Dopamine transporter single-photon emission computed tomography brain scan: A reliable way to distinguish between degenerative and drug-induced parkinsonism

Sir,

A 54-year-old man on valproate because of bipolar affective disorders developed extra-pyramidal symptoms suggestive of drug-induced parkinsonism. His symptoms persisted despite stopping valproate. He had a dopamine transporter (DaT) scan and single-photon emission computed tomography (SPECT) scan. The DaT scan showed abnormality (Grade 1) [Table 1] in the right putaminal tracer uptake suggestive of degenerative parkinsonism instead of drug-induced parkinsonism [Figure 1a and b].^[1,2]

DaT is the presynaptic transmembrane protein of the dopaminergic synapses. It transports dopamine back to the presynaptic neurons from the synaptic cleft. ¹²³I-ioflupane is a molecular imaging agent used in DaT imaging to demonstrate the location and concentration of DaTs in the synapses. Tc99m-TRODAT and F-18 FDOPA positron emission tomography scan can also assess the DaT activity and the integrity of the presynaptic nigrostriatal function.^[3]

DaT SPECT brain scan is helpful to distinguish between pre- (degenerative) and post-synaptic (such as drug-induced or vascular parkinsonism) parkinsonism.^[4] DaT imaging is usually normal in postsynaptic parkinsonism, but abnormal in the presynaptic variety.^[1] The degenerative presynaptic parkinsonism includes sub-types such as idiopathic Parkinson's disease, progressive supranuclear palsy, multiple system atrophy, Lewy body dementia, and corticobasal degeneration. Though this SPECT scan can distinguish between pre- and post-synaptic parkinsonism, it cannot distinguish among the sub-types of degenerative parkinsonism mentioned above.^[1,4]

Figure 1: (a) Normal dopamine transporter single-photon emission computed tomography scan appearance, normal dopamine transporter scan appearance with head of the caudate nucleus appearing like a full stop (large arrow), and the putamen appearing like tail (small arrow). (b) Abnormal dopamine transporter scan in our patient: The left side is normal with normal putaminal tail (large arrow). The right side has abnormal tracer uptake - absence of putaminal tail, but the normal appearance of the caudate nucleus was like a full stop (small open arrow) (Type 1 abnormal uptake as per Benamer *et al.*)^[2]

Table 1: Type of dopamine scan tracer (123I-loflupane) uptakein the human basal ganglia		
Grade	Appearance in each grade	
Normal uptake	Caudate nucleus appears like "full stop" and putamen-like "tail" (whole appearance is like a comma on both sides)	
Туре 1	Normal "full stop" with unilateral disappearing "coma" (asymmetrical loss of putaminal tail)	
Type 2	"Two full stops" (bilateral loss of putaminal tails)	
Туре З	"Disappearing full stops" (partial to complete loss of caudate and putaminal signals)	

Financial support and sponsorship Nil.

Conflicts of interest

There are no conflicts of interest.

Shakya Bhattacharjee, Paramananda Vijaya Shankar¹, Mohammed Elkider²

MRCPUK, Neurology, Plymouth Hospital NHS Trust, Devon, UK, ¹DM, Neurology, Stanley Medical College, Chennai, Tamil Nadu, India, ²MRCP, Neurology, Cork University Hospital, Cork, Ireland

Address for correspondence:

Dr. Shakya Bhattacharjee, Flat 96, 21, Plymbridge Lane, Plymouth, PL68AX, UK. E-mail: bubai.shakya@gmail.com

REFERENCES

- Bajaj N, Hauser RA, Grachev ID. Clinical utility of dopamine transporter single photon emission CT (DaT-SPECT) with (1231) ioflupane in diagnosis of parkinsonian syndromes. J Neurol Neurosurg Psychiatry 2013;84:1288-95.
- 2. Benamer TS, Patterson J, Grosset DG, Booij J, de Bruin K, van Royen E, et al. Accurate differentiation of parkinsonism and essential tremor using

visual assessment of [123I]-FP-CIT SPECT imaging: The [123I]-FP-CIT study group. Mov Disord 2000;15:503-10.

- Berti V, Pupi A, Mosconi L. PET/CT in diagnosis of movement disorders. Ann N Y Acad Sci 2011;1228:93-108.
- Djang DS, Janssen MJ, Bohnen N, Booij J, Henderson TA, Herholz K, et al. SNM practice guideline for dopamine transporter imaging with 123I-ioflupane SPECT 1.0. J Nucl Med 2012;53:154-63.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

Access this article online		
Quick Response Code:	Website: www.ijnm.in	
	DOI: 10.4103/0972-3919.183620	

How to cite this article: Bhattacharjee S, Shankar PV, Elkider M. Dopamine transporter single-photon emission computed tomography brain scan: A reliable way to distinguish between degenerative and drug-induced parkinsonism. Indian J Nucl Med 2016;31:249-50.