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Abstract: Traditional methods to assess heart rate (HR) and blood pressure (BP) are intrusive and can
affect results in sensory analysis of food as participants are aware of the sensors. This paper aims to
validate a non-contact method to measure HR using the photoplethysmography (PPG) technique and
to develop models to predict the real HR and BP based on raw video analysis (RVA) with an example
application in chocolate consumption using machine learning (ML). The RVA used a computer vision
algorithm based on luminosity changes on the different RGB color channels using three face-regions
(forehead and both cheeks). To validate the proposed method and ML models, a home oscillometric
monitor and a finger sensor were used. Results showed high correlations with the G color channel
(R2 = 0.83). Two ML models were developed using three face-regions: (i) Model 1 to predict HR and
BP using the RVA outputs with R = 0.85 and (ii) Model 2 based on time-series prediction with HR,
magnitude and luminosity from RVA inputs to HR values every second with R = 0.97. An application
for the sensory analysis of chocolate showed significant correlations between changes in HR and BP
with chocolate hardness and purchase intention.

Keywords: blood pressure; computer vision; heart rate; machine learning modelling;
non-intrusive sensors

1. Introduction

Heart rate (HR) is defined as the number of heart beats within a certain interval of time, usually
measured as beats per minute (BPM) [1]. Besides medical applications, this is one of the most
common biometrics used for user authentication [2] and, more recently, to assess physiological
responses of consumers to different stimuli, which can be associated to responses from the
autonomic nervous system (ANS) to consumption and visual assessment of food and beverages [3–6].
However, these biometrics usually involve intrusive techniques such as the electrocardiogram (ECG),
and oscillometry, which require sensors to be attached to subjects. There are other methods such as
the photoplethysmography (PPG), which uses a pulse oximeter and is considered by some authors
as non-invasive. However, this sensor still requires to be in contact with the skin of the subject.
Some non-intrusive methods have been developed based on the PPG principle as a validation method
to develop computer vision analysis to obtain HR from videos [7–9].

The electrocardiogram (ECG) method is the most commonly used for medical purposes and
it requires the attachment of one or more sensors to either the chest or the four extremities of
subjects, this method measures the electrical activity of the heart that occurs during the cardiac cycle.
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This activity is registered and printed as a signal composed of P-waves that represent the depolarization
of the atriums, PR interval that represents the delay of the impulse in the atrioventricular node, the QRS
complex that consists of the electrical current generated during the depolarization and ventricular
contraction, and the ST-segment and T-waves that represent the ventricular repolarization [8,10].
Oscillometry is the method usually used for ambulatory or at home monitoring which requires to
be attached to the arm or wrist and is able to measure blood pressure and HR by inflating the cuff
until it reaches the occlusion of blood flow in the artery, once this is achieved, it is released, and the
device is able to measure the oscillations in the arterial wall produced when the blood starts flowing.
This allows to obtain the measurements for blood pressure (systolic and diastolic) as well as the HR by
measuring the time between the oscillometric pulses [11,12].

The PPG, method consists of a device called pulse oximeter, which is attached to either the
finger or earlobe, which measures the oxygen saturation in the blood. The device emits both red and
infrared lights, and measures the amount of light absorbed or reflected by the blood in the earlobe
or finger [13,14]. This method can also use green light, which, unlike the red and infrared lights,
is absorbed by the oxy- and deoxyhemoglobin and, therefore, can only measure the blood flow in the
skin surface. Some authors have developed methods based on PPG to calculate HR using videos from
the face of the subjects. For example, Takano and Ohta [7] developed a technique using time-lapse
images and based on the measurement of the brightness and Jain et al. [15] developed a method to
estimate HR and blood pressure using videos and principal component analysis to extract the PPG
signal. Carvalho et al. [16] calculated HR using a webcam to record videos preprocessed using the
Eulerian Magnification algorithm (EMA) developed by the Massachusetts Institute of Technology
(MIT) [17] and an algorithm written in Matlab® (R2013a, Mathworks Inc., Matick, MA, USA) to extract
the signal from RBG components from videos. Jensen and Hannemose [18] used a similar method,
but without the EMA pre-processing. Al-Naji et al. [19,20] used an improved version of the EMA to
enhance the HR signal, but based on motion of areas such as chest and wrist. Wei et al. [21] also used
a webcam and analyzed videos with a technique based on Laplacian Eigenmap and RBG channels.
Lewandowska et al. [22] proposed a method using a webcam and analyzing the signal combining the
red and green channels and using independent component analysis and principal component analysis
obtaining similar results with both methods. On the other hand, a commercial software, FaceReader™
(ver. 7.0, Noldus Information Technology, Wageningen, the Netherlands), that is able to measure HR
using videos is available and it is based on the same principle of color changes that is then related to
HR [23].

The importance of the development of non-intrusive methods relies on the influence and bias
that the contact sensors have on the physiological responses of the subject as they may influence their
HR [5] and blood pressure (BP) responses due to awareness of having sensors attached to their bodies.
This effect of the influence of the awareness of wearing sensors and/or being monitored was studied by
Frelih et al. [24], who found that certainly the use of sensors attached to the body had a significant effect
on the participants experience. The application of these techniques is of great importance to assess
HR as part of the responses from the ANS to different stimuli such as food, beverages, packaging and
other stimuli such as imagery and videos, which combined with other ANS responses [3,25], may be
associated to consumers acceptability, preference and quality perception of different food products
such as beer and chocolate for example [4,5]. Apart from the applicability to obtain more information
about the unconscious responses from consumers, this along with machine learning algorithms, aids in
the development of more objective and efficient sensory methods. The implementation of non-intrusive
techniques for ANS responses allows to have less time-consuming and more cost-effective techniques
to predict different conscious responses. Some researchers have already associated HR changes and
emotional responses using different stimuli such as images, real-life situations, instructing to do facial
action tasks and using film clips, obtaining as results a positive relationship between HR and anger,
anxiety, embarrassment, fear, sadness and happiness, and a negative relationship between HR and
disgust, affection and pleasure [3,26–29]. With respect to liking, an increase in HR has been observed
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when children taste food products that they dislike and decrease in HR when they like the smell of
a food, furthermore, a decrease in HR was observed when young adults assess products that they
like visually [25]. However, there are no previous studies including BP as a physiological response to
associate with the aforementioned responses.

This paper aims to develop and validate a non-intrusive or non-contact method to measure HR
using the PPG technique, which has been validated using a home oscillometric HR apparatus to obtain
targeted continuous HR data from participants. The proposed method was developed using machine
learning algorithms to predict the real HR and BP as targets using regression algorithms and analysis
of videos from participants as inputs. The models will be targeted to predict the raw signal of the
luminosity changes and calculated HR every second using a time-series machine learning algorithm
(TSML). Furthermore, the non-intrusive method developed to measure HR from the raw video analysis
(RVA) was compared to two intrusive methods used for validation and two non-intrusive methods
based on video analysis: (i) an OMRON HEM-790IT oscillometric blood pressure and HR monitor
(OMRON Corporation, Kyoto, Japan), (ii) an open-source pulse sensor (PPG, World Famous Electronics
llc, New York, NY, USA) controlled by an Arduino® board (Arduino, Ivrea, Italy) and attached to
the finger, (iii) HR outputs from FaceReader™ software, and (iv) the magnified video analysis (MVA)
pre-processing the videos using the Eulerian Magnification Algorithm (EMA), respectively. Based on
the results obtained from this study, the finger sensor had a high correlation with the oscillometric
monitor, while FaceReader™ did not correlate at all with the latter. The video analysis algorithm
had a high correlation when applying a correction factor when using the green channel in the RGB
components, and when analyzing the forehead and both cheeks. Furthermore, it was possible to
develop highly accurate machine learning models using artificial neural networks (ANN) and the
non-linear autoregressive with exogenous input (NARX) algorithm to predict the raw signal of the
luminosity changes and HR in every second of the videos as well as a highly accurate model using
regression algorithms to predict the average of HR and blood pressure of each person per video.
Finally, a case study of the application of the proposed non-intrusive method is presented using
chocolate samples in a consumer test showing the correlation between the physiological (HR and BP)
and self-reported responses.

2. Materials and Methods

2.1. Data Gathering Session Setup

A session with 15 healthy adult participants between 20 and 38 years old was conducted using an
integrated camera system controlled by a bio-sensory application (App) designed for Android tablets
(Google; Open Handset Alliance, Mountain View, CA, USA) developed by the sensory group from
the School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, the University
of Melbourne. The integrated camera (1920 × 1080 pixels and 15 frames per second) along with
the App are able to record RGB videos form the participants while conducting a sensory test in
sensory booths [5]. The session was conducted in the sensory laboratory located at The University of
Melbourne, Australia (Parkville campus) with controlled temperature (24–26 ◦C). Participants were
asked to sit in individual sensory booths with uniform white lighting conditions and within 30 to
45 cm from the tablet using the App and were instructed to face at a blank screen in the tablet PCs.
In the meantime, they were wearing a Food and Drug Administration (FDA)-approved oscillometric
BP and HR monitor OMRON HEM-790IT that was activated manually to obtain a measure at the
start, middle and end of the video acquisition. This oscillometric monitor has an accuracy for BP of
±3 mmHg and ±5% for HR according to the specifications of the device. In parallel, a finger pulse
sensor controlled by Arduino® (Arduino, Ivrea, Italy) was attached to the thumb of the participants to
obtain HR continuously throughout the duration of the video (Figure 1a). The placement of the sensor
in the thumb was determined after a previous test in which the most accurate results compared with
the oscillometric monitor were obtained (data not shown), some references also mention the use of
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pulse oximeters on the thumb [30,31]. After getting the initial resting videos and HR-BP data from
all participants, they were asked to climb the building stairs from the ground up to the fourth floor
(3–5 min). After this activity, they returned to the booths and repeated the initial instructions to obtain
videos and real HR data after physical activity. Finally, a third video was taken after 5 min resting
to get the values from medium HR levels. Therefore, a total of three videos of 1.5 to 3 min each per
person (n = 45) were obtained to validate the proposed method across a wide range of HR. Figure 1b
shows a diagram of the described protocol for a better understanding.
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Figure 1. Data gathering set-up showing: (a) data acquisition system displaying: (1) the tablet with the
Bio-sensory application for video acquisition, (2) oscillometric HR and blood pressure monitor and
(3) finger sensor controlled by (4) an Arduino® board, and (b) diagram of the protocol for the data and
video acquisition.

2.2. Data Analysis and Computer Vision Algorithms

All videos were analyzed using three techniques: (i) FaceReader™ 7.0 software (Noldus
Information Technology, Wageningen, the Netherlands) (FR), (ii) pre-processing of videos by
magnifying the color and luminosity changes using the Eulerian Magnification Algorithm (EMA)
proposed by the Massachusetts Institute of Technology (MIT, Boston, MA, USA) [17], followed by the
HR calculation using the proposed algorithm (Magnified Video Analysis: MVA), and (iii) using the raw
videos (RVA) obtained from the tablets. Videos from techniques (ii) and (iii) were then analyzed using
a customized computer vision algorithm written in Matlab® ver. R2018a (Mathworks Inc., Matick,
MA, USA). This algorithm works automatically and manually with the manual cropping of videos
being used initially to analyze three different face regions: (i) forehead, (ii) right cheek and (iii) left
cheek to find if any had a higher accuracy or if the combination of the three gave a better response.
The cropped areas were rectangles within the range of 120–150 × 50–70 pixels for the forehead and
50–80 × 60–90 pixels for the cheeks. This process can be automated by adapting the point tracker
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algorithm based on the Kanade-Lucas-Tomasi (KLT) algorithm in Matlab® used for feature tracking
along with the Ground Truth Labeler found in the Matlab®Automated Driving System Toolbox 1.2
(Mathworks Inc., Matick, MA, USA) [32]. However, for the research reported here, the areas were
cropped manually to assess the accuracy of the codes and avoid bias that might be related to the
automatic process. The customized algorithm used to assess HR for both the RVA and the MVA,
is able to measure luminosity changes in any of the RBG channels, therefore, the three channels were
tested to assess the most accurate option. Once the signal was acquired, the algorithm applies a
second-order Butterworth filter, the cutoff frequencies were set to 50 and 190 BPM (0.83 and 3.17 Hz)
and a fast Fourier transformation (FFT) is applied for the transformation of the time signal to frequency.
The settings were set to three seconds of stabilization time and one cut start second. The outputs
obtained from this algorithm are the luminosity changes, HR values in BPM every 0.5 s, magnitude
using the FFT, and the amplitude and frequency of each peak detected in the raw signal of the
luminosity changes using the ‘findpeaks’ customized function [33]. The values are calculated from the
maximum peak detected in the selected face region. Figure 2 shows the diagram with all the methods
used in this study for more clarity of the analysis and modelling process.
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Figure 2. Flow diagram showing the data acquisition, analysis and outputs of the five methods
presented to measure HR: (1) oscillometric monitor, (2) raw video analysis (RVA), (3) pre-processing
using the Eulerian Magnification Algorithm (EMA), followed by the magnified video analysis
(MVA) (4) FaceReader™ software, and (5) finger sensor. The diagram also depicts the inputs and
targets/outputs used to develop the machine learning models. Abbreviations: ANN = Artificial Neural
Networks, BPM = beats per minute.



Sensors 2018, 18, 1802 6 of 18

The performance based on the elapsed time (s), Central Processing Unit (CPU) maximum
(Max) and minimum (Min) temperatures, memory used (MB) and CPU usage (%) from the personal
computers (PC) used were obtained by Matlab® specific functions. Three different PCs from two brands
(HP and Alienware) with distinct number of cores (two, four and ten) and memory (8 GB and 32 GB)
were used. The performances were compared also with and without the engagement of the parallel
pool option in Matlab®. The CPU temperatures were measured using the RealTemp 3.7 monitoring
application (TechPowerUp, Cochrane, AB, Canada) designed for Intel processors, all other performance
results were obtained using different built-in Matlab® functions. For easier comparative purposes,
the data from each performance category was normalized and colored to be presented on matrix
graphic forms for easier comparison, this can be found as Supplementary Material (Figure S1).

2.3. Statistical Analysis and Machine Learning Modelling

Data from the oscillometric monitor, finger sensor and from the processed videos using different
settings and the two methods (RVA and MVA) were analyzed statistically using Pearson linear
correlation method (y = ax + b) [34,35] using the Matlab Curve Fitting Toolbox™ 3.5.6 (Mathworks
Inc., Matick, MA, USA). Values of determination coefficients (R2), root mean squared error (RMSE),
and statistical significance (criteria: p < 0.05) were used for fitting assessments. The p-value was
calculated using the CoStat ver. 6.45 (CoHort Software, Monterey, CA, USA) software. For results
obtained using the videos analyzed with Matlab®, a correction factor was applied as follows: low blood
pressure < 75 BPM − 15 BPM, medium range 76–90 BPM with no correction applied and high range
>91 BPM + 15 BPM. To determine the correction factor of ±15, the average of the difference between the
lowest and highest HR values (delta) of all videos was calculated. This correction factor may be easily
added to the RVA Matlab® algorithm to accelerate and simplify the process instead of pre-processing
the videos using different magnification settings according to the real HR as in the EMA. However,
this correction factor is presented as an option to use the RVA when the real values of HR of the subject
are known. Therefore, as further described, machine learning models were developed to predict the
real HR and BP values to calculate these responses without the need to know the real values (measured
with a contact device) of the subjects.

Data from the video analysis of three face regions (forehead, right and left cheeks) with the
RVA were used as inputs along with data from the oscillometric monitor and finger sensor as
targets to develop two different machine learning models in Matlab®. Model 1 was developed
for discriminate analysis of averaged HR by testing 17 different artificial neural network (ANN)
training algorithms using an automated customized code written in Matlab®. The algorithms tested
were two backpropagation using Jacobian derivatives, 11 backpropagation using gradient derivatives,
and four supervised weight/bias training (data not shown). The customized code was able to develop
a regression model using 18 inputs (six per face region), normalized from −1 to 1, from the video
analysis from each of the 17 algorithms tested with inputs such as: (i) average HR in BPM calculated
from the video, (ii) standard deviation of the HR, (iii) amplitude of the peaks from the signal of the
luminosity changes, (iv) standard deviation of the amplitude form the peaks, (v) average distance
or frequency of the peaks from the signal of the luminosity changes, and (vi) standard deviation of
the distance or frequency of the peaks, and three targets/outputs from the oscillometric monitor:
HR in BPM, systolic (SP) and diastolic blood (DP) pressure. The best model was obtained by using the
Levenberg-Marquardt backpropagation training algorithm and random data division by using 70%
(n = 31) of the samples for training, 15% (n = 7) for validation with a mean squared error performance
algorithm and 15% (n = 7) for testing with a default derivative function. After training the model
several times using the neuron trimming technique (3, 5, 7 and 10), it was defined that ten neurons
were needed to develop a more accurate model, as shown in Figure 3a. The distribution of the error
was tested for normality (p ≥ 0.05) through the DAgostino & Pearson Test using the “normalitytest”
function in Matlab® R2018a [36].
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The PS values, which are the process settings of the normalization (−1–1) of the targets in Matlab®

were saved; these values allow to denormalize the new outputs when the model is fed with new inputs.
Therefore, the model will give three outputs which will consist of one value for systolic pressure,
one for diastolic pressure and one for heart rate, the first two values in mmHg and HR in BPM.

Model 2 for continuous analysis of video data was developed using the shallow neural network
time-series prediction (SNNTS) application in the Matlab Neural Network Toolbox 11.1™ (Mathworks
Inc., Matick, MA, USA) and the non-linear autoregressive with exogenous input (NARX). The HR,
magnitude and luminosity data obtained from the video analysis using the RVA from every second
of each video and from each participant for each of the three face regions (forehead, right and left
cheeks) were used as normalized (−1 to 1) inputs. The continuous (every second) raw signal of the
luminosity changes and HR values obtained using the finger sensor were used as targets/outputs.
The use of HR values obtained from the video analysis using the RVA as part of the inputs to predict
the HR measured with the finger sensor is to obtain the real HR values and increase the accuracy
of the results. The model was developed using the Levenberg-Marquardt backpropagation training
algorithm with 70% (n = 7688) of the data used for training, 15% (n = 1648) for validation with a mean
squared error performance algorithm and 15% (n = 1648) for testing with a default derivative function;
all data were divided using a random data division function. A total of five hidden neurons were
selected after retraining the model several times using the neuron trimming technique (3, 5, 7 and 10)
as similar results were obtained using five, seven and ten neurons. Furthermore, two delays were used
to develop the model (Figure 3b).

Statistical data to evaluate the accuracy of both models was based on the correlation coefficient
(R), performance based on the mean squared error (MSE) for each stage (training, validation, testing
and overall model), and slope and p-value of the overall model calculated using Matlab®.
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2.4. Application of HR and BP to Sensory Analysis of Chocolates 

Figure 3. Diagrams of the machine learning models developed where: (a) shows Model 1 for regression
fitting with a two-layer feedforward network and tan-sigmoid function in the hidden layer and a linear
transfer function in the output layer, in which a total of 18 inputs and three targets/outputs used with
ten hidden neurons, and (b) Model 2 using the shallow neural network time-series prediction with
a series-parallel architecture using a tan-sigmoid function in the hidden layer and a linear transfer
function in the output layer, nine inputs, two delays, two targets/outputs and five hidden neurons.
Abbreviations: SD = standard deviation, w = weights and b = biases.
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2.4. Application of HR and BP to Sensory Analysis of Chocolates

Video and self-reported data from five consumers were extracted from a sensory session with
three different chocolate samples with distinct sweeteners (Control: sugar; Treatment 1: D-tagatose;
Treatment 2: Stevia). These data were obtained to show a potential application for the presented
method. This test was conducted on a different date than the HR validation session and without the
use of monitors or sensors attached to the body. Similar to the data obtained for the HR validation
test explained in Section 2.1, this session was conducted in the same individual booths presenting
a questionnaire in the tablet displaying the bio-sensory App while recording the video from the
participant while tasting the samples. The App presented questions to assess acceptability of the
samples according to the following descriptors: (i) liking of cocoa aroma (ACocoa), (ii) liking of
sweetness (Tsweet), (iii) sweetness intensity with just about right (JAR) test (JARSweet), (iv) liking
of bitterness (TBitt), (v) JAR of bitterness intensity, (vi) liking of hardness (Hard), (vii) liking of
smoothness (Smooth), (viii) overall liking, and (ix) purchase intention (PurInt). The videos recorded
during the session were then analyzed using the RVA method and further processed using Model 1 to
obtain the HR and BP values. A correlation matrix was developed using the nine descriptors from the
self-reported responses (conscious) along with the HR, and systolic and diastolic pressure (SP and DP,
respectively) to assess significant (p < 0.05) correlations among the different parameters.

3. Results

3.1. Matlab® Codes Performance

The algorithm that presented the lowest performance and the highest processing time was the
EMA for the three different computers tested, with and without the parallel pool option, being the
Alienware with 32 GB and ten cores without parallel pool the fastest (1424 s) and the lowest in CPU
usage (14%) (Figure S1a). Comparing the HR analysis from both the EMA and RVA (Figure S1b and
S1c), the Alienware with 32 GB and 10 cores with parallel pool and using the RVA presented the best
performance with 40 s, 7% of CPU usage and with low maximum temperatures (27–33 ◦C) in the
individual cores. The HP with 8 GB and 2 cores both with and without parallel pool was the lowest
in performance for the three codes due to the limited processing capacity of the device. Although
both Alienware devices with four and ten cores are within the most powerful gaming computers,
the Eulerian magnification algorithm (EMA) still required considerably high processing times of over
1400 s. Furthermore, both Alienware computers had higher memory usage than HP due to the different
capacity of the three devices (8 GB vs. 32 GB).

3.2. Correlations between Methods

The comparison between the HR obtained by oscillometric monitor and those measured with the
finger sensor, both in beats per minute (BPM) rendered a statistically significant and high positive
linear correlation, as expected (R2 = 0.97; RMSE = 2.65; p-value < 0.0001). Hence, both results may be
used as a reference of the real HR values for validation purposes.

Figure 4 shows the results from the means of the HR values from each video of each participant
obtained using FaceReader™ (y-axis) and the means from the three measurements obtained using
the blood pressure monitor during each video (x-axis). The correlation between both methods was
non-significant and with an extremely low determination coefficient (R2 = 0.01; RMSE = 230.43;
p-value = 0.55).

The means from the results from the videos using the MVA (y-axis) against the mean values
from the oscillometric monitor (x-axis) are shown in Figure 5. The videos were analyzed six times as
follows: three times to measure the HR in each of the three face regions (forehead, right cheek and left
cheek) and three more times by setting the different color channels from the RGB component for each
face region. Figure 5a shows the results using the red (R) channel showing a significant correlation
(p-value < 0.0001) for the three face regions with R2 = 0.66 and RMSE = 8.50 for the forehead (y1),
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R2 = 0.70 and RMSE = 9.06 for the right cheek (y2) and R2 = 0.70 and RMSE = 9.07 for left cheek (y3).
In Figure 5b the correlations using the green (G) channel can be observed with the same determination
coefficient as the R channel for the forehead (R2 = 0.66; RMSE = 8.44; p-value < 0.0001) and lower values
for right (R2 = 0.59; RMSE = 8.19; p-value < 0.0001) and left (R2 = 0.64; RMSE = 8.95; p-value < 0.0001)
cheeks. Figure 5c shows the results from the video analysis using the blue (B) channel where low
correlations, yet significant (p-value < 0.0001) for the three face regions can be observed with R2 = 0.53
and RMSE = 9.56 for the forehead, R2 = 0.60 and RMSE = 10.37 for the right cheek, and R2 = 0.54 and
RMSE = 10.97 for the left cheek.
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Figure 5. Correlations between heart rate (HR) measured using the oscillometric monitor (x-axis)
and video analysis using Matlab® and the pre-processed videos with the Eulerian Magnification
algorithms (MVA) (y-axis) in beats per minute (BPM). The figure shows the results of the videos
analyzed using the luminosity changes in (a) the red channel, (b) the green channel and (c) the blue
channel. R2 = determination coefficient.

Figure 6 shows the results of the means of the HR measured using the oscillometric monitor
(x-axis) and those from the videos analyzed using the proposed RVA method for each video of each
participant. All videos were analyzed three times for each of the face areas (forehead, right cheek and
left cheek) and using each of the three color-channels in the RBG color spectrum. As shown in Figure 6a,
when analyzing the videos for the luminosity changes in the red channel, the three areas had high
and significant correlation (p-value < 0.001) with R2 = 0.77 and RMSE = 7.13 for the forehead results,
R2 = 0.79 and RMSE = 6.27 for the right cheek values, and R2 = 0.80 and RMSE = 6.74 for the left cheek.
In Figure 6b the results using the green channel can be observed, where the forehead results presented
a significant correlation with a high determination coefficient R2 = 0.83 (RMSE = 7.26; p-value ≤ 0.0001),
likewise the right and left cheeks showed a high and significant correlation (p-value < 0.0001) with
R2 = 0.84, RMSE = 6.05 and R2 = 0.83, RMSE = 6.37, respectively. The videos analyzed using the
luminosity changes in the blue channel had a lower, yet significant (p-value < 0.0001) correlation for
the three face areas (Figure 6c). Using blue channel, the forehead showed the highest determination
coefficient from the three areas (R2 = 0.82, RMSE = 6.72), followed by the left cheek (R2 = 0.76,
RMSE = 7.61) and the right cheek (R2 = 0.73, RMSE = 7.12).

3.3. Machine Learning Modelling

Figure 7 shows the Model 1 developed using the artificial neural networks regression modelling.
It can be observed that is was possible to develop a significant (p-value < 0.0001) overall model
with high correlation (R = 0.85) and a slope of 0.75 using the 18 inputs obtained from the video
analysis with the RVA presented in this paper to predict the HR and BP values together measured
using the oscillometric monitor. The number of samples, performance based on the mean squared
error (MSE) and correlation coefficients for each stage are shown in Table 1. Based on these results,
the testing stage had the lowest correlation (R = 0.71), the three stages had a performance MSE of
0.07 for training, 0.13 for validation and 0.11 for testing stages at epoch two. Both the validation and
testing performance are similar and presented a decrease trend, which indicates that there was no
overfitting in the model. The errors of the three stages (training, validation and testing) presented a
normal distribution (p ≥ 0.05; D’Agostino & Pearson Test = 0.07).
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Figure 7. The artificial neural network regression overall model (Model 1) showing a high correlation
coefficient (R = 0.85), where the x-axis represents the observed (targets) and the y-axis represents the
predicted (outputs) values of heart rate (HR) and blood pressure (BP) measured with the oscillometric
monitor. All values were normalized in a scale from −1 to 1.
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Table 1. Statistical results of Model 1 showing the number of samples, mean squared error (MSE) and
correlation coefficient (R) for the training, validation and testing stages as well as the overall model.

Stage Samples Mean Squared Error (MSE) Correlation Coefficient (R)

Training 31 0.07 0.89
Validation 7 0.13 0.72
Testing 7 0.11 0.71
Overall 45 0.06 0.85

The SNNTS model (Model 2) is shown in Figure 8. This model used nine inputs from the video
analysis using the RVA to predict the real HR and raw signal values of the luminosity changes every
one second. It can be observed that the overall model presented a significant (p-value < 0.0001) and
high correlation coefficient (R = 0.97) with a slope of 0.95 (Figure 8a). Figure 8b shows the response of
outputs every 1 second for both the target (observed) and output (predicted) values. Table 2 shows the
mean squared error performance values and correlation coefficient for each stage and the overall model.
All three stages and overall model presented similar correlation coefficients and had a performance
of MSE = 0.004 at epoch 44. Both the validation and testing performance did not increase before the
iteration 44, which is an indicator of no overfitting in the model. The correlations of the errors as well
as those from the input-error cross-correlation fell within the 95% confidence limits, which validate the
network performance (data not shown).
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Figure 8. Response from the shallow neural network time-series (SNNTS) model (Model 2) where:
(a) shows the regression model with an overall high correlation (R = 0.97), where the x-axis represents
the targets (observed) and the y-axis depicts the outputs (predicted) values of the raw signal of the
luminosity changes and HR measured using the finger sensor. All values were normalized in a scale
from −1 to 1; (b) shows the graph with the response output for the time series for every 1 second
comparing the targets and outputs where x-axis represents the time (s) and the y-axis the normalized
(−1 to 1) response values of raw signal of the luminosity changes and real HR (HR).
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Table 2. Statistical results of Model 2 showing the number of samples, mean squared error (MSE) and
correlation coefficient (R) for the training, validation and testing stages as well as the overall model.

Stage Samples Mean Squared Error (MSE) Correlation Coefficient (R)

Training 7688 0.004 0.97
Validation 1648 0.004 0.98
Testing 1648 0.004 0.98
Overall 10,984 0.004 0.97

3.4. Application of HR and BP Responses (Model 1) to Sensory Analysis (Chocolates)

Figure 9 shows the correlation matrix of the sensory session with the chocolate samples. The HR
had a positive and significant correlation with SP and DP (R = 0.67; R = 0.74) and a negative correlation
with the liking of hardness of the chocolate (R = −0.54). On the other hand, the SP had a positive
correlation with DP (R = 0.80) and importantly with purchase intention (PurInt; R = 0.65).Sensors 2018, 18, x FOR PEER REVIEW  14 of 18 
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Figure 9. Correlation matrix of a chocolate sensory test showing the significant correlations (p < 0.05) in
which the blue side of the color scale (−1 to 1) represent the positive and the yellow side the negative
correlations. Abbreviations: (i) heart rate (HR), (ii) systolic pressure (SD), (iii) diastolic pressure (DP),
(iv) liking of cocoa aroma (ACocoa), (v) liking of sweetness (Tsweet), (vi) sweetness intensity with
just about right (JAR) test (JARSweet), (vii) liking of bitterness (TBitt), (viii) JAR of bitterness intensity,
(ix) liking of hardness (Hard), (x) liking of smoothness (Smooth), (xi) overall liking, and (xi) purchase
intention (PurInt).

4. Discussion

4.1. Matlab® Codes Performance

From the results of the computer and Matlab® performance to calculate HR using videos, it can
be observed that the MVA method presented the lowest performance as it required above 2300 s
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of processing time, for both algorithms (EMA + MVA), to process a single video, and have a high
memory (~800 MB) and CPU usage (~35%) when running them in a computer with 8 GB and 2 cores.
The performance for this method improves with the use of more powerful computers, however,
the processing times and memory usage are still high (>1500 s; ~1800 MB), especially if the user needs
to analyze several videos, this would be the case for a sensory session in which usually a minimum
of 40 participants and around four to six samples (>160 videos) are required. Therefore, the video
analysis using the RVA is less-time consuming and present a more efficient method to calculate HR as
it can be processed using a computer with less capacity.

4.2. Correlations between Methods and Real HR

Even though the finger sensor and the oscillometric monitor use a different method to measure HR,
photoplethysmography (PPG) versus oscillometry, both methods are usually used for medical purposes
and presented a high and significant correlation when comparing both (R2 = 0.97), which shows that
both are appropriated to be used for validation purposes. In this paper both methods were used, as the
PPG is able to measure the HR and record the raw signal of the luminosity changes continuously,
while the oscillometric monitor is able to measure HR and blood pressure, but only gives one value for
every measurement.

When comparing the HR results from the oscillometric monitor with those obtained by analyzing
the videos through FaceReader™ there was no correlation between the two methods (R2 = 0.01;
p-value = 0.55). This contradicts the study from Tasli et al. [23] in which the authors mention that there
is a high correlation between the HR measured with a pulse oximeter attached to the finger and the
FaceReader™ HR method, however, they did not report the statistical data such as R2 and p-value.
Another weakness found in that study was that the authors used only ten participants and recorded
two videos of each (20 videos total) which is a small sample size compared with the present study,
in which 15 participants and three videos of each (45 videos total) were used. From the Figure 3 it can
be seen that the major fail of the FaceReader™ method is in the high HR values as it underestimates
the results, this was also shown in the study by Tasli et al. [23] as in the results they presented, there is
a larger number of points outside the confidence bounds in the high HR range.

Another method using video analysis tested in this study was the MVA, which involved the
pre-processing of the videos using the Eulerian Magnification algorithm, the correlations using the
three color-channels (RGB) and the three face regions resulted in low to moderately high (R2 = 0.53 to
0.70), being the red channel the highest in accuracy. However, compared to the analysis of the raw
videos with the RVA, the correlations using the MVA were much lower. The best correlations using the
RVA were with the green channel (R2 = 0.83) and this was similar for the three face regions. Studies
from other authors such as Carvalho et al. [16] who proposed a method for video analysis using the
EMA showed that the values obtained are close to those measured using a HR monitor, nevertheless,
it was only tested with five participants (one value of each), therefore, their sample size was too small
to assess the accuracy of their method. Wu et al. [17] developed the Eulerian Magnification method and
tested it obtaining similar values to medical HR devices, but they measured it using only three videos
(from two adults and one baby) which is not enough to validate a method and did not present any
values and statistical analysis. On the other hand, authors such as Jensen and Hannemose [18] showed
the comparison of different methods to calculate HR using the raw videos and different color models
and showed a high correlation R > 0.95 using the green channel and 30 s videos at 15 frames per second
(fps) from 12 participants. These authors also showed that the highest blood flow can be found in the
cheeks and forehead. The green channel works best due to the capacity oxy- and deoxyhemoglobin to
absorb the green light, which allows to measure the blood flow in the skin surface, this method is also
used by the finger sensor tested in this study.
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4.3. Machine Learning Modelling

In this study, an artificial neural network (ANN) regression model (Model 1) was used to estimate
the real HR and BP values using the oscillometric monitor results as targets, and the average of the
results (HR, frequency and amplitude) and their standard deviation from each face region obtained
from the RVA as inputs. The high correlation (R = 0.85) obtained in the overall model shows that
it is feasible to predict HR and blood pressure (systolic and diastolic). This model can be used to
obtain the average of these physiological responses in consumer sensory tests when evaluating food,
beverages and/or packaging to assess differences in responses to distinct samples. Authors such as
Jain et al. [15] have developed a method to estimate HR and BP using computer vision based on the
extraction of the PPG signal, principal components analysis, peak detection algorithms and polynomial
kernel regression modelling, and compared their method with a blood pressure monitor similar to
the one used in the present study, obtaining high accuracy. However, the ANN models are able to
learn and detect more patterns within data when more samples are added to the inputs, which enables
the model to improve its performance. Furthermore, ANN has been successfully used in different
fields such as to predict cardiac diseases based on HR data [37,38], to classify level of acceptability of
beer using non-intrusive biometrics (HR, body temperature, facial expressions and brainwaves) [5],
among others.

A different machine learning method was used to develop Model 2, in which a shallow neural
network time-series technique was used to predict the real PPG raw signal of the luminosity changes
and HR values every second using some of the results obtained from the RVA (HR, luminosity and
magnitude) from each face region as inputs. This model, which resulted highly accurate (R = 0.97),
would be useful for sensory studies involving the assessment of physiological responses of consumers
to stimuli for some specific tests for food tasting such as temporal dominance of sensations (TDS),
time intensity sensory tests or while using videos as stimuli in which the responses (conscious and
unconscious) need to be measured over time.

4.4. Application of HR and BP Responses to Sensory Analysis (Chocolates)

Results from the sensory analysis of chocolate for consumers’ acceptability showed that it is
possible to find a relationship between the self-reported (conscious) and the physiological responses
as there was a decrease in HR when consumers disliked the hardness of the chocolate samples.
On the other hand, an increase in the SP was detected when consumers are more willing to purchase
the product. Therefore, these findings can be used as an example of a potential application of the
technique presented in this paper, however, besides food products, it may also be used along with
other biometrics such as body temperature and facial expressions to obtain more information from
consumers for sensory analysis of beverages [5,6] and packaging. Up to date, there are no studies
including BP as a physiological response to food or beverages, therefore, the method presented in this
paper, proposes BP as an additional parameter to explore deeper for this application. Therefore, further
validations must be performed to assess the variability or changes in BP when evaluating different
food and beverages.

5. Conclusions

The proposed method using RVA which works by analyzing raw videos using the luminosity
changes in the green channel along with machine learning algorithms based on artificial neural network
regression to predict HR and blood pressure and shallow neural networks time-series prediction to
estimate HR and raw signal from luminosity changes every second showed to be an accurate and
reliable technique to measure physiological responses of subjects. This non-contact method can be
used as a biometric tool to assess consumers’ responses when evaluating different stimuli such as
food, beverages and packaging to complement other unconscious and conscious responses that would
allow to obtain more information in sensory analysis. This technique also has the advantage that it
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presented the best performance when using computers with different memory and number of cores
and requires less processing times than other methods such as the pre-processing of videos using
Eulerian magnification algorithms. Further studies will consist on the implementation of an automatic
algorithm to crop and track the specific face regions that would allow to optimize the method and
improve the accuracy of the results and models.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/18/6/
1802/s1, Figure S1: Comparison of the performance of different computers tested using the Matlab®codes
to (a) pre-process the videos magnifying the color changes with the Eulerian Magnification Algorithm (EMA),
and to calculate the HR values using: (b) the Magnified Videos (MVA) and (c) the Raw Videos (RVA). Results
using different computer brands and with distinct specifications are presented. The values shown are normalized
from 0 to 1 and shown in a color scale from white to black in which the black corresponds to the highest values and
white the lowest. The duration of the video used to obtain the performance results was 02:51 min. Abbreviations:
HP = Hewlett Packard, AW = Alienware, P = parallel pool, NP = no parallel pool, MaxT = maximum temperature
and MinT = minimum temperature.
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