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There is strong evidence that anesthetics have stereotypical effects on brain state, so
that a given anesthetic appears to have a signature in the electroencephalogram (EEG),
which may vary with dose. This can be usefully interpreted as the anesthetic determining
an attractor in the phase space of the brain. How brain activity shifts between these
attractors in time remains understudied, as most studies implicitly assume a one-to-one
relationship between drug dose and attractor features by assuming stationarity over
the analysis interval and analyzing data segments of several minutes in length. Yet data
in rats anesthetized with isoflurane suggests that, at anesthetic levels consistent with
surgical anesthesia, brain activity alternates between multiple attractors, often spending
on the order of 10 min in one activity pattern before shifting to another. Moreover, the
probability of these jumps between attractors changes with anesthetic concentration.
This suggests the hypothesis that brain state is metastable during anesthesia: though
it appears at equilibrium on short timescales (on the order of seconds to a few
minutes), longer intervals show shifting behavior. Compelling evidence for metastability
in rats anesthetized with isoflurane is reviewed, but so far only suggestive hints of
metastability in brain states exist with other anesthetics or in other species. Explicit
testing of metastability during anesthesia will require experiments with longer acquisition
intervals and carefully designed analytic approaches; some of the implications of these
constraints are reviewed for typical spectral analysis approaches. If metastability exists
during anesthesia, it implies degeneracy in the relationship between brain state and
effect site concentration, as there is not a one-to-one mapping between the two.
This degeneracy could explain some of the reported difficulty in using brain activity
monitors to titrate drug dose to prevent awareness during anesthesia and should force
a rethinking of the notion of depth of anesthesia as a single dimension. Finally, explicit
incorporation of knowledge of the dynamics of the brain during anesthesia could offer
better depth of anesthesia monitoring.
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INTRODUCTION

General anesthesia is a pharmacologically-induced, reversible state of unarousable
unresponsiveness. As in other states of unconsciousness, such as absence seizure or the vegetative
state, the brain is not necessarily electrically quiescent during general anesthesia. From the
earliest days of electroencephalography (EEG), Gibbs et al. (1937) reported stereotypic shifts with
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increasing doses of ether anesthesia: as doses increase, rhythms
slow and increasing power is found at low frequencies of
the EEG. Much of the subsequent work on systems and
circuit level mechanisms of anesthesia has focused on defining
the corresponding power spectrum signatures for different
anesthetic agents (Purdon et al., 2015; Akeju et al., 2016a,b;
Pavone et al., 2016).

As the field has adopted more sophisticated analytic
approaches to electrical activity during anesthesia, including the
prominent use of the spectrogram to track the time evolution of
the frequency content of brain signals, groups have begun to take
interest not only in the steady state response to anesthetic drugs,
but also to the ways in which the brain transitions into (Ishizawa
et al., 2016) or out of those steady state responses (Chander
et al., 2014; Hudson et al., 2014). One persistent feature in all of
these studies is that brain states spontaneously shift. Spontaneous
changes in network state can even occur during quiet wakefulness
with no anesthetic in mice (Zagha et al., 2013; McCormick et al.,
2015), which has usually been attributed to shifts in subcortical
arousal-related nuclei (Moruzzi and Magoun, 1949; Steriade
et al., 1993). It should perhaps come as no surprise that state
switching occurs during anesthesia in the absence of a change
of anesthetic or stimulus (Hudson et al., 2014), and the shifts
between states may even prove predictive of features of a patient’s
postoperative recovery (Chander et al., 2014).

As dynamical models of brain state increase in sophistication
and utility (Breakspear, 2017), the time seems right to make the
dynamics of brain activity during anesthesia a formal topic of
study in and of itself. That is, how are brain activity patterns
connected to one another? Are shifts between them gradual
or sudden? Predictable or random? Are they dictated solely
by the concentration of anesthesia in the brain or is there a
component of state dependence? These questions will necessitate
some common terminology and may even drive some changes
in experimental design and analysis for studies of anesthetics
as a systems level. This has implications for clinical practice:
while I may be able to predict from ongoing EEG that a
patient will not be aware at this moment in time, I would
also like to know the likelihood that my patient’s brain will
shift to a state that is aware before it happens, so I can
prevent it.

ATTRACTORS, PHASE SPACES AND
STABILITY IN DYNAMICAL SYSTEMS

To begin, it is worthwhile to establish a vocabulary for talking
about the behavior of the brain over time. Imagine a phase space:
a description of the brain that captures all of the dynamical
behaviors of interest, e.g., a multidimensional space where the
activity of each neuron, perhaps as a firing rate, mean field
voltage, or power spectral density, could be plotted on a separate
axis. The study of the how the brain’s activity changes in time
would then amount to mapping the trajectories that the brain
takes through phase space.

The existence of certain stable signatures associated with
anesthetic administration, such as the delta rhythm with volatile
anesthetics (Purdon et al., 2015) or the frontalization of posterior

alpha rhythms (Tinker et al., 1977), suggests that certain activity
patterns can reverberate through brain circuits in a persistent
pattern, which in phase space would be seen as a trajectory that
closes on itself in an orbit. If the brain tends towards developing
that trajectory, such that if the brain starts off on a trajectory
that is close to that orbit, it remains close to the orbit later in
time, the trajectory is described as an attractor in the system
(Figure 1A).

To understand stability in this context, it is helpful to imagine
the phase space as a two dimensional projection of a potential
landscape: if the potential involved in each state were plotted
on a vertical axis, the attractor would correspond to the bottom
of a valley in the potential landscape (Figure 1B). Points at
higher potential would tend downhill, and the system will
eventually settle into the attractor’s dynamics. If the attractor is
at the global minimum on the potential landscape, the system
is stable and will not deviate from the trajectory defined by
that attractor (A dynamical system may have more than one
attractor. As an example, coupled oscillators tend to synchronize
themselves either at the same phase or 180◦ out of phase.
The slope of the potential landscape will determine which
attractor wins out depending upon the starting state of the
system).

NOISE AND METASTABILITY IN
DYNAMICAL SYSTEMS

The observation of stability may depend on the timescale of
observation. A system may appear to be at a stable equilibrium
state—that is, in the basin of a stable attractor—when examined
on short timescales but on longer time scales it might jump
between several different attractors. This behavior, with multiple,
well-separated timescales, is described as metastability (Bovier,
2006).

In modeling metastability, it is useful to consider a system
with more than one stable attractor and additive noise. In the
simplest case, this would be a particle diffusing back and forth
in one dimension, with dynamics defined by a two potential
well (Figure 1C). Here, the phase space is one dimensional, and
the value of the parameter x is indicated on the abscissa, with the
potential function Ψ plotted on the ordinate in Figure 1C. Two
attractors for the system are indicated by the two minima in the
potential function. The current state of the system is indicated by
the ball in the left local minimum of the potential function. The
arrows on either side of the ball indicate that the system is being
continually perturbed by a noise input. As the system evolves in
time, the probability is high that it will remain in the starting well,
so that, on short timescales, the particle will converge towards the
attractor defined by the potential landscape. However, for certain
values of noise input, the system will occasionally jump over the
boundary to the other well.

The system will thus have two vastly different time scales
and exhibit metastability. This simple model suggests that one
way of thinking of metastability is a finite state Markov chain,
where each state corresponds to an attractor in the system, with
exponentially small transition probabilities (Bovier, 2006). The
Markovian assumption is simply that the transition probabilities
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FIGURE 1 | Attractors in dynamical systems. (A) A dynamical system evolving
in time in a two dimensional phase space. Over time, the trajectory of the
system closes on itself into an orbit. If the system is restarted in the
neighborhood of this orbit, it tends to move closer to the described orbit. This
convergence in the long time limit makes this orbit an attractor of the system.
(B) The attractor can be thought of as a minimum on a potential surface. Light
gray lines indicate uniform values of the potential function, like altitude in a
topographic map. (C) One of the simplest systems capable of multistability.

between states depends only upon the current state, with no
history dependence.

Metastable systems will spend most of their time near
attractors, with rare, rapid transitions between them. This
implies that, for long observation periods the system will be
clustered around the attractors, and that dwell times near
an attractor will be long relative to transition times between
attractors.

It is worth noting that some authors define multistability
as the case of a noise perturbed system with multiple stable
attractors and metastability as the case of a system that is not
quite stable because the time evolution of the system never goes
to zero (Kelso, 2012), that is, a metastable system is intrinsically
unstable, whereas a multistable system would be stable if you
could decrease noise below the threshold that allows transitions
between attractors (This is more or less a question of whether the
noise element is intrinsic to the system or can be separated out,
and I will neglect it here).

ATTRACTORS IN BRAIN DYNAMICS
DURING ANESTHESIA

The presence of ongoing, stereotypic patterns in EEG with
different anesthetics, reported as brain ‘‘signatures’’ of
anesthetics (Purdon et al., 2015), is consistent with the presence
of stable attractors in brain dynamics. The search for a signature
of each anesthetic assumes that there is a distinct underlying
attractor is determined by the anesthetic and its effect-site
concentration. As the dose of anesthetic increases, attractors
could shift their location in phase space in a continuous fashion
(Figure 2A), could vary their width (Figure 2B), or could
change in number or some other qualitative fashion (Figure 2C).
Qualitative changes, such as changes in the number of attractors
with changes in anesthetic dose, correspond to qualitative shifts
in behavior analogous to phase transitions in thermodynamics
models, and can be produced from perturbing population
behavior models of cortex (Steyn-Ross et al., 1999, 2004). Thus,
it is reasonable to propose the design of depth of anesthesia
monitors that detect the presence or features of a particular
attractor (Walling and Hicks, 2006).

ELECTROPHYSIOLOGY METHODS

This article includes reanalysis of a previously published
dataset (Hudson et al., 2014), which described in detail
the methods for the simultaneous acquisition of multiple
channels of cortical and thalamic local field potentials (LFPs)
from five Sprague-Dawley rats spontaneously breathing
isoflurane in 100% oxygen. All experiments were carried out
in accordance with the National Institutes of Health Guide for
the Care and Use of Laboratory Animals and approved by the
Rockefeller University’s Institutional Animal Care and Use
Committee.

In brief, all experiments were conducted acutely. Animals
were induced with 3% isoflurane, a craniotomy opened, and
a custom linear microarray (Alpha Omega, Alpharetta, GA,
USA) was placed stereotacticaly to acquire eight channels
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FIGURE 2 | Possible dependencies of attractors on anesthetic concentration. The brain appears to engage in stereotyped behavior when a given anesthetic
concentration is delivered to the brain, suggesting that a given drug and dose establish an attractor for the brain, here imagined as a particle on a potential surface
that is constantly disturbed by noise, indicated by small arrows, as in Figure 1C. The way in which these attractors change as the anesthetic concentration changes
has not been well characterized. (A) The attractor could move continuously as the anesthetic is increased. (B) The width of the well, which defines it’s stability, as
well as its location, could shift. Or (C) the nature of the attractor landscape could qualitatively change, with the appearance of a new attractor that could coexist with
the original attractor for some anesthetic concentrations.

of LFP from anterior cingulate and retrosplenial cortex and
the hippocampus and centrolateral nucleus of the thalamus
(total of 24 channels). Signals were sampled at 40 kHz
and streamed to disk by a multichannel op-amp system
(Plexon). LFPs were extracted with an acausal fourth-order
Butterworth filter, using a low-pass frequency of 500 Hz
to minimize phase distortion and then downsampled to
1 kHz. Delivered anesthetic concentration was maintained
for at least 60 min of acquisition, beginning at 1.75%
isoflurane (sufficient to produce burst suppression). The
delivered isoflurane concentration was then reduced stepwise by
0.25% and another 60 min of data acquired. At 0.75% delivered
isoflurane, all animals began moving spontaneously; at that
point the delivered anesthetic was then increased and other
experiments completed.

METASTABILITY OCCURS DURING
ANESTHESIA

Interestingly, we have previously demonstrated that, at least
in rats anesthetized with isoflurane, the LFP demonstrates
metastability (Hudson et al., 2014). Namely, during equilibrium
administration of isoflurane, the LFP exhibited a stable spectral
signature, often for 8–12 min, before spontaneously shifting to
a different signature. This can be seen in the shifts between
two prominent spectral peaks; one centered at roughly 6 Hz
and the other at roughly 2 Hz in the spectrogram in both
anterior cingulate (Figure 3A), retrosplenial cortex (Figure 3C),

thalamus (Figure 3E) and hippocampus (Figure 3G). These
shifts occurred in the absence of any sensory stimulation
or change in delivered anesthetic concentration. Several such
signatures were possible at all tested levels of isoflurane,
spanning from burst suppression to the return of spontaneous
movement. Moreover, several signatures could exist at more
than one anesthetic concentration: note that peaks at similar
frequencies also occur at 1% isoflurane but the dwell time that the
system spends at each frequency is shorter (Figures 3B,D,F,H)
(Also note the appearance of more high frequency power
at certain time points at 1% isoflurane, suggesting that
another attractor may be appearing at this concentration).
The presence of peaks at both frequencies at both anesthetic
concentrations implies that the relationship between anesthetic
effect site concentration and brain state is degenerate. Note
also that the change in dwell times—or, alternatively, transition
probabilities—with anesthetic concentration suggests that the
stability of a particular feature can change as a function of
anesthetic.

To study transition properties between states we first
sought to combine data from five different rats, as a single
hour of data acquisition might only yield 5–10 examples of
transitions between observed states (e.g., Figure 3A). Following
the approach first detailed in Hudson et al. (2014), the spectral
signatures could be abstracted across animals by using principal
components analysis and then clustered into eight clusters with
a k-means algorithm using a Euclidean distance metric in the
space defined by the first three principal components. This
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FIGURE 3 | Evidence for multistability during isoflurane anesthesia in the rat. (A) The spectrogram from an local field potential (LFP) recorded in deep anterior
cingulate cortex of a rat breathing 1.25% isoflurane. Deviations from the overall mean power spectrum for that animal are indicated as decibel differences according
to the color scale. Plotted data begin 20 min after isoflurane was decreased from 1.5% to 1.25%, and the duration of the plot is 2000 s. Note the frequent alternation
between power spectra dominated by peaks at ∼6 Hz and ∼2 Hz. (B) Data from anterior cingulate, beginning 20 min after the isoflurane was decreased from 1.25%
to 1% isoflurane. Here short lived examples of both the ∼6 Hz and ∼2 Hz peaks exist, but there are instances of more high frequency power (above 100 Hz),
especially later in the recording. (C,D) The corresponding spectrograms from simultaneously recorded retrosplenial cortex; (E,F) from central lateral nucleus of the
thalamus; (G,H) and from hippocampus.
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small number of clusters strongly suggests the existence of
consistent attractors in brain dynamics (see Hudson et al., 2014
for further details on clustering; similar clusters were derived
with multiple different clustering algorithms). The resulting
shifts between attractors were modeled as the transition
probabilities of a Markov chain, which revealed that the
transition probabilities between states were low and non-uniform
(Figure 4A). Consistent with metastable behavior, at any given
time the probability of remaining in a given cluster was much
higher than the probability of transitioning to any other cluster;
note that the probabilities are plotted on a log scale, so the
probabilities of transitioning between clusters are orders of
magnitude smaller than the probability of remaining in the
same cluster. In other words, brain dynamics during isoflurane
anesthesia are ‘‘sticky’’. This transition matrix was computed
by collapsing over five separate concentrations of isoflurane
(1.75% dropping to 0.75% in 0.25% increments). The resulting
estimates were relatively stable across animals, as shown in
the jackknife estimate of 95% confidence limits shown in
Figure 4B.

The probability of each cluster occurring, and the
particular transition probabilities depended upon the
delivered concentration of anesthetic. Not all clusters were
present at all concentrations, but some clusters occurred at
every anesthetic concentration (Figure 4C). This reinforces
the earlier, single trial impression of degeneracy between
the brain state and drug dose. Similar transition matrices
could be derived for each animal (data not shown), so the
individual clusters are not specific for particular animals,

and the results are reflective of the dynamics for each
individual.

HYPOTHESIS: IS METASTABILITY DURING
ANESTHESIA A GENERIC PHENOMENON?

It is worth explicitly investigating the prevalence of metastability
during general anesthesia with different agents and in different
species. It seems unlikely based upon the varying time profiles
published in single-subject time-frequency spectrograms in
the literature that the existence of multiple attractors with
low transition probabilities between them is an isolated
occurrence with isoflurane in rats. Certainly, the examination
of time-frequency plots published from data acquired in rats
anesthetized with sevoflurane (Guidera et al., 2017), monkeys
given propofol (Ishizawa et al., 2016) and humans given a
range of anesthetics (Chander et al., 2014) suggests that rich
dynamics exist with multiple anesthetic regimens and in multiple
species. Yet, none of these reports explicitly studied the ongoing
transitions in brain state over long time intervals, so the chance
to comment on the ubiquity of metastability or lack thereof
currently remains untested. There are two possible alternatives:
(1) brain activity demonstrates no attractors during anesthesia
but will explore a phase space randomly; and (2) there is only
a single stable attractor during the anesthetized state, which
might depend upon the anesthetic concentration, so that the only
requirement for knowing the brain state in a long time limit is the
equilibrium concentration of delivered anesthetic.

FIGURE 4 | Transition probabilities between attractors. (A) The spectral data were clustered across all five animals (see text) and modeled as a Markov chain to
calculate the transition matrix between each cluster. Here the probability of the system starting in the given row and on the next independent time step transitioning
to the cluster in the indicated column are indicated by the log color axis, with a minimum probability assigned as 10−3. (B) Upper and lower bounds on the transition
matrices, 95% confidence interval by jackknife over the five animals. (C) The transition probabilities depend upon the delivered anesthetic concentration. Not all
clusters occurred at all anesthetic concentrations; for non-observed clusters all values in its row and column are assigned a probability of 10−3.
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FIGURE 5 | Spectral analysis challenges with metastability. (A) Randomly chosen analysis times. The same time-frequency data shown in Figure 3A. Vertical black
lines indicate 10 randomly chosen times during the acquired interval. (B) Welch’s method fails with nonstationary inputs: the power spectrum estimate obtained by
averaging the 30 s of data on either side of each of the random times shown in (A). Compared with (A), the two peaks at 6 Hz and 2 Hz are blended into a single
wide peak. (C) Averaging spectrograms across animals with similar brain dynamics will again abolish dynamical features. Here the same random time points from
(A) are used to create surrogate spectrograms by using the time to start the data acquisition and wrap around to the start of the spectrogram once the end is
reached; the 10 resulting spectrograms are then averaged together, abolishing most of the alternating features.

The persistence of specific anesthetic signatures across
subjects argues that attractors in the anesthetized state exist.
Moreover, it seems exceptionally unlikely that random
exploration of a high-dimensional state space would be
compatible with the generally rapid recovery of consciousness
after anesthetic exposure. If we make the reasonable assumption
that only a finite region of a phase space is compatible with
consciousness (Babloyantz et al., 1985), it is possible to model
the recovery of consciousness after anesthesia process as a
random walk through phase space. With increasing dimensions
in the phase space, it is easily shown that recovery times will
rapidly exceed those observed in practice (Hudson et al., 2014).
The observed, finite recovery times in the majority of anesthetics
argues that the intrinsic dimensionality of the space that the
brain explores must be significantly smaller than a random
walk through a high dimensional state space. Given that brain
dynamics appear to be governed by multiple attractors during
anesthesia, discontinuous jumps between attractors should
probably be the expectation, rather than the exception, to
transitions during recovery of consciousness.

While it is possible that some anesthetic concentrations may
produce only a single attractor, there is no reason a priori to
assume that this will be true generically across behavioral states.
Sleep architecture, for example, consists of multiple attractors
that are persistent for tens of minutes (Kishi et al., 2008), similar
to the duration of attractors present observed in the rat. Finally,
the presence of multiple patterns of recovery in the EEG after
anesthesia (Lee et al., 2011; Hight et al., 2014) strongly suggests
that the brains traverse more than one route through state space
to recover consciousness, suggesting that different attractors
may dominate an individual’s anesthetic period depending upon
factors that remain to be elucidated.

While Hudson et al. (2014) assumed a Markov process
for the shifts between attractors, this was intended to be as
agnostic as possible: there has been essentially no work done

on the distribution of dwell times at a particular attractor.
While a Markov chain would produce an exponential dwell time
distribution, some sleep stages have durations that approximate
an exponential distribution while others approximate a power
law (Kishi et al., 2008), suggesting that state dependence in
state transitions during anesthesia could occur and should
be empirically tested. Alternatively, the transitions could be a
predictable, rather than stochastic phenomenon, given more
observations of the state transitions. This will likely require
much longer data sets at fixed anesthetic concentrations than are
currently available.

DISCUSSION

Detecting Metastability: Implications for
Experimental Design
Given that the signatures associated with a given anesthetic
can vary with drug concentration, a pharmacologic steady
state must be achieved to attribute metastability to a system.
Thus, the decision to acquire data for relatively long intervals
(60 min at each concentration) was crucial for the identification
of the identification of metastability in Hudson et al. (2014).
More studies with long acquisition times and minimal external
stimulation will be needed to address this issue. It would seem
that the Reconstructing Human Consciousness and Cognition
Study described in this issue (Maier et al., 2017) would provide
an ideal opportunity to address this question in humans.

Detecting Metastability: Implications for
Data Analysis
The possible presence of long timescale dynamics in experiments
using anesthesia should be expressly considered when designing
a data analysis approach. Special care should be given to
averaging across time and across subjects. Attempts to detect
metastability in brain behavior during anesthesia should first
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look for state transitions within single subjects, and then pool
state transition data across subjects. Given the propensity for
researchers to use spectral methods on brain data, I will address
the potential pitfalls with spectral analysis techniques specifically.

Many spectral analysis approaches utilize a version ofWelch’s
method, which takes multiple, independent spectral estimates
from different time windows and averages them together to
obtain a smoother, more reliable estimate than is possible from
a single window. Obviously, if the different windows capture the
dynamics from more than one attractor, the different behaviors
will be blurred together. In this instance, the reported state might
reflect the average activity during the anesthetic administration,
and yet in alternating between two states the brain may never
actually exhibit the reported mean spectrum (Figures 5A,B).
Another pitfall to keep in mind: data-driven artifact rejection
approaches might discard a less-frequently observed pattern,
biasing the reported spectral activity to the most frequently
observed state.

A subtler, but just as confounding issue, can arise from
averaging spectrograms across subjects. There is no reason
to assume that the transitions between attractors occur at
stereotyped times; rather, with metastable systems the state
transitions appear to be stochastic events. As a result, averaging
across subjects can similarly obscure state transitions by blurring
two patterns together as they are distributed in time. In Figure 5C
this is illustrated by constructing 10 surrogate datasets that have
the same mean spectrogram and transition matrices by shuffling
the start time of the dataset, and then averaging the resulting
pseudo-data together. Notice the behavior of the alternating
peaks is obscured in the resulting plot.

Predictions of Metastability: Dynamical
Timescales vs. Pharmacologic
Equilibration
The presence of low transition probabilities between the observed
brain states suggests that brain dynamics can themselves have
timescales that are potentially separable from pharmacologic
timescales, which may have implications for the timescale of
recovery of consciousness after anesthesia. Although recovery
was traditionally thought of as a passive process due to
pharmacokinetics, the existence of neural inertia (Friedman
et al., 2010), or the difference in EC50 between induction
and emergence from anesthesia, could be consistent with a
longer dynamical timescale to the process of brain state shifting
during recovery. That is, a dynamical timescale longer than the
pharmacokinetic timescale for a drug would, in itself, be capable
of producing a transient hysteresis that is consistent with neural
inertia.

Implications of Metastability for Brain
Monitoring
The clinical utility of brain monitoring during anesthesia
centers on optimizing delivery of anesthesia: giving the right
amount of anesthesia to minimize the risk of awareness while
minimizing side effects from excessive drug administration.
Even sophisticated processing algorithms used by the BIS

brain monitoring system (Medtronic Minneapolis, MN, USA)
have not demonstrated superiority in preventing anesthetic
awareness with recall over monitoring end-tidal anesthetic gas
concentration in several large trials (Avidan et al., 2008, 2011).
Why might this be?

It would be desirable for a measure that is used to titrate
drug delivery to be proportional to its concentration in the
brain. A reanalysis of the B-UNAWARE trial found that
the BIS appeared not to vary linearly with administered gas
concentration, but to have a very large region of shallow slope
in the relationship between BIS and administered anesthetic
concentration (Whitlock et al., 2011). One possible explanation
for this is the degeneracy of the relationship between brain state
and drug concentration demonstrated in rodents (Hudson et al.,
2014).

For anesthetic drugs that demonstrate metastable behavior, it
would be productive to understand the transition probabilities
between different attractors at a given anesthetic concentration.
In essence, the key problem in depth of anesthesia monitoring
is the prediction of the likelihood of transitioning to a state
compatible with awareness at some time in the near future. If we
understand how different anesthetized states transition between
each other, it should be possible to predict when interventions
are needed to change the delivered dose of anesthetic. Such
an approach could expand upon already existing technology
to provide closed loop anesthesia for maintaining a particular
burst-suppression ratio (Ching et al., 2013), which is essentially
maintaining a given state transition probability.

Finally, the existence of anesthetic drugs that demonstrate
metastable behavior would suggest that the simple notion of
depth of anesthesia as a one-dimensional quantity, as implied
by a single number from 0 to 100, should be reconsidered. The
assumption of a linear scale for measuring depth of anesthesia
assumes a measure of distance between the brain’s current state
and wakefulness in a phase space. There is nothing wrong with
attempting to derive a distance from awareness measure, but it is
not clear that such a measurement is linear or even stable over
time. Indeed, the idea of sufficient depth of anesthesia clearly
relates to the amount of ongoing sensory stimulation, as anyone
that has managed a patient in the operating room can attest.
Understanding that the brain is constantly being perturbed by
sensory stimulation (or ‘‘noise’’), which can either be amplified
by the addition of a new noxious stimulus or attenuated by, for
example opiate administration, could help to integrate notions
of brain state and anesthetic delivery together with intuitions
from clinical care to help drive the development of more useful
monitoring systems.

CONCLUSIONS

Brain dynamics, or the transitions between different attractors
in brain activity, have been understudied during anesthesia.
Evidence exists for metastable attractors of brain activity during
anesthesia for some model systems, and this is likely to
be a ubiquitous feature of anesthetized brains, though this
assumption remains to be tested. By studying the transitions
between attractor structure with depths of anesthesia, it should
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be possible to better define a notion of distance from wakefulness
in terms of brain state, which offers the opportunity to improve
upon brain monitoring algorithms currently in use. Finally,
identifying attractors present during unconscious states will
allow further characterization of instances of prolonged or
disordered recovery of consciousness.

AUTHOR CONTRIBUTIONS

AEH conceived the manuscript, performed a new analysis
of previously published data that he had recorded with
collaborators, and wrote the manuscript.

FUNDING

This work was funded by a grant from the National Institutes of
Health (National Institute of General Medical Sciences, NIGMS
K08GM121961).

ACKNOWLEDGMENTS

I thank Alex Proekt for long-standing, insightful and spirited
discussions of the issues present, as well as collaborating for the
initial acquisition of the data presented in this report.

REFERENCES

Akeju, O., Kim, S. -E., Vazquez, R., Rhee, J., Pavone, K. J., Hobbs, L. E.,
et al. (2016a). Spatiotemporal dynamics of dexmedetomidine-
induced electroencephalogram oscillations. PLoS One 11:e0163431.
doi: 10.1371/journal.pone.0163431

Akeju, O., Song, A. H., Hamilos, A. E., Pavone, K. J., Flores, F. J., Brown, E. N., et al.
(2016b). Electroencephalogram signatures of ketamine anesthesia-induced
unconsciousness. Clin. Neurophysiol. 127, 2414–2422. doi: 10.1016/j.clinph.
2016.03.005

Avidan, M. S., Jacobsohn, E., Glick, D., Burnside, B. A., Zhang, L., Villafranca, A.,
et al. (2011). Prevention of intraoperative awareness in a high-risk
surgical population. N. Engl. J. Med. 365, 591–600. doi: 10.1056/NEJMoa11
00403

Avidan, M. S., Zhang, L., Burnside, B. A., Finkel, K. J., Searleman, A. C.,
Selvidge, J. A., et al. (2008). Anesthesia awareness and the bispectral index. N.
Engl. J. Med. 358, 1097–1108. doi: 10.1056/NEJMoa0707361

Babloyantz, A., Salazar, J. M., and Nicolis, C. (1985). Evidence of chaotic
dynamics of brain activity during the sleep cycle. Phys. Lett. A 111, 152–156.
doi: 10.1016/0375-9601(85)90444-x

Bovier, A. (2006). ‘‘Metastability: a potential theoretic approach,’’ in International
Congress of Mathematicians Vol. III, (Zurich: European Mathematical Society).
499–518.

Breakspear,M. (2017). Dynamicmodels of large-scale brain activity.Nat. Neurosci.
20, 340–352. doi: 10.1038/nn.4497

Chander, D., García, P. S., MacColl, J. N., Illing, S., and Sleigh, J. W. (2014).
Electroencephalographic variation during end maintenance and emergence
from surgical anesthesia. PLoS One 9:e106291. doi: 10.1371/journal.pone.
0106291

Ching, S., Liberman, M. Y., Chemali, J. J., Westover, M. B., Kenny, J. D.,
Solt, K., et al. (2013). Real-time closed-loop control in a rodent model of
medically induced coma using burst suppression. Anesthesiology 119, 848–860.
doi: 10.1097/ALN.0b013e31829d4ab4

Friedman, E. B., Sun, Y., Moore, J. T., Hung, H.-T., Meng, Q. C.,
Perera, P., et al. (2010). A conserved behavioral state barrier impedes
transitions between anesthetic-induced unconsciousness and wakefulness:
evidence for neural inertia. PLoS One 5:e11903. doi: 10.1371/journal.pone.00
11903

Gibbs, F. A., Gibbs, E. L., and Lennox, W. G. (1937). Effect on the electro-
encephalogram of certain drugs which influence nervous activity.
Arch. Intern. Med. 60, 154–166. doi: 10.1001/archinte.1937.00180010
159012

Guidera, J. A., Taylor, N. E., Lee, J. T., Vlasov, K. Y., Pei, J., Stephen, E. P.,
et al. (2017). Sevoflurane induces coherent slow-delta oscillations in rats. Front.
Neural Circuits 11:36. doi: 10.3389/fncir.2017.00036

Hight, D. F., Dadok, V. M., Szeri, A. J., García, P. S., Voss, L., and Sleigh, J. W.
(2014). Emergence from general anesthesia and the sleep-manifold. Front. Syst.
Neurosci. 8:146. doi: 10.3389/fnsys.2014.00146

Hudson, A. E., Calderon, D. P., Pfaff, D. W., and Proekt, A. (2014). Recovery
of consciousness is mediated by a network of discrete metastable activity
states. Proc. Natl. Acad. Sci. U S A 111, 9283–9288. doi: 10.1073/pnas.14082
96111

Ishizawa, Y., Ahmed, O. J., Patel, S. R., Gale, J. T., Sierra-Mercado, D., Brown, E. N.,
et al. (2016). Dynamics of propofol-induced loss of consciousness across
primate neocortex. J. Neurosci. 36, 7718–7726. doi: 10.1523/JNEUROSCI.4577-
15.2016

Kelso, J. A. S. (2012). Multistability and metastability: understanding dynamic
coordination in the brain. Philos. Trans. R. Soc. B Biol. Sci. 367, 906–918.
doi: 10.1098/rstb.2011.0351

Kishi, A., Struzik, Z. R., Natelson, B. H., Togo, F., and Yamamoto, Y. (2008).
Dynamics of sleep stage transitions in healthy humans and patients with
chronic fatigue syndrome. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294,
R1980–R1987. doi: 10.1152/ajpregu.00925.2007

Lee, U. P., Müller, M., Noh, G.-J., Choi, B., andMashour, G. A. (2011). Dissociable
network properties of anesthetic state transitions. Anesthesiology 114, 872–881.
doi: 10.1097/ALN.0b013e31821102c9

Maier, K. L., Mckinstry-Wu, A. R., Palanca, B. J. A., Tarnal, V., Blain-
Moraes, S., Basner, M., et al. (2017). Protocol for the reconstructing
consciousness and cognition (ReCCognition) study. Front. Hum. Neurosci.
11:284. doi: 10.3389/fnhum.2017.00284

McCormick, D. A., McGinley, M. J., and Salkoff, D. B. (2015). Brain state
dependent activity in the cortex and thalamus. Curr. Opin. Neurobiol. 31,
133–140. doi: 10.1016/j.conb.2014.10.003

Moruzzi, G., and Magoun, H. W. (1949). Brain stem reticular formation and
activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 1, 455–473.
doi: 10.1016/0013-4694(49)90066-8

Pavone, K. J., Akeju, O., Sampson, A. L., Ling, K., Purdon, P. L., and Brown, E. N.
(2016). Nitrous oxide-induced slow and delta oscillations. Clin. Neurophysiol.
127, 556–564. doi: 10.1016/j.clinph.2015.06.001

Purdon, P. L., Sampson, A., Pavone, K. J., and Brown, E. N. (2015).
Clinical electroencephalography for anesthesiologists Part I: background and
basic signatures. Anesthesiology 123, 937–960. doi: 10.1097/ALN.0000000000
000841

Steriade, M., McCormick, D. A., and Sejnowski, T. J. (1993). Thalamocortical
oscillations in the sleeping and aroused brain. Science 262, 679–685.
doi: 10.1126/science.8235588

Steyn-Ross, M. L., Steyn-Ross, D. A., Sleigh, J. W., and Liley, D. T.
(1999). Theoretical electroencephalogram stationary spectrum for
a white-noise-driven cortex: evidence for a general anesthetic-
induced phase transition. Phys. Rev. E Stat. Phys. Plasmas Fluids
Relat. Interdiscip. Topics 60, 7299–7311. doi: 10.1103/physreve.
60.7299

Steyn-Ross, M. L., Steyn-Ross, D. A., and Sleigh, J. W. (2004). Modelling
general anaesthesia as a first-order phase transition in the cortex.
Prog. Biophys. Mol. Biol. 85, 369–385. doi: 10.1016/j.pbiomolbio.2004.
02.001

Tinker, J. H., Sharbrough, F. W., and Michenfelder, J. D. (1977). Anterior shift of
the dominant EEG rhythm during anesthesia in the java monkey: correlation
with anesthetic potency. Anesthesiology 46, 252–259. doi: 10.1097/00000542-
197704000-00005

Walling, P. T., and Hicks, K. N. (2006). Nonlinear changes in brain dynamics
during emergence from sevoflurane anesthesiapreliminary exploration using
new software. Anesthesiology 105, 927–935. doi: 10.1097/00000542-200611000-
00013

Frontiers in Neural Circuits | www.frontiersin.org 9 August 2017 | Volume 11 | Article 58

https://doi.org/10.1371/journal.pone.0163431
https://doi.org/10.1016/j.clinph.2016.03.005
https://doi.org/10.1016/j.clinph.2016.03.005
https://doi.org/10.1056/NEJMoa1100403
https://doi.org/10.1056/NEJMoa1100403
https://doi.org/10.1056/NEJMoa0707361
https://doi.org/10.1016/0375-9601(85)90444-x
https://doi.org/10.1038/nn.4497
https://doi.org/10.1371/journal.pone.0106291
https://doi.org/10.1371/journal.pone.0106291
https://doi.org/10.1097/ALN.0b013e31829d4ab4
https://doi.org/10.1371/journal.pone.0011903
https://doi.org/10.1371/journal.pone.0011903
https://doi.org/10.1001/archinte.1937.00180010159012
https://doi.org/10.1001/archinte.1937.00180010159012
https://doi.org/10.3389/fncir.2017.00036
https://doi.org/10.3389/fnsys.2014.00146
https://doi.org/10.1073/pnas.1408296111
https://doi.org/10.1073/pnas.1408296111
https://doi.org/10.1523/JNEUROSCI.4577-15.2016
https://doi.org/10.1523/JNEUROSCI.4577-15.2016
https://doi.org/10.1098/rstb.2011.0351
https://doi.org/10.1152/ajpregu.00925.2007
https://doi.org/10.1097/ALN.0b013e31821102c9
https://doi.org/10.3389/fnhum.2017.00284
https://doi.org/10.1016/j.conb.2014.10.003
https://doi.org/10.1016/0013-4694(49)90066-8
https://doi.org/10.1016/j.clinph.2015.06.001
https://doi.org/10.1097/ALN.0000000000000841
https://doi.org/10.1097/ALN.0000000000000841
https://doi.org/10.1126/science.8235588
https://doi.org/10.1103/physreve.60.7299
https://doi.org/10.1103/physreve.60.7299
https://doi.org/10.1016/j.pbiomolbio.2004.02.001
https://doi.org/10.1016/j.pbiomolbio.2004.02.001
https://doi.org/10.1097/00000542-197704000-00005
https://doi.org/10.1097/00000542-197704000-00005
https://doi.org/10.1097/00000542-200611000-00013
https://doi.org/10.1097/00000542-200611000-00013
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Hudson Metastability of Neuronal Dynamics during Anesthesia

Whitlock, E. L., Villafranca, A. J., Lin, N., Palanca, B. J., Jacobsohn, E.,
Finkel, K. J., et al. (2011). Relationship between bispectral
index values and volatile anesthetic concentrations during
the maintenance phase of anesthesia in the B-unaware trial.
Anesthesiology 115, 1209–1218. doi: 10.1097/ALN.0b013e31823
95dcb

Zagha, E., Casale, A. E., Sachdev, R. N. S., McGinley, M. J., and McCormick, D. A.
(2013). Motor cortex feedback influences sensory processing by
modulating network state. Neuron 79, 567–578. doi: 10.1016/j.neuron.2013.
06.008

Conflict of Interest Statement: The author declares that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Hudson. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Neural Circuits | www.frontiersin.org 10 August 2017 | Volume 11 | Article 58

https://doi.org/10.1097/ALN.0b013e3182395dcb
https://doi.org/10.1097/ALN.0b013e3182395dcb
https://doi.org/10.1016/j.neuron.2013.06.008
https://doi.org/10.1016/j.neuron.2013.06.008
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

	Metastability of Neuronal Dynamics during General Anesthesia: Time for a Change in Our Assumptions?
	INTRODUCTION
	ATTRACTORS, PHASE SPACES AND STABILITY IN DYNAMICAL SYSTEMS
	NOISE AND METASTABILITY IN DYNAMICAL SYSTEMS
	ATTRACTORS IN BRAIN DYNAMICS DURING ANESTHESIA
	ELECTROPHYSIOLOGY METHODS
	METASTABILITY OCCURS DURING ANESTHESIA
	HYPOTHESIS: IS METASTABILITY DURING ANESTHESIA A GENERIC PHENOMENON?
	DISCUSSION
	Detecting Metastability: Implications for Experimental Design
	Detecting Metastability: Implications for Data Analysis
	Predictions of Metastability: Dynamical Timescales vs. Pharmacologic Equilibration
	Implications of Metastability for Brain Monitoring

	CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	FUNDING
	ACKNOWLEDGMENTS
	REFERENCES


