ 2

w
σ 2

w + σ
2
ε

(15)

where σ 2
w refers to the true within-variance of the variable yij,

and σ 2
ε refers to the variance of the measurement error, εij

(Lord and Novick, 2008).
Secondly, it can be shown that the true within-variance,

σ 2
w, is equivalent to the product of the reliability, α, and the

measurement error-affected within-variance, σ
∗2

w .
Theorem 2 Let y

∗

be a random variable, consisting of a random
variable y with two levels (e.g., Eq. 1) and some measurement
error on level 1, ε, then the true value of the within-variance
equals the true value of the measurement-affected within-
variance multiplied by the true value of the reliability of variable
y
∗

.
ασ
∗2
w = σ

2
w

Theorem 2 highlights that the correct within-variance can
be recovered, by using the product of the true value of the

5In the Supplementary Appendix 3, we provide a practical guide on how to adjust
the ICC for measurement error in R Cran (R Core Team, 2015) with the package
lmer (Bates et al., 2015).
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measurement error-affected within-variance and the true value
of the reliability.

Proof. We start by decomposing σ
∗2
w into σ 2

w and σ 2
ε (see

Eq. 12), and derive:

ασ
∗2
w =

σ 2
w

σ 2
w + σ

2
ε

(
σ 2

w + σ
2
ε

)
(16)

which can be rewritten as:

ασ
∗2
w =

(σ 4
w + σ

2
ε σ

2
w)

σ 2
w + σ

2
ε

(17)

and yields:

ασ
∗2
w = σ

2
w
σ 2

w + σ
2
ε

σ 2
w + σ

2
ε

= σ 2
w (18)

This completes the proof.
Theorem 2 (using the sample analogs) can be used to recover

an ICC(1) estimation, robust to measurement error. Since
we correct the within-variance by reliability, we call the new
estimator reliability-adjust ICC(1) estimator, and it is defined as:

ρ̂r(y
∗

) =
σ̂ 2

b
σ̂ 2

b + α̂σ̂
∗2
w

(19)

where σ̂ 2
b refers to the estimated between-variance, σ̂

∗2
w denotes

the estimated biased within-variance (see Eq. 8), α̂ denotes the
estimated within-reliability of the variable of interest. α̂ can be
estimated by a three-level model (e.g., items nested in events
nested in individuals or items nested in individuals nested in
groups; see Eq. 21), and is defined as:

α̂ =
σ̂ 2

w

σ̂ 2
w +

σ̂ 2
i
p

(20)

where σ̂ 2
w represents the within-variance (i.e., level 2 variance;

for a definition, see Eq. 24 later in the article), σ̂ 2
i represents the

variance of the items (i.e., level 1 variance; for a definition, see
Eq. 22 later in the article), and p represents the number of the
items used to measure the constructs (e.g., Raudenbush et al.,
1991; Nezlek, 2017). We want to emphasize that the formula for
the within-variance for the two-level model and for the three-
level model are not the same (compare Eq. 3 and Eq. 24). Now,
all elements of the reliability-adjusted ICC(1) are defined, and it
can be estimated from a sample.

The reliability-adjusted ICC(1) estimator corrects the within-
variance, by applying Theorem 2, and is therefore robust to
measurement error. We can derive Corollary 2.
Corollary 2 Let y

∗

be a random variable, consisting of a random
variable y with two levels (e.g., Eq. 1) and some measurement
error, ε, then the reliability-adjusted ICC(1) estimator of variable
y
∗

, ρ̂r(y
∗

), equals the ICC(1) estimator of variable y, ρ̂(y).

ρ̂r(y
∗

) =
σ̂ 2

b
σ̂ 2

b + α̂σ̂
∗2
w
= ρ̂(y) =

σ̂ 2
b

σ̂ 2
b + σ̂

2
w

Corollary 2 highlights that the reliability-adjusted ICC(1)
estimator applied to variable y

∗

with measurement error is

equal to the ICC(1) estimator applied to variable y (without
measurement error). Accordingly, the reliability-adjusted ICC(1)
estimator can be applied to variable with measurement error, and
still yields correct estimates for the ICC(1).

THE MEASUREMENT MODEL-BASED
ICC(1)

As an alternative, we show that the ICC(1) can also be correctly
estimated based on a measurement model, which is usually
more straightforward for researchers. The measurement model
adds the item-level to the original model defined in Eq. 1; the
construct’s items are nested in occasions, which in turn, are nested
in individuals (i.e., a three-level model; see Eq. 21).

A Three-Level Measurement Model
Let yijk be a random variable with three-levels:

yijk = γ00 + Uj + uij + εijk i = 1, . . . ,m, j = 1, . . . , n,

k = 1, . . . , l (21)

In this model, γ00, Uj, and uij were denoted above at Eq. 1, and
εijk represents the item specific deviation from uij of the item k
in event i in person j (i.e., the measurement error). According to
the classical measurement error assumptions, the variable εijk is
independently normally distributed with a mean of zero and a
variance of σ 2

ε (Lord and Novick, 2008).
We can now define the item-level variance, the within-

variance and the between-variance. The estimated variance of the
item-level, σ̂ 2

i(tem), is defined as:

σ̂ 2
i =

1
nml− nm

n∑
j=1

m∑
i=1

l∑
k=1

(yijk − yji)
2 (22)

where n refers to the number of individuals, m refers to the
number of occasions per individual, l refers to the number of
items, and yij denotes the occasion mean.

S2
w is the estimated within-variance (i.e., second level), and

defined as:

S2
w =

1
nm− n

n∑
j=1

m∑
i=1

(yij −
=yj)

2 (23)

where =yj denotes the person mean6. S2
w contains sampling error

(according to the law of summing normally distributed variances;
Searle, 1995). A correct estimate of the within-variance is:

σ̂ 2
w = S2

w −
σ̂ 2

i
l

(24)

The estimated between-variance is defined as:

S2
b =

1
n− 1

n∑
j=1

(
=yj −

≡y )2 (25)

6The estimators of the grand mean and the person mean are defined in
Supplementary Appendix 2.
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where ≡y denotes the grand mean. S2
b contains sampling error

(according to the law of summing normally distributed variances;
Searle, 1995). To obtain a correct estimate for σ 2

b , we must correct
S2

b for it:

σ̂ 2
b = S2

b −
S2

w
m

(26)

As outlined above, the estimated between-variance and
the estimated within-variance of the three-level model
can be smaller than zero, potentially. We have now
completely defined the variance components of the
measurement model.

The Effect of Measurement Error on
Measurement Model-Based ICC(1)
Estimator
Since we defined all variance components, we can now prove that
measurement error does not affect the estimated within-variance
and the estimated between-variance for the three-level model.

We start by showing that measurement error does not
induce bias in the within-variance. Creating the occasion
mean induces sampling error in the within-variance, as
the items are averaged. The variance of yij consists of
four parts: the constant γ00, the variable Uj, the average
of the variable uij and the average of the variable εijk.

yij =
1
l

l∑
k=1

(γ00 + Uj + uij + εijk) = γ00 + Uj + uij +
1
l

l∑
k=1

εijk

(27)
As the variables γ00, Uj, uij, and εijk are independent, we
can write the variance of yij as the sum of their variances.

Var
(

yij

)
= Var (γ00)+ Var

(
Uj
)
+ Var

(
uij
)
+ Var

1
l

l∑
k=1

εijk


= σ̂ 2

w +
σ̂ 2

i
l

(28)

Var (γ00) and Var
(
Uj
)

are constants for a chosen j,
therefore their variance is zero. Eq. 28 shows that the
variance of yij equals the within-variance, σ̂ 2

w, plus the

sampling error σ̂ 2
i
l . As the estimated within-variance (see

Eq. 24) is corrected for sampling error, it is unaffected by
measurement error.

Further, creating the person mean induces sampling
error in the between-variance, as the occasions and
items are averaged. The variance of =yj consists of four
parts: the constant γ00, the variable Uj, the average of
the variable uij and the average of the variable εijk.

=yj =
1
m

m∑
i=1

(γ00 + Uj + uij +
1
l

l∑
k=1

εijk)

= γ00 + Uj +
1
m

m∑
i=1

uij +
1
m

m∑
i=1

1
l

l∑
k=1

εijk (29)

As the variables γ00, Uj, uij, and εijk are independent, we
can write the variance of =yj as the sum of their variances.

Var
(
=yj

)
= Var (γ00)+ Var

(
Uj
)
+ Var

(
1
m

m∑
i=1

uij

)
+

Var

 1
m

m∑
i=1

1
l

l∑
k=1

εijk

 = σ̂ 2
b +

σ̂ 2
w +

σ̂ 2
i
l

m
(30)

Var (γ00) is zero. Eq. 30 shows that variance of =yj equals the
between-variance, σ̂ 2

b plus sampling error of level 1 and level

2, σ̂ 2
w+

σ̂2
i
l

m . The sampling error equals S2
w

m . As the estimated
between-variance (see Eq. 26) is corrected for sampling error,
it is unaffected by measurement error. As the within-variance
(see Eq. 24) and between-variance (see Eq. 26) are corrected
for sampling error, we conclude that the within-variance
and the between-variance of a measurement model are not
affected by measurement error. This completes the proof. We
conclude that the measurement model-based ICC(1) estimator
yields estimates, unaffected by measurement error, and can be
estimated by Eq. 31.

The Estimation of the Measurement
Model-Based ICC(1)
The measurement model-based ICC(1) estimator is based on the
measurement model, and defined as:

ρ̂m(y) =
σ̂ 2

b
σ̂ 2

b + σ̂
2
w

(31)

where σ̂ 2
b denotes the estimated between-variance and σ̂ 2

w
denotes the estimated within-variance of a three-level
model. It is important to note that the definition of the
measurement model-based ICC(1) is different to the normal
definition of the ICC(1) for a three-level model, as the
measurement model-based ICC(1) does not divide by the
total-variance, but just by the sum of the between-variance and
within-variance.

DISCUSSION

The present article examined the effect of measurement error on
ICC(1) estimation, and presented two estimators – the reliability-
adjusted ICC(1) and the measurement model-based ICC(1) –
that yield ICC(1) estimates, corrected for measurement error.

The Effect of Measurement Error on
ICC(1) Estimation
The first part of this study examined the effect of measurement
error on ICC(1) estimation. The presence of non-negligible
measurement error variance induces positive bias to the within-
variance estimation (see Theorem 1), when built with the
standard formulas (see Eq. 3). It is clear from Theorem 1
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that the bias in the ICC(1) is driven by the variance of
the measurement error, which increases the within-variance
expression, resulting in overestimation of the correct within-
variance value. Consequently, the positive bias in the within-
variance estimate increases the denominator of the ICC(1)
expression, which in turn leads to an underestimation of the
ICC(1) expression (see Corollary 1). In other words, the less
negligible the variance of the measurement error, the higher the
estimated within-variance, and the lower the estimated ICC(1).

In order to illustrate the effect of measurement error on
ICC(1) estimation, we created a numerical example, which
compares the RMSE, the alpha error rate and the inclusion of zero
in the confidence interval for ICC(1) estimation with and without
measurement error. The numerical example must be interpreted
in light of acceptable values of reliability in the field of psychology.
Shrout (1998, p. 308) provided guidance for this: “0.00–0.10,
virtually no reliability; 0.11–0.40, slight; 0.41–0.60, fair; 0.61–0.80,
moderate; 0.81–1.0, substantial.” For intraindividual studies,
Nezlek (2017) even suggests somewhat more relaxed standards.
We assume that researchers, and reviewers alike, probably accept
reliabilities of 0.9 and 0.7, as they are considered moderate with
the recommended rule of thumbs (Shrout, 1998; Nezlek, 2017).
A reliability of 0.5 also appears to be likely to be accepted in
intraindividual studies, as many constructs are measured only
with very few or even a single item to reduce the burden of the
participants (e.g., Bolger et al., 2003). Based on Corollary 1 and
our numerical example, we conclude that measurement error,
firstly, decreases – slightly to severely – many of the reported
ICC(1) estimates, secondly, misleads inference based on the
ICC(1) estimator, and thirdly, may falsely yield ICC(1) estimates,
indicating independent data in the literature of psychology.

The Reliability-Adjusted ICC(1) and the
Measurement Model-Based ICC(1)
In the second part of the present article, we proposed two
corrections for ICC(1) estimation, robust to measurement error.

We firstly derived the reliability-adjusted ICC(1). According
to Theorem 2, the product of the estimated reliability Eq. 20
and the measurement error-affected within-variance (see Eq. 8)
of the same construct equals the actual within-variance of the
construct (see Eq. 3). In other words, if we constrain the
measurement error-affected within-variance to the fraction of
error free variance, we obtain the within-variance, unaffected by
measurement error. Making use of Theorem 2, we derived the
formula for ICC(1) estimation, unaffected by measurement error
(see Eq. 19). Measurement error does not induce bias in the
reliability-adjusted ICC(1) estimator.

Secondly, we derived the measurement model-based ICC(1).
We have proven that measurement error does not affect the
within-variance, σ̂ 2

w, of a measurement model, when estimated
with the standard formula (see Eq. 24). But, the items contain
measurement error, and when they are aggregated to reflect
the mean of the items, their aggregation induces sampling
error (see Eq. 28). As the standard formula for the within-
variance, σ̂ 2

w, corrects for sampling error, the within-variance
of the measurement model remains unaffected by measurement

error (see Eq. 24). The same holds true for the between-variance
(see Eq. 26 and Eq. 30). Accordingly, the measurement model-
based ICC(1) is robust to measurement error. It is important
to note that the measurement model-based ICC(1) divides the
between-variance by the sum of the between-variance and the
within-variance, but not by the total-variance. The variance of
the item-level must not be included in the total variance, as it
represents variance due to measurement.

The reliability-adjusted ICC(1) and the measurement model-
based ICC(1) yield essentially the same result. However, the
measurement model-based ICC(1) estimator requires to have
access to the raw data in order model the different levels. By
contrast, the reliability-adjusted ICC(1) estimator only needs
the ICC(1) estimates and the estimate of the reliability of the
construct of interest, and it can be calculated. The ICC(1)
estimate reflects a proportion that remains constant, when each

term is scaled by constant (i.e., σ̂ 2
b

σ̂ 2
b+σ̂

2
w

= cσ̂ 2
b

cσ̂ 2
b+cσ̂ 2

w
). Accordingly,

we can apply the reliability-adjusted ICC(1) estimator to any
ICC(1) estimate found in the literature without knowing the exact
within-variance or between-variance of the construct of interest.
It is just necessary to find values that are proportional to the
between-variance and within-variance, and in combination equal
the found ICC(1) estimate. The reliability estimate can then be
used to correct the proportional within-variance, which in turn
can be used to yield the reliability-adjusted ICC(1). Therefore, the
reliability-adjusted ICC(1) may be particularly useful for meta-
analyses, as the raw data is only seldomly used (or available),
but the estimated reliabilities may be available instead. In those
cases, the reliability-adjusted ICC(1) is more useful than the
measurement model-based ICC(1) estimator.

To give examples, why it is important to correct for
measurement error, and thus use the proposed estimators, we
refer back to our examples from the introduction. Podsakoff
et al. (2019) examined ICC(1) for 23 different constructs
(e.g., personality, coping, and job characteristics) from 222
intraindividual studies, and concluded that many psychological
constructs have at least about 40% and the majority of constructs
more than 50% of within-variance. Based on Theorem 1,
we must assume that psychological constructs probably vary
less within individuals than their meta-analysis suggests, as
it is not common practice to correct the within-variance
of the ICC(1). Further, if we are willing to assume a
reliability, we can also estimate a corrected within-variance
with Theorem 2. In case of a reliability of 0.5 (0.7), many
psychological constructs have at least about 25% (32%)
and the majority of constructs more than 33% (41%) of
within-variance. Accordingly, if we correct for measurement
error, we conclude differently about the within-variability of
psychological constructs.

Likewise, Kivlighan et al. (2019) examined 169 effect sizes
from 37 group treatment studies, stressed group therapy
members mutually influence their group posttreatment outcomes
(e.g., depression, etc.), and found that group membership
explains about 6% of variance [ICC(1) = 0.06; Cohen’s d of
about 0.47]. Based on Corollary 1, we must assume that they
underestimated the effect size of mutual influence. If we are
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willing to assume a reliability, we can also estimate a corrected
ICC(1) based on Corollary 2. In case of a reliability of 0.9 (0.7),
reliability-adjusted ICC(1) is 0.07 (0.08). If we now also assume
that the standard error does not change after the correction,
we can also correct their effect size to a Cohen’s d of 0.52
(0.65). Accordingly, if we correct for measurement error, we
conclude that mutual influence is more important than originally
claimed by Kivlighan et al. (2019).

Further, we want to examine the inclusion of zeros in the
confidence interval. The ICC(1) is often used to determine
non-dependence or dependence of hierarchical data (Bliese,
2000). The data is non-dependent, if the ICC(1) is essentially
zero. If the confidence interval includes zero, the ICC(1) is
not essentially different from zero. Our numerical example
revealed that the combination of large measurement error
(i.e., reliability of 0.7 or 0.5), a population ICC (1) equal
to 0.1, and small sample sizes on level 1 (i.e., m = 4) may
pose a severe threat to the understanding whether data is
dependent or independent. In those cases, the ICC(1) estimate,
affected by measurement error is not essentially different
from zero about 24% (reliability of 0.7) or 50% (reliability
of 0.5) of the times, but the ICC(1) estimate, unaffected
by measurement error only about 5 or 6% of the times. If
the ordinary least squares estimator is applied to dependent
data, resulting standard errors may be extremely biased and
inference may be flawed (e.g., Wampold and Serlin, 2000;
Musca et al., 2011). Accordingly, if the ICC(1) is used to
determine dependency in the data, the adjusted estimators
should be used to avoid the risk of biased standard errors
in dependent data.

Finally, our work can be applied to other ICCs. Generally,
different ICCs can be defined as the ratio of the variance
of interest and the total variance (Liljequist et al., 2019).
Theorem 1 shows that the within-variance has a positive
bias under condition of measurement error, which may be
important to other ICCs that use the within-variance (e.g.,
as part of the total variance). Further, if they want to cancel
the measurement error-variance, they can apply Theorem 2
to derive an estimator for ICC of interest, unbiased by
measurement error.

Limitations and Future Research
Some limitations and directions for future research
should be noted here.

Firstly, the current study did not derive the formula for the
confidence intervals for the reliability-adjusted ICC(1) estimator
and the measurement model-based ICC(1) estimator. It will
be important to derive them in future research, as confidence
intervals are required to make inference with the estimators of
ICC(1), robust to measurement error, such as hypothesis testing
(e.g., Kivlighan et al., 2019) or determining dependence in data
(e.g., Bliese, 2000).

Secondly, the current study solely relied on normally
distributed between-effects and within-effects, and did not
examine other distributions. For example, a typical reliability
measure, the Cronbach’s alpha (Sheng and Sheng, 2012), is
biased, given non-normal data. Therefore, the ICC(1), robust to

measurement error may also be affected by non-normal data.
Additionally, the behavior of the proposed estimators may change
under condition of different missing data patterns (e.g., Shieh,
2012). We hope that future research addresses these limitations
of the present study.

Finally, the Bayesian approaches to ICC(1) estimation
(e.g., Zhang and Wang, 2018; Mulder and Fox, 2019)
may suffer from the same problem of measurement error
as the frequentist approach, as Theorem 1 should hold,
independent of the estimation approach. Therefore, future
research could develop Bayesian equivalents to the reliability-
adjusted ICC(1) estimator and the measurement model-based
ICC(1) estimator.

CONCLUSION

All in all, we conclude that measurement error induces a
non-negligible downward bias in ICC(1) estimation, as shown
in the example of Kivlighan et al. (2019) and Podsakoff
et al. (2019). Our proposed estimators – the reliability-
adjusted ICC(1) estimator and measurement model-based
ICC(1) estimator – yield estimates, corrected for measurement
error. We hope that our proposed estimators will help
researchers to obtain a more accurate ratio of between-
variance to total-variance in the future under the condition of
measurement error.
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