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Abstract

Background

Early risk stratification for guiding treatment priority in the emergency department (ED) is

becoming increasingly important. Existing prediction models typically use demographics,

vital signs and laboratory parameters. Laboratory-based models require blood testing,

which may cause substantial delay. However, these delays can be prevented by the use of

point-of-care testing (POCT), where results are readily available. We aimed to externally

validate a laboratory-based model for mortality and subsequently assessed whether a

POCT model yields comparable performance.

Methods

All adult patients visiting the ED of a university hospital between January 1st, 2012 and

December 31st, 2016 were retrospectively reviewed for inclusion. Primary outcome was

defined as 30-day mortality after ED presentation. We externally validated one existing pre-

diction model including age, glucose, urea, sodium, haemoglobin, platelet count and white

blood cell count. We assessed the predictive performance by discrimination, expressed as

Area under the Curve (AUC). We compared the existing model to an equivalent model using

predictors that are available with POCT (i.e. glucose, urea, sodium and haemoglobin). Addi-

tionally, we internally validated these models with bootstrapping.

Results

We included 34,437 patients of whom 1,942 (5.6%) died within 30 days. The AUC of the lab-

oratory-based model was 0.794. We refitted this model to our ED population and found an

AUC of 0.812, which decreased only slightly to 0.790 with only POCT parameters.

Conclusions

Our POCT-model performs similar to existing laboratory-based models in identifying

patients at high risk for mortality, with results available within minutes. Although the model
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needs further validation and evaluation, it shows the potential of POCT for early risk stratifi-

cation in the ED.

Introduction

Identifying patients in the Emergency Department (ED) at risk of dying remains challenging.

The existing prediction models are typically based on demographics and vital signs.

Triage systems are initially used to identify the most severely ill patients. However, current

triage systems, such as the Emergency Severity Index (ESI) [1] and the Manchester Triage Sys-

tem (MTS) [2], were mainly introduced for trauma patients. The performance of triage sys-

tems in all ED patients is poor [3–5]. Early warning scores (EWS) are also used in the ED,

either as replacement or as addition to triage [6, 7]. Examples of EWS are the Modified Early

Warning Score (MEWS) and the National Early Warning Score (NEWS). However, EWS are

developed to detect inpatient clinical deterioration and the predictive value of EWS for mortal-

ity in the ED varies [8, 9] and both validation and calibration are inadequate or lacking [10].

Using laboratory parameters is another approach for early risk stratification. An advantage

of laboratory parameters in prediction models is their objective measurement. Asadollahi et al.

provided a laboratory-based prediction model derived from 1,650 acute medical and surgical

patients, which performed well with an AUC of 0.848 [11]. The model was internally-exter-

nally validated using data from the same hospital in a different period of time. The model uses

age, glucose, urea, sodium, haemoglobin, platelets and white blood cell count as predictors.

These six laboratory parameters were selected from a large array of potential parameters and

are known to correlate with adverse outcome [12–15]. Laboratory models require blood testing

and can therefore cause a substantial delay if blood samples are analysed by a central labora-

tory. However, these delays might be prevented by point-of-care testing (POCT), which yields

results within minutes [16, 17].

The aim of this study is to determine whether a laboratory model can be implemented

using only POCT laboratory testing. Since external validation is a critical step to implementa-

tion in clinical practice, and to potentially improve the feasibility of the model, the first aim of

this study is to externally validate the laboratory-based model by Asadollahi et al. [11] in a

large unselected population of ED patients. The second aim is to assess whether a model based

only on POCT available laboratory parameters yields comparable performance.

Methods

Study design and setting

We performed a retrospective cohort study in the ED of the Erasmus University Medical Cen-

ter Rotterdam (Erasmus MC), Rotterdam, the Netherlands, which is a large tertiary referral

centre, situated in an urban area. The ED has approximately 32,000 visits annually. Data from

all patients were automatically extracted from the electronic health records on a regular basis

and collected in a database.

Selection of participants

We included all ED visits from January 1st 2012 up to December 31st 2016. Adult patients,

aged 18 years and over, in which laboratory diagnostics were performed were selected for this

study. Per patient only the first visit to the ED was included.
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Measurements and outcomes

We extracted demographic data (i.e. sex, age) and presenting vital parameters (i.e. body temper-

ature, heart rate, respiratory rate, oxygen saturation, blood pressure and consciousness level

using AVPU-scale). Furthermore, we extracted acuity scale according to MTS category, disposi-

tion (i.e. in hospital admission), and arrival (i.e. by ambulance). In line with the study of Asadol-

lahi et al. we extracted haemoglobin, serum sodium, plasma glucose, white blood cell count,

serum urea and platelet count. These laboratory values were afterwards categorized (Table 1).

Haemoglobin levels were converted from mmol/L to g/dL [11]. Subsequently, we selected

the laboratory parameters that are measurable with POCT, i.e. glucose, urea, sodium and hae-

moglobin. At Erasmus MC, the ABL800 FLEX (Radiometer America Inc., Westlake, OH)

blood gas analyser for POCT is used, which yields results within two minutes. Outcome was

defined as 30-day mortality after the index ED visit. Mortality data were retrieved from the

patient records, which are linked to municipal mortality records. The Medical Ethics Commit-

tee of the Erasmus MC reviewed the study and concluded that our study did not fall under the

scope of the Medical Research Involving Human Subjects Act and therefore no informed con-

sent needed to be obtained.

Statistical analysis

Patient characteristics were presented as mean (SD), median (interquartile range (IQR)) or

absolute numbers (percentage), when appropriate. Missing data were handled using multiple

imputations (n = 5) with a chained equations procedure, which means that the expected value

of the missing data point is estimated based on the available data.

We examined all patient characteristics of patients that were alive versus the patients who

died within 30 days from the index ED visit. Data were compared using Pearson chi-squared

tests or unpaired t-tests, based on distribution of data.

Model performance of the laboratory-based model was described as discrimination and cal-

ibration. Discrimination was assessed using the area under the Receiver Operating Character-

istic-curve (AUC). We assessed calibration with a calibration plot in which the slope indicates

the relation between the observed and the predicted outcome (i.e. ideally close to 1) and the

intercept indicates whether the predictions are systematically deviant (i.e. ideally close to 0).

We calculated likelihood ratios for all cut-off points from the total score and determined the

ideal cut-off point using Youden’s index (i.e. the cut-off point combining the optimal sensitiv-

ity and specificity). Interval likelihood ratios were established for several different intervals.

Furthermore, we refitted the model on our data and subsequently reduced the model by only

including parameters which could be tested using POCT. These models were internally vali-

dated using five hundred times bootstrap resampling.

Table 1. Laboratory tests with its cut-off points.

Parameter (Unit) Reference range

Age�65 (years)

Urea >7.0 (mmol/L) 2.5–7.5 (mmol/L)

Haemoglobin <12.0 (g/dL) (7.45 mmol/L) ♂: 14–17.5 (g/dL)

♀: 12.3–15.3 (g/dL)

Sodium <135 (mmol/L) 135–145 (mmol/L)

Glucose>7.0 (mmol/L) <7.8 (mmol/L)

White blood count >10.0 (�109/L) 4.0–10.0 (�109/L)

Platelet count <150 (�109/L) 150–400 (�109/L)

https://doi.org/10.1371/journal.pone.0239318.t001
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Analyses were conducted with IBM SPSS Statistics for Windows version 26 (IBM Corp.,

Armonk, New York, USA) and R statistics version 3.6.1. A significance level of p<0.05 was

considered as statistically significant.

Results

Patient characteristics

116,398 adult ED visits were recorded between January 2012 and December 2016. Laboratory

testing was performed in 54,753 of these visits. Selecting only first ED visits, yielded 34,437

patients eligible for analysis (Fig 1). The majority of the population was male (54.8%). Median

age (IQR) was 54 years (37–67). Admission rate was 55.7% and in total 1,942 (5.6%) patients

died within 30 days after the ED visit. Patients who died presented to the ED with more abnor-

mal vital signs (i.e. higher heart rate (93 vs. 87 per minute), lower systolic blood pressure (135

vs. 140 mmHg), abnormal consciousness level (37.3 vs. 7.5%), p<0.001) and were significantly

older (68 vs. 52 years, p<0.001) (Table 2).

Fig 1.

https://doi.org/10.1371/journal.pone.0239318.g001
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Model performance

Haemoglobin was most frequently tested (in 98.8% patients), whereas blood urea nitrogen was

least often tested (72.0%). All predictive effects we found corresponded to the original model

(e.g. low platelet count, haemoglobin level, sodium levels were associated with 30-day

Table 2. Baseline characteristics.

All patients Died within 30-days Alive P-value

N (%) 34,437 (100%) 1,942 (5.6) 32,495 (94.4)

Demographics

Male, N (%) 18,827 (54.7) 1,187 (61.1) 17,640 (54.3) <0.001

Age,median (IQR) 54 (37–67) 68 (58–78) 52 (36–66)

ED presentation characteristics

Arrival by ambulance, N (%) 10,387 (30.2) 1,074 (55.3) 9,313 (28.7) <0.001

Triage category, N (%)a,
immediate/very urgent

6,827 (19.8) 1,015 (52.3) 5,812 (17.9) <0.001

Vital signs

Body temperature in °Cb,mean (SD) 36.8 (0.98) 36.2 (1.5) 36.9 (0.9) <0.001

Heart rate in bpmc,mean (SD) 87 (21) 93 (25) 87 (21) <0.001

Systolic blood pressure in mmHgd,mean (SD) 139 (27) 135 (39) 140 (26) <0.001

Diastolic blood pressure in mmHge,mean (SD) 82 (17) 77 (24) 82 (16) <0.001

Respiratory rate per minutef,mean (SD) 19 (7) 21 (8) 19 (7) <0.001

Oxygen saturation in %g,median (IQR) 98 (96–99) 97 (94–99) 98 (96–99) <0.001

Consciousness not alerth, N (%)b 3,148 (9.1) 712 (37.3) 2,436 (7.5) <0.001

Admission, N (%) 19,172 (55.7) 1,607 (84.2) 17,565 (54.0) <0.001

Laboratory tests

Urea (mmol/L)i,mean (SD) 6.7 (5.1) 9.7 (7.6) 6.5 (4.9) <0.001

Sodium (mmol/L)j,mean (SD) 139 (4.4) 138 (6.1) 139 (4.2) <0.001

Glucose (mmol/L)k,mean (SD) 7.4 (3.8) 8.9 (5.6) 7.2 (3.5) <0.001

Haemoglobin (g/dL)l,mean (SD) 13.3 (2.1) 12.3 (2.6) 13.3 (2.1) <0.001

White blood cell count (109/L)m,mean (SD) 10.3 (18.3) 13.8 (14.6) 10.1 (18.4) <0.001

Platelets (109/L)n,mean (SD) 256 (104) 242 (133) 257 (243) <0.001

Missing data are not yet imputed.

Abbreviations: ˚C, degrees Celsius; bpm, beats per minute; dL, decilitre; ED, emergency department; g, gram; IQR, interquartile range; L, litre; mmol, millimole; N,

number; SD, standard deviation.
aData on triage category were missing for 2,610 (7.6%) patients.
bData on body temperature were missing for 10,995 (31.9%) patients.
cData on heart rate were missing for 5,333 (15.5%) patients.
dData on systolic blood pressure were missing for 5,499 (16.0%) patients.
eData on diastolic blood pressure were missing for 5,452 (15.8%) patients.
fData on respiratory rate were missing for 17,321 (50.3%) patients.
gData on oxygen saturation were missing for 6,355 (18.5%) patients.
hData on conscious level were missing for 9,837 (28.6%) patients.
iData on urea level were missing for 9,640 (28.0%) patients.
jData on sodium level were missing for 1,108 (3.2%) patients.
kData on glucose level were missing for 955 (2.8%) patients.
lData on haemoglobin level were missing for 421 (1.2%) patients.
mData on white blood cell count were missing for 2,229 (6.5%) patients.
nData on platelet count were missing for 1,786 (5.2%) patients.

https://doi.org/10.1371/journal.pone.0239318.t002
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mortality) (Tables 1 and 2). Of all predictors in the model, age� 65 years was the strongest

predictor for 30-day mortality in univariate analysis (OR [95% CI] = 4.4 [4.0; 4.8]) (Table 3).

External validation showed an AUC of 0.796 [0.788–0.806] (S1 Fig). The calibration curve

had a slope of 0.77 and an intercept of 0.34 (Fig 2).

We refitted the laboratory-based model on our own dataset with subsequent reduction to a

model with only POCT parameters (Table 3). The refitted laboratory-based model yielded an

internally validated AUC of 0.813, which slightly decreased to 0.790 when only including age

and POCT parameters.

Likelihood ratios of score intervals of 0 to 5, 6 to 13 and 14 to 20 were 0.31, 1.77 and 5.04

respectively. Positive and negative likelihood ratios for dichotomous cut-off points are found

in S1 Table. The highest Youden’s index was found using a cut-off point score of 8.

Discussion

In this study we first externally validated the model by Asadollahi et al. that uses laboratory

parameters and the patients’ age to predict mortality. Next we assessed that the Asadollahi

et al. model based only on POCT available laboratory parameters yielded comparable perfor-

mance. To our knowledge, we are the first to validate this laboratory-based model and to per-

form calibration. Our external validation resulted in a reasonable AUC of 0.796. One benefit

of our study is that we used a large database for the external validation, which limits uncer-

tainty in the performance of the model and thus increases the clinical relevance [18].

Despite the fact that most models are introduced without calibration, it is a critical step pre-

ceding implementation of a model. Calibration describes the agreement between the calculated,

based on the prediction model, and the observed number of occurrences. The calibration of this

model was suboptimal, which indicates the model slightly overestimates the mortality risk.

A major disadvantage of the study by Asadollahi et al. is the case-controlled study design.

The authors included deceased and non-deceased patients in a 1:2 ratio, which yields a mortal-

ity rate of 33%. This results in an overestimation of the prevalence of 30-day mortality. Since

we conducted a cohort study, our mortality rate reflects the 30-day mortality prevalence more

accurately.

Table 3. Odds ratios [95% CI] for the full model and POCT model.

Parameter Odds ratio Odds ratio Odds ratio

[95% CI] [95% CI] [95% CI]

Univariate Full model POCT model
Age�65 (years) 4.21 [3.83; 4.63] 2.73 [2.45; 3.05] 2.60 [2.34; 2.89]

Urea >7.0 (mmol/L) 3.24 [2.85; 3.67] 1.61 [1.39; 1.88] 1.71 [1.48; 1.98]

Haemoglobin <12.0 (g/dL) 2.57 [2.34; 2.83] 1.73 [1.56; 1.92] 1.82 [1.65; 2.02]

Sodium <135 (mmol/L) 2.63 [2.36; 2.96] 1.52 [1.35; 1.72] 1.64 [1.45; 1.85]

Glucose>7.0 (mmol/L) 4.36 [3.95; 4.81] 2.82 [2.54; 3.13] 3.15 [2.85; 3.50]

White blood cell count >10.0 (�109/L) 2.39 [2.15; 2.66] 2.29 [2.05; 2.57] NA

Platelet count <150 (�109/L) 2.89 [2.57; 3.25] 2.79 [2.44; 3.19] NA

Abbreviations: CI, confidence interval; dL, decilitre; g, gram; mmol, millimole; L, litre; NA, not applicable. The linear

predictor of the full model can be calculated with the following formula: LP = -4.790 + 1.005�(Age�65) + 0.479�

(Urea >7.0) + 0.548�(Haemoglobin <12.0) + 0.420�(Sodium <135) + 1.037�(Glucose >7.0) + 0.830�(White blood

count >10.0) + 1.025�(Platelet count <150). The linear predictor of the POCT model: LP = -4.302 + 0.995�(Age

�65) + 0.539�(Urea >7.0) + 0.601�(Haemoglobin <12.0) + 0.494�(Sodium <135) + 1.149�(Glucose >7.0). To

determine the individual risk on 30-day mortality, apply the following formula: 1/(1 + exp(−linear predictor).

https://doi.org/10.1371/journal.pone.0239318.t003
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One of the merits of the model by Asadollahi et al. is that it uses only a few parameters.

Additionally, the parameters within this model are virtually always assessed in patients with

indication for laboratory diagnostics admitted to the ED. Therefore this model is generally

applicable and easy to use by clinicians. Its simple interpretation accommodates usage imple-

mentation in electronic patient files. The power of laboratory values in prediction research is

that they provide an objective measurement, especially compared to manually collected vital

parameters. Vital parameters that are manually collected are prone to interrater variability.

Also, vital parameters are subject to influences that are not always taken into account (pain,

stress, normality for an individual patient). A downside of laboratory values is they take time

to become available and are therefore difficult to implement in a decision model in the ED.

Ideally, prediction models in the ED should consist of readily available parameters and as

little parameters as possible, making the model convenient for clinical practice. As most

Fig 2.

https://doi.org/10.1371/journal.pone.0239318.g002
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laboratory test results take more than an hour, the second aim of our study was to assess

whether a model based on POCT parameters yielded similar predictive performance in pre-

dicting 30-day mortality. We found that our model with age and POCT parameters had similar

performance. We provided the regression coefficients and an intercept allowing to replicate

this study, but also to facilitate implementation of this model in clinical practice. POCT is

promising since it only takes minutes to analyse blood samples. This may lead to a reduction

in time to diagnosis and initiation of treatment. Furthermore, POCT-systems are already used

in EDs. Although presently not every ED has a POCT-analyser, which may limit the applicabil-

ity of this study, this study may encourage to invest in POCT-analysers.

A general limitation of literature concerning prediction models in the ED, is that hardly

any study provides sufficient information to execute external validation. There are several

models based on laboratory values published which performed well in general with an AUC

above 0.80 [19–21].

A limitation of our study is its retrospective study design, which makes our study prone to

bias. Nevertheless, laboratory data were automatically retrieved from the laboratory testing

machines thus the quality of the data is high and not subject to human mistakes. Furthermore,

we had missing data, mainly vital signs, which we replaced using multiple imputation. This is a

valid way to manage even large samples of missing data [22], although a database with all data

available is obviously superior. Therefore, we should strive to collect data as complete as possi-

ble. Last, this validation study took place in a tertiary care centre which corresponds to the der-

ivation study [11]. Therefore, our results might be less generalizable to other centres with

patients with different complexity and pathology. We therefore recommend external valida-

tion of our model in another centre, before implementation. In addition, we encourage consid-

ering POCT in prediction model development, researching both its discrimination and

calibration.

In conclusion, the performance of the model by Asadollahi et al. was adequate in identify-

ing patients at high risk for mortality in the ED. However, our POCT-model performs similar

with results available within minutes. Although our model needs further validation and evalua-

tion, it shows the potential of POCT in early risk stratification in the ED.
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