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Software for accurate prediction of protein-ligand binding affinity can be a key

enabling tool for small molecule drug discovery. Free energy perturbation (FEP)

is a computational technique that can be used to compute binding affinity

differences between molecules in a congeneric series. It has shown promise in

reliably generating accurate predictions and is now widely used in the

pharmaceutical industry. However, the high computational cost and use of

commercial software, together with the technical challenges to setup, run, and

analyze the simulations, limits the usage of FEP. Here, we use an automated FEP

workflow which uses the open-source OpenMM package. To enable effective

application of FEP, we compared the performance of different water models,

partial charge assignments, and AMBER protein forcefields in eight benchmark

test cases previously assembled for FEP validation studies.
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Introduction

Accurate prediction of protein-ligand binding affinity can play an important role in hit-to-

lead and lead optimization (Steinbrecher, 2012). It can accelerate drug discovery programs and

improve the cost-efficiency when used to prioritize compounds for synthesis (Steinbrecher,

2012; Homeyer et al., 2014). Alchemical free energy calculations are a class of rigorous

methods that can be used for binding affinity prediction (Christ et al., 2010; Chodera et al.,

2011). They can compute both the absolute binding free energy (Boyce et al., 2009), (Mobley

et al., 2007), (Irwin and Huggins, 2018) and, more commonly used in the pharmaceutical

industry, the relative binding free energy (RBFE) between structurally related compounds

(Christ et al., 2010; Steinbrecher and Labahn, 2010; Steinbrecher, 2012). RBFE calculations

involve the transformation of one chemical species into another via an “alchemical” pathway.

The alchemical transformation from the initial state to the final state is usually characterized by

a non-physical coupling parameter λ. The free energy difference is calculated as the

summation of alchemical transformation between fixed-λ states. Free energy perturbation

(FEP) (Zwanzig, 1954; Bennett, 1976) and thermodynamic integration (TI) (Kirkwood, 1933),
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(Kirkwood, 1934), (Kirkwood, 1935) are both rigorous approaches

that predict differences in protein-ligand binding affinities between

congeneric molecules using molecular dynamics simulations. They

are currently the most widely used approaches for RBFE

calculations. (Abel et al., 2017a).

In particular, FEP is increasingly used in the pharmaceutical

industry, typically in the lead optimization stage which involves

synthesis of hundreds of close analogs with small structural

modifications (Wade and Huggins, 2019). However,

historically there have been numerous challenges limiting the

success of FEP (Chodera et al., 2011). This includes inadequate

sampling of relevant configurations, limited force field accuracy

and technical hurdles to setup, run and analyze the calculations.

(Mobley and Gilson, 2017). For example, when there are large

structural reorganizations in the protein or ligand upon the

alchemical transformation, large energy barriers can exist

between different conformations. This can cause the protein

or ligand to be trapped in a configuration during the

simulation. (Gallicchio and Levy, 2011). The methods of

Hamiltonian replica exchange and solute tempering (Liu et al.,

2005) were developed to enhance sampling and address this

issue. (Jiang and Roux, 2010).

Commercial software, such as Schrödinger’s FEP+ (Wang et al.,

2015; Abel et al., 2017b), provides accurate force field parameters

(Harder et al., 2016), (Lu et al., 2021) and an intuitive GUI for setting

up and analyzing simulations. The FEP + protocol using replica

exchange with solute tempering (REST) (Liu et al., 2005) and

OPLS2.1 force field yielded an accurate free energy prediction

with edgewise mean unsigned errors (MUEs) around 0.90 kcal/

mol with respect to experiments on eight test cases (330 edges).

(Wang et al., 2015). An orthogonal approach to free energy

calculations called thermodynamic integration (TI) (Kirkwood,

1935) was also validated on the same dataset using AMBER

(Salomon-Ferrer et al., 2013), (Cheatham et al., 2005) with a

slightly larger overall edgewise MUE of 1.17 kcal/mol based on

the cycle closure ddG. (Song et al., 2019). The FEP+ and AMBER TI

validations both focus on edgewise MUEs: the MUE between

experimental and predicted difference in binding affinity for all

edges in the perturbationmap. In this study we focus on theMUE of

the compound binding affinities: the MUE between experimental

and predicted binding affinity for all compounds. This provides a

more direct comparison with experimental measurements, and we

term it the MUE in binding affinity. For reference, we calculated the

MUE in binding affinity for all 199 ligands from the FEP+ and TI

studies: 0.77 kcal/mol and 1.01 kcal/mol respectively (Table 2).

Assessment of open-source MD packages for FEP and

benchmarking of widely available force fields is of general interest

to the community (Huggins, 2022). To explore applications of FEP

calculations, we implemented an automated tool Alchaware, which

performs FEP calculations using the open-source OpenMM code

TABLE 1 The five forcefield parameter sets tested.

Parameter Set Protein Forcefield Water Model Charge Model

1 AMBER ff14SB SPC/E AM1-BCC

2 AMBER ff14SB TIP3P AM1-BCC

3 AMBER ff14SB TIP4P-Ewald AM1-BCC

4 AMBER ff15ipq SPC/E AM1-BCC

5 AMBER ff14SB TIP3P RESP

6 AMBER ff15ipq TIP4P-Ewald AM1-BCC

TABLE 2 Summary of accuracy and correlation statistic results of the five parameter sets tested here alongside two published datasets.

FEP+ 18 AMBER TI 22 Alchaware

OPLS2.1 AMBER ff14SB 1. AMBER ff14SB 2. AMBER ff14SB 3. AMBER ff14SB 4. AMBER ff15ipq 5. AMBER ff14SB 6. AMBER ff15ipq

SPC/E SPC/E SPC/E TIP3P TIP4P-EW SPC/E TIP3P TIP4P-EW

CM1A-BCC RESP AM1-BCC AM1-BCC AM1-BCC AM1-BCC RESP AM1-BCC

MUE (kcal/mol) 0.77 1.01 0.89 0.82 0.85 0.85 1.03 0.95

RMSE (kcal/mol) 0.93 1.3 1.15 1.06 1.11 1.07 1.32 1.23

aR2 0.66 0.44 0.53 0.57 0.56 0.58 0.45 0.49

aρ 0.82 0.65 0.7 0.75 0.73 0.74 0.65 0.70

aτ 0.62 0.48 0.52 0.56 0.54 0.55 0.47 0.51

aCorrelation coefficient (R2), Spearman’s rank (ρ), and Kendall rank correlation coefficient (τ) of 199 compounds
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TABLE 3 The representative perturbations used to explore convergence for the eight test cases.

Test Case Ligand 1 Ligand 2 Similarity score

BACE CAT-13g CAT-17i 0.33

CDK2 30 31 0.09

JNK1 18626-1 18660-1 0.41

MCL1 29 40 0.33

P38 p38a_2g p38a_2c 0.22

PTP1B 23469 20669 0.18

Thrombin 1a 3b 0.74

TYK2 Ejm_49 Ejm_50 0.45
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(Eastman and Pande, 2010a), (Eastman and Pande, 2010b), (Eastman

et al., 2017), (Eastman and Pande, 2015). The performance and

validity of a set of commonly used force field 26parameters were

assessed with Alchaware on the eight test cases often referred as the

JACS set for benchmarking free energy calculations. (Wang et al.,

2015).

In this study, we validated FEP calculations with the widely

used AMBER/GAFF forcefields (AMBER ff14SB (Maier et al.,

2015)/GAFF2.1128) on the large dataset of eight test cases

(330 edges). We selected water models that are available “out

of the box” in the OpenMMpackage. The three-site water models

are computationally efficient, therefore we chose the widely used

three-site models SPC/E (Berendsen et al., 1987) and TIP3P

(William et al., 1983). We also included a four-site model TIP4P-

Ewald (Horn et al., 2004), which is optimized for PME

calculations. We assessed the effect of these different water

models on prediction accuracy. The AMBER ff15ipq protein

force field, a second-generation force field developed using the

Implicitly polarized charge model (IPolQ) for deriving implicitly

polarized charges in the presence of explicit solvent, (Debiec

et al., 2016), was compared with the AMBER ff14SB force field.

Additionally, two partial charge models (AM1-BCC (Jakalian

et al., 2002) and RESP (Christopher et al., 1993)) were evaluated

in the FEP calculations. The five parameter sets tested are listed in

Table 1.

Materials and methods

Test set selection

The existing JACS benchmark set (Wang et al., 2015) of

BACE, CDK2, JNK1, MCL1, P38, PTP1B, Thrombin and

TYK2 was used for validation.

Protein preparation

Protein structures were taken from the JACS benchmark set

paper. (Wang et al., 2015). Protein N-termini were converted to a

FIGURE 1
Convergence of the RBFE for the representative perturbation in each test case using the AMBER ff14SB force field with AM1-BCC charges and
(A) SPC/Ewatermodel or (B) TIP3Pwatermodel. In each test case, the perturbationwith the lowest similarity score (Liu et al., 2013) obtained from the
Schrödinger FEP+ panel was chosen as the representative perturbation in this plot. Free energies were estimated every 0.25 ns.
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protonated amine and protein C-termini were converted to a

charged carboxylate. For CDK2 (PDBID 1H1Q (Davies et al.,

2002)), JNK1 (PDBID 2GMX (Szczepankiewicz et al., 2006)),

MCL1 (PDBID 4HW3 (Friberg et al., 2013)), P38 (PDBID 3FLY

(Goldstein et al., 2011)) and TYK2 (PDBID 4GIH (Liang et al.,

2013)) there are no water molecules at these active sites. For

BACE (PDBID 4DJW (Cumming et al., 2012)), PTP1B (PDBID

2QBS (Wilson et al., 2007)) and Thrombin (PDBID 2ZFF (Baum

et al., 2009)), active site water molecules were retained. Ligands

were aligned to a common core using the maximum common

substructure. Input scripts and test set structure files are available

on Github (https://github.com/shansun7994/Alchaware_v5.0).

Forcefields

The GAFF 2.11 forcefield (Wang et al., 2004) was used for

ligand parameters. Three water models, two protein

forcefields, and two charge models were tested. AM1-BCC

charges (Jakalian et al., 2002) were calculated using the

Antechamber package (Wang et al., 2001). RESP charges

(Christopher et al., 1993) were calculated with Jaguar

(Bochevarov et al., 2013) using the DFT/B3LYP method

(Lee et al., 1988), (Becke, 1993) (Becke, 1993)with a

Poisson-Boltzmann solver and water as the solvent. The

crystallographic binding modes of the ligands were first

subjected to minimization at the 3–21G* level and then

charges were fit at the 6–31G** level.

FEP calculations

FEP calculations were performed using OpenMM 7.2

(Eastman et al., 2017) with the OpenMMTools toolkit for

Hamiltonian replica exchange. All systems in all states were

minimized with the OpenMM local energy minimizer. The

FIGURE 2
Plots of MUE and R2 for each target separately.
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equilibration was conducted in the NPT ensemble for 500ps at

300 K and 1 atm using a Monte Carlo Barostat. Production

simulations for 5ns were performed with a Langevin

integrator in the NPT ensemble with a timestep of 4.0 fs

using hydrogen mass repartitioning and a hydrogen mass of

4 AMU (Hopkins et al., 2015), (Jung et al., 2021). The RBFEs were

calculated using the MBAR estimator (Bennett, 1976; Shirts and

Chodera, 2008) with 12 equally-spaced lambda windows. Two

calculations were performed to estimate each relative binding

free energy: conversion of molecule A to B in complex and

conversion of molecule A to B in solvent. Solvent systems were

generated with a 9.0 Å buffer between the solute and the edge of

the cubic periodic box. Complex systems were generated with a

5.0 Å buffer between the solute and the edge of the cubic periodic

box. Systems were neutralized and the ionic strength was set to

150 mM with Na+ and Cl-ions. Electrostatics were modelled

using particle mesh Ewald method (Darden et al., 1993) and van

der Waals were modelled using a nonbonded cutoff of 10.0 Å.

Bonds to hydrogen were constrained, and water molecules were

modeled as rigid. To avoid the numerical instabilities referred to

as end point catastrophes that occur when ligands approach the

fully decoupled state, OpenMMTools employs a softcore

function. (Pham and Shirts, 2011). Default parameters were

used for softcore_alpha (0.5), softcore_a (1), softcore_b (1),

softcore_c (6), softcore_beta (0.0), softcore_d (1), softcore_e

(1), and softcore_f (2). For transformations from molecule A

to molecule B, hybrid molecules with dual topology were

generated by identifying atoms shared between A and B that

make a common core and atoms unique to A and B that appear

and disappear. The sterics of A and B were first entirely coupled

before switching the electrostatics. The predicted binding

affinities are calculated using the Arsenic GitHub package

(https://github.com/OpenFreeEnergy/arsenic). Perturbation

networks are included in the Supported Information

(Supplementary Figure S1).

Results and discussion

We studied the effect of the simulation parameters on

Schrödinger’s JACS benchmark set, which includes eight

protein targets, 199 ligands and 330 perturbations. It is worth

noting that experimental uncertainties can be on the order of

0.64 kcal/mol. (Hahn et al., 2021). Starting with a parameter set

using the GAFF 2.11 ligand force field, the AMBER ff14SB

protein forcefield, the SPC/E water and AM1-BCC charges,

the overall mean unsigned error (MUE) and root mean

square error (RMSE) of 199 ligands were 0.89 kcal/mol and

1.15 kcal/mol, respectively (Table 2). With a simulation time

of 5 ns per lambda window and a frequency of replica exchange at

4 ps, we examined the convergence of the representative edges in

each test case (Table 3). The representative edges were chosen in

each case by the lowest similarity score (Liu et al., 2013) reported

in the Schrödinger FEP + panel. In general, the lower the

similarity score, the higher the difficulty of the perturbation is

likely to be. The total binding free energies estimated for these

TABLE 4 Summary of MUE, RMSE and R2 of 8 test cases and parameters.

Target BACE CDK2 JNK1 MCL1 P38 PTP1B Thrombin TYK2

FEP+ MUE 0.67 0.88 1.07 0.84 0.86 0.61 0.42 0.45
RMSE 0.85 1.04 1.15 1.04 0.99 0.80 0.54 0.57
R2 0.61 0.23 0.68 0.60 0.55 0.64 0.50 0.79

1. AMBER ff14SB, SPC/E, AM1-BCC MUE 0.89 1.00 0.85 1.27 0.76 0.66 0.31 0.85
RMSE 1.15 1.24 0.96 1.53 0.94 1.05 0.40 1.04
R2 0.28 0.22 0.41 0.39 0.55 0.47 0.77 0.42

2. AMBER ff14SB, TIP3P, AM1-BCC MUE 0.89 1.03 0.75 1.07 0.65 0.68 0.37 0.78
RMSE 1.12 1.36 0.87 1.36 0.77 0.94 0.47 0.91
R2 0.32 0.20 0.52 0.43 0.60 0.49 0.84 0.52

3. AMBER ff14SB, TIP4P-EW, AM1-BCC MUE 0.89 1.05 0.74 1.05 0.84 0.80 0.29 0.74
RMSE 1.15 1.38 0.90 1.32 1.11 0.98 0.36 0.91
R2 0.25 0.13 0.61 0.44 0.51 0.48 0.77 0.62

4. AMBER ff15ipq, SPC/E, AM1-BCC MUE 0.92 1.06 0.94 0.83 0.84 0.85 0.31 0.78
RMSE 1.09 1.37 1.04 1.02 1.02 1.22 0.39 0.98
R2 0.50 0.14 0.52 0.62 0.46 0.19 0.70 0.61

5. AMBER ff14SB, TIP3P, RESP MUE 1.25 1.00 0.85 1.27 1.13 0.66 0.31 0.90
RMSE 1.57 1.24 0.96 1.53 1.47 1.05 0.40 1.06
R2 0.22 0.22 0.41 0.39 0.17 0.47 0.77 0.37

6. AMBER ff15ipq, TIP4P-EW, AM1-BCC MUE 0.94 1.14 0.78 1.35 0.94 0.75 0.35 0.63
RMSE 1.22 1.52 0.95 1.64 1.18 0.93 0.41 0.80
R2 0.30 0.10 0.55 0.26 0.34 0.57 0.70 0.62

TI - AMBER ff14SB, SPC/E, RESP MUE 1.03 0.90 0.90 1.24 1.28 0.76 0.37 0.89
RMSE 1.32 1.08 1.13 1.48 1.62 1.01 0.51 1.13
R2 0.19 0.22 0.22 0.42 0.15 0.50 0.57 0.33
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FIGURE 3
Correlation between predicted binding free energies and experimental data with 6 parameter sets. Error bars indicate the cycle closure error.
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representative edges in each set are shown in Figure 1A. In all

cases, predictions show reasonably good convergence after 2.5 ns.

A repeat run of these perturbations was carried out using a

different initial configuration by minimizing the protein

structures. The ddG difference between the two configurations

is within 1.0 kcal/mol for all test cases except BACE where the

ddG difference between the two configurations is within 2.0 kcal/

mol (Supplementary Figure S2). The overall accuracy of the

prediction (MUE 0.89 kcal/mol, RMSE 1.15 kcal/mol) is better

than the validation reported using TI (MUE 1.01 kcal/mol,

RMSE 1.3 kcal/mol), and comparable to the commercial

software FEP + using the OPLS2.1 force field and SPC/E

water model (MUE 0.77 kcal/mol, RMSE 0.93 kcal/mol),

though errors are a little larger (Table 2). Notably better

performance was seen in the case of JNK1 with an

improvement of 0.22 kcal/mol in MUE (Figure 2; Table 4).

However, concerns were raised with the quality of the

JNK1 structure (2GMX) used for benchmarking. (Hahn et al.,

2021). The high R-free value (0.351), as well as the large

difference between R-value and R-free for this JNK1 structure,

indicates a possible overfit of the atomic model to the

experimental diffraction pattern when solving the crystal

structure. The coordinate error which assesses the precision of

the model is 0.77. This does not fulfill the high-quality structure

criteria (<0.7). (Hahn et al., 2021).

We then used the same ligand and protein force fields to test

whether the three-point TIP3P and four-point TIP4P-Ewald

water models would improve the prediction accuracy. Both

the TIP3P and TIP4P-Ewald water models slightly improve

the overall performance with lower error and higher

correlation coefficient compared to SPC/E water model

(Table 2, parameter set 1, 2 and 3). This better performance

could be due to the improvement of the convergence (Figure 1).

Using the GAFF 2.11 ligand force field, SPC/E water model

and AM1-BCC charge, we found the AMBER ff15ipq force field

(Table 2, parameter set 4), which better models the polarization

effect, has a small improvement in the overall accuracy of ddG

predictions (MUE 0.85 kcal/mol, RMSE 1.07 kcal/mol). This

improvement is more notable in the MCL1 case, where the

carboxylic acid group of all the ligands forms a critical salt

bridge with the ARG263 residue. In this case, the AMBER

ff15ipq force field improved the MUE by 0.44 kcal/mol

compared to AMBER ff14SB (Figure 2, parameter set 1, 4).

However, the four-point TIP4P-EW water model does not

improve the accuracy on AMBER ff15ipq (Table 2,

parameter set 6). A recent benchmark by Huai et al.

evaluated AMBER protein force fields using a small test set

has found that AMBER ff14SB and AMBER ff19SB (Tian et al.,

2020) both perform well in alchemical calculation (Huai et al.,

2021). There are problems with using the AMBER ff19SB force

field in OpenMM due to the use of CMAP terms, but it should

be explored in future work. In addition, the widely used

CHARMM36 (Huang and MacKerell, 2013) and

CHARMM36m (Huang et al., 2017) protein forcefield are

also worth exploring.

The restrained electrostatic potential (RESP) approach is a

commonly-used method of assigning partial charges to organic

compounds (Christopher et al., 1993; Wang et al., 2000).

Surprisingly, using RESP charges instead of the AM1-BCC

charge does not tend to improve prediction accuracy or

correlation (MUE 1.03 kcal/mol, RMSE 1.32 kcal/mol, R2

0.45). Song et al. (Song et al., 2019) validated the performance

of similar force field parameters (AMBER ff14SB/GAFF1.8 force

field, SPC/E, and RESP charges) using thermodynamic

integration (TI) free energy calculation approach on the same

benchmark set gave similar results (MUE 1.01 kcal/mol, RMSE

1.30 kcal/mol, R2 0.44) (Table 2, TI and parameter set 5). This

suggested the differences in performance arise largely from the

charge model employed.

Together, the parameter set 2 (AMBER ff14SB, TIP3P, AM1-

BCC) has the best performance in the JACS benchmark set

(Figure 3). For the 199 ligands, the majority of the binding free

energy values are within 2.0 kcal/mol except for 17 ligands.

Notably, these ligands are for BACE (3 ligands), MCL1

(9 ligands) and PTP1B (2 ligands) where the ligands are

charged. The accuracy and correlation between the parameter

sets are generally aligned, such that a high accuracy model also

does better in ranking compounds. In cases where salt-bridges

are formed between protein and ligand, the AMBER ff15ipq

protein force field tends to increase the prediction accuracy.

Conclusion

We developed a workflow for calculating FEP RBFEs with an

automated tool Alchaware using OpenMM. Validations of the

FEP calculations with open-source force field parameters were

carried out on the JACS benchmark set of eight test cases.

TIP3P and TIP4P-Ewald water models slightly improved the

overall performance relative to SPC/E, with lower error and higher

correlation coefficient with AMBER ff14SB protein force field and

AM1-BCC charge. The AMBER ff15ipq protein force field (which

was built to better model polarization effects) also improves the

accuracy and correlation, particularly in cases where charged

ligands form salt bridge interactions. This is particularly true in

the case of MCL1, where the ligand forms a critical salt bridge with

the charged residue (ARG263). Unfortunately, there is no

improvement when using RESP charges relative to AM1-BCC

charges. However, alternative protocols to generate the RESP

charges should be explored in future work.

In summary, this work reports the predictive accuracy with

6 parameter sets in calculating RBFEs using FEP. Among those,

set 2 (AMBER ff14SB/GAFF2.1 force field, TIP3P water model,

and AM1-BCC changes) yields the best accuracy in 199 ligands

(overall MUE 0.82 kcal/mol, RMSE 1.06 kcal/mol). Although the

overall accuracy is not quite as good as the commercial FEP +
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results, in some cases (such as P38, PTP1B, and Thrombin) the

accuracy is comparable. Although the better performance was

seen in the case of JNK1, the protein structure used (2GMX) does

not fulfill the high-quality structure criteria. This issue flags the

importance of adopting best practices in constructing, preparing,

and evaluating FEP calculations (Mey et al., 2020; Hahn et al.,

2021). Finally, most of the poorly predicted compounds

(MUE >2.0 kcal/mol) fall into three cases (BACE, MCL1 and

PTP1B), where the ligands are charged. This suggests that better

accuracy may be achieved by better models of charge and/or

polarization and future work should be focused in this area.
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