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Our previous study showed that interferon gamma (IFN-g) might enhance the
immunosuppressive properties of mesenchymal stem cells (MSCs) by upregulating the
expression of indoleamine 2,3-dioxygenease. Therefore, we treated experimental
autoimmune encephalomyelitis (EAE) mice, an animal model of multiple sclerosis (MS),
with IFN-g-primed human umbilical cord MSCs (IFN-g-hUCMSCs). This study aimed to
investigate the potential therapeutic effects of IFN-g-hUCMSCs transplantation and to
identify the biological pathways involved in EAE mice. Firstly, the body weights and
clinical scores of EAE mice were recorded before and after treatment. Then, the
inflammatory cytokine levels in splenic cell supernatants were quantified by enzyme-
linked immunosorbent assay. Finally, the mRNA expression levels of signal transducer
and activator of transduction 3 (STAT3), retinoic acid-related orphan receptor gamma t
(ROR-gt), and forkhead box P3 (Foxp3) were detected by quantitative reverse transcription
polymerase chain reaction. We observed that IFN-g-hUCMSCs transplantation significantly
alleviated body weight loss and decreased the clinical scores of mice. Additionally, IFN-g-
hUCMSCs transplantation could regulate the production of inflammatory cytokines,
interleukin (IL)-10 and IL-17, thereby showing more potent treatment efficacy than human
umbilical cord MSCs (hUCMSCs) transplantation (p < 0.05). Compared with the EAE group,
the expressions of STAT3 and ROR-gt in the transplantation groups were significantly
decreased, but the expression of Foxp3 was significantly upregulated in the IFN-g-
hUCMSCs transplantation group compared to that in the hUCMSCs transplantation
group. We assumed that IFN-g-hUCMSCs may affect the balance of T helper 17 (Th17)
cells/regulatory T cells (Tregs) through the Foxp3/ROR-gt/STAT3 signaling pathway to
reduce the inflammatory response, thereby improving the clinical symptoms of EAE mice.
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Our study demonstrated that transplantation of IFN-g-hUCMSCs could reduce
inflammation in EAE mice via the Foxp3/ROR-gt/STAT3 signaling pathway, highlighting
the therapeutic effects of IFN-g-hUCMSCs in patients with MS.
Keywords: IFN-g-primed human umbilical cord mesenchymal stem cell (IFN-g-hUCMSCs), multiple sclerosis (MS),
experimental autoimmune encephalomyelitis (EAE), indoleamine 2,3-dioxygenease (IDO), Foxp3/ROR-gt/STAT3
signaling pathway
INTRODUCTION

Multiple sclerosis (MS) is a common cause of neurological
disability among young people, resulting in increased
economic and social costs (1, 2). MS has been investigated
over a century, and although much has been discovered about
the immunobiology, genetics, and epidemiology of this disease,
the treatment outcomes remain unsatisfactory.

MS is characterized by inflammation-mediated demyelination
of the white matter tracts with partial preservation of axons (3).
Experimental autoimmune encephalomyelitis (EAE) is an animal
model of MS that is particularly useful for testing new therapeutic
approaches against MS (4, 5). Studies indicated that T helper (Th)
cells, mainly Th1 and Th17 cells, which are characterized by the
production of interleukin (IL)-17, are involved in the
pathogenicity of MS and EAE, whereas regulatory T cells
(Tregs) can maintain the autoimmune response (6, 7). One of
the root causes of EAE is the decrease in the expression of forkhead
box P3 (Foxp3)-expressing anti-autoimmune Tregs and an
associated increase in autoimmune Th1 and Th17 cells (8).
Moreover, Th17 cells, rather than Th1 cells, are important in
autoimmune inflammatory conditions (9). Therefore, the balance
of Th17/Tregs may play an important role in the modulation of
EAE. IL-10 is an anti-inflammatory cytokine that plays a crucial
role in preventing inflammatory and autoimmune pathologies and
is involved in the regulation of the Janus kinase/signal transducers
and activators of transduction (JAK/STAT) signaling pathway.
Genetic deletion of STAT3 in T cells has been shown to abrogate
Th17 differentiation, suggesting that STAT3 is a potential
therapeutic target for Th17-mediated diseases (10). Tregs can
exert their functions by releasing inhibitory cytokines (IL-10 and
IL-35) (11). Therefore, the production of inflammatory cytokines
(IL-10 and IL-17) and the activation of the JAK/STAT signaling
pathway were observed in our study.

With the development of novel treatment methods for
autoimmune diseases, transplantation of mesenchymal stem cells
(MSCs) has become popular as an effective strategy to counteract
the progression of autoimmune disorders. Evidence suggests that
MSCs can exert anti-inflammatory and immunomodulatory effects
in various tissues, lower the clinical scores, and reduce central
nervous system (CNS) leukocyte infiltration in EAE mice (12, 13).
Our previous study showed that the immunosuppressive properties
of MSCs may be enhanced by interferon gamma (IFN-g) due to the
upregulation of the tryptophan-catabolizing enzyme indoleamine
2,3-dioxygenease (IDO) (14). Therefore, we tried to treat EAE with
IFN-g-primed human umbilical cord MSCs (IFN-g-hUCMSCs)
and investigated their potential therapeutic effects on EAE mice.
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MATERIALS AND METHODS

Culture of hUCMSCs and IFN-g-hUCMSCs
Human umbilical cord specimens were obtained from healthy
Chinese young women who received cesarean section at the
Second Hospital of Shandong University under sterile
conditions. Informed consent was obtained from all
participants before the collection of human umbilical cord
specimens. This study was approved by the Ethics Committee
of the Second Hospital of Shandong University, China.

The hUCMSCs were isolated and cultured, and the phenotype
of the hUCMSCs was identified as described in our previous
study (14). The umbilical cord was cut into small sections,
following two washes with phosphate-buffered saline (PBS).
The pieces were digested with collagenase for 1 h and trypsin-
EDTA (Gibco, Waltham, MA, USA) for 30 min. The specimens
were then filtered, the cells cultured in Dulbecco’s modified
Eagle’s medium/nutrient mixture F-12 (HyClone, Logan, UT,
USA), and were fixed with 10% defined fetal bovine serum
(Gibco), epidermal growth factor, basic fibroblast growth factor
(both from PeproTech, Cranbury, NJ, USA), L-glutamine
(Gibco), and penicillin–streptomycin solution (HyClone) with
5% CO2 at 37°C for 72 h. After 3–5 days, non-adherent cells were
removed and the medium was replenished. When the density of
the cells reached 80%, they were digested with trypsin–EDTA at
room temperature and passaged into new culture dishes. The
expressions of the cell surface markers, including CD105, CD90,
CD73, CD45, CD34, and HLA-DR (human leukocyte antigen—
DR isotype), were evaluated using a LSRFortessa™ flow
cytometer (BD Biosciences, Franklin Lakes, NJ, USA). Then,
partial human umbilical cord MSCs (hUCMSCs) were pretreated
with IFN-g (20 ng/ml, 48 h). Cell suspensions were prepared at a
density of 1 × 107 cells/ml.

The whole process was performed in a Good Manufacturing
Practice (GMP) laboratory.

EAE Grouping and Cell Transplantation
Female C57BL/6J mice (6–8 weeks old; Biotechnology Co., Ltd.,
Beijing, China) were housed under a 12:12-h light/dark cycle in
temperature- and humidity-controlled rooms. Mice were
immunized with the myelin oligodendrocyte glycoprotein
peptide 35-55 [MOG35-55; GL Biochem (Shanghai) Ltd.,
Shanghai, China] according to a previously published protocol
(15). Priming mice to induce EAE involved complete Freund
adjuvant (Sigma, St. Louis, MO, USA) containing 4 mg/ml
Mycobacterium tuberculosis (strain H37Ra; Difco, Franklin
Lakes, NJ, USA) and 200 mg MOG35-55. On days 0 and 2
March 2022 | Volume 13 | Article 835345
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post-immunization, 200 ng of pertussis toxin (Sigma) was
administered intraperitoneally. Then, the mice were divided
into three groups (n = 8 per group): the EAE group, the
hUCMSCs transplantation (EAE+hUCMSCs) group, and the
IFN-g-hUCMSCs transplantation (EAE+IFN-g-hUCMSCs)
group. Fourteen days after immunization, each mouse in the
transplantation groups was injected with 100 ml of the cell
suspension (1 × 107 cells/ml) via the tail vein. The mice in the
EAE group were injected with 100 ml of PBS instead. All animal
experiments were performed per the Ethical Committee for
Animal Experiments of Shandong University, China.

Body Weight and Clinical
Score Assessment
After immunization, the mice were weighed and evaluated for
signs of neurological disability. Clinical disability was scored as
follows: 0, no paralysis; 1, loss of tail tone; 2, hindlimb weakness;
3, hindlimb paralysis; 4, hindlimb and forelimb paralysis; and 5,
dying or dead (16). The scorers were blinded to the
treatment groups.

Splenocyte Culture and Detection of
Inflammatory Cytokines
Two weeks after cell transplantation, the mice were anesthetized
and sacrificed, and the spleens were removed. Splenocytes were
cultured as described previously (17).

The spleen tissue was passed through a 100-mm nylon mesh
screen to prepare single-cell suspensions, followed by removal of
red blood cells with lysis buffer and incubation for 5 min. The
suspensions were centrifuged (4°C at 1,200 rpm) and the
supernatants collected. Splenocytes were washed twice with
RPMI 1640 and adjusted to a density of 1 × 106 cells/ml. The
cells were incubated at 37°C for 2 h and then stimulated with
MOG35-55 (15 mg/ml) for 48 h at 37°C in a 5% CO2 incubator.
After 3 days, the supernatants were harvested and stored at −80°C
for cytokine detection using enzyme-linked immunosorbent
assay (ELISA).

The contents of IL-10 and IL-17 in the supernatants were
assessed using commercially available ELISA kits (Proteintech,
Shanghai, China) according to the manufacturer’s instructions.

Real-Time Fluorescence Quantitative PCR
Total RNA from the lumbar myeloid tissue of mice was extracted
using the TRIzol reagent (Life Technologies, Carlsbad, CA, USA)
following the manufacturer’s instructions 2 weeks after cell
Frontiers in Immunology | www.frontiersin.org 3
transplantation. First-strand complementary DNA (cDNA)
was synthesized using HiScript II Q RT SuperMix (Vazyme,
Nanjing, China). Primers were supplied by Sangon Biotech
(Shanghai, China). The primer sequences for STAT3, ROR-gt,
and Foxp3 are listed in Table 1. Quantitative real-time PCR
(qRT-PCR) was performed with AceQ qPCR SYBR Green
Master Mix (Vazyme) using the CFX96 Touch™ Real-Time
PCR Detection System (Bio-Rad, Hercules, CA, USA). PCR was
performed in triplicate, and all results were normalized to the
expression of GAPDH using the 2−DDCt method.

Statistical Analysis
Data were recorded separately and expressed as the mean ±
standard deviation. Data were analyzed using one-way ANOVA
and Tukey’s multiple comparisons test. Statistical significance
was set at p < 0.05. All data were analyzed using SPSS software
(version 23.0).
RESULTS

Effects of hUCMSCs and IFN-g-hUCMSCs
Transplantations on the Body Weights and
Clinical Scores of EAE Mice
The body weights and clinical scores of mice were recorded and
assessed after immunization. After approximately 2 weeks, EAE
mice began to lose weight, and the clinical scores started to
increase. We observed that transplantation of hUCMSCs and
IFN-g-hUCMSCs significantly alleviated body weight loss and
decreased the clinical scores of mice, especially in the IFN-g-
hUCMSCs transplantation group (Figure 1).

Inflammatory Cytokines of Splenocyte
Culture Supernatants
To investigate the changes in the inflammatory cytokines after
cell transplantations, the contents of IL-10 and IL-17 in
splenocyte culture supernatants were tested using ELISA. We
discovered that transplantation of hUCMSCs and IFN-g-
hUCMSCs could increase the concentration of IL-10, especially
in the IFN-g-hUCMSCs group. Conversely, IL-17, the pro-
inflammatory cytokine, was observed to be remarkably lower
in both cell transplantation groups, especially in the IFN-g-
hUCMSCs group (Figure 2). The results showed that
transplantation of IFN-g-hUCMSCs could regulate the
TABLE 1 | Primer sequences for quantitative real-time PCR (qRT-PCR).

Target gene Primer sequences Product length (bp)

STAT3 Forward 5′-GCCATCCTAAGCACAAAGC-3′ 80
Reverse 5′-GTGAAAGTGACCCCTCCTT-3′

ROR-gt Forward 5′-CTGACGGCCAACTTACTCTT-3′ 150
Reverse 5′-TGTCTGTCAGAGAGGCATATG-3′

Foxp3 Forward 5′-GCATGTTCGCCTACTTCA-3′ 242
Reverse 5′-AGCCTCAGTCTCATGGTT-3′

GAPDH Forward 5′-CTGGGCTACACTGAGCACC-3′ 101
Reverse 5′-AAGTGGTCGTTGAGGGCAATG-3′
March 2022 | Volum
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inflammation response more effectively than hUCMSCs in
EAE mice.

mRNA Expression Levels of Foxp3,
ROR-gt, and STAT3
The messenger RNA (mRNA) expression levels of Foxp3, ROR-gt,
and STAT3were determined using qRT-PCR in all transplantation
groups (Figure 3). Compared with those in the EAE group, the
expressions of STAT3 and ROR-gt in the cell transplantation
groups were significantly decreased, but the expression of Foxp3
Frontiers in Immunology | www.frontiersin.org 4
was upregulated. However, the increase in Foxp3 expression was
more significant in the IFN-g-hUCMSCs transplantation group
than that in the hUCMSCs transplantation group.
DISCUSSION

MS is a demyelinating disorder induced by activation of the
autoimmune system. The treatments for MS mainly include the
administration of glucocorticoids in the acute phase, disease
FIGURE 2 | Effects of transplantation of human umbilical cord mesenchymal stem cells (hUCMSCs) and IFN-g-primed hUCMSCs (IFN-g-hUCMSCs) on the levels of
IL-10 and IL-17 in experimental autoimmune encephalomyelitis (EAE) mice. Cell transplantation could increase the concentration of IL-10 and reduce the
concentration of IL-17, especially in the IFN-g-hUCMSCs transplantation group. *p < 0.05, **p < 0.01 (n = 8 per group).
FIGURE 1 | Effects of transplantation of human umbilical cord mesenchymal stem cells (hUCMSCs) and IFN-g-primed hUCMSCs (IFN-g-hUCMSCs) on the body
weights and clinical scores of experimental autoimmune encephalomyelitis (EAE) mice. Transplantation of hUCMSCs and IFN-g-hUCMSCs significantly alleviated the
body weight loss and clinical scores of mice, especially in the IFN-g-hUCMSCs transplantation group. *p < 0.05 (n = 8 per group).
March 2022 | Volume 13 | Article 835345
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modification therapy (DMT) to reduce the inflammatory activity
and improve long-term prognosis, and symptomatic treatment of
complications; however, the treatment outcomes are not
satisfactory. Therefore, it is important to discover effective
therapeutic strategies for patients with MS. MSCs have shown
strong immunomodulatory functions in many diseases, especially
autoimmune diseases (18). Therefore, transplantation of MSCs is
a promising therapeutic strategy for patients with MS.

Studies have shown that MSCs may suppress the activity of B
cells and reduce autoantibody production (18). In addition, they
can promote the expansion of Tregs by secreting IL-10, IDO, and
transforming growth factor beta (TGF-b) (19, 20). Moreover,
MSCs can suppress the differentiation and proliferation of Th
cells and increase the suppressive proportion of B cells via IDO
(21, 22), and IFN-g is the main inducer of IDO (23). IFN-g-
primed MSCs (IFN-g-primed MSCs) showed stronger ability to
regulate the inflammation and immune suppression than MSCs
in vitro (24). Therefore, we investigated the effects of IFN-g-
hUCMSCs on EAE mice established for MS studies.

In our study, we observed that IFN-g-hUCMSCs
transplantation significantly alleviated body weight loss and
decreased the clinical scores of mice. In addition, IFN-g-
hUCMSCs transplantation could regulate the production of
inflammatory cytokines (IL-10 and IL-17), thereby showing
significantly higher potent treatment efficacy than hUCMSCs
transplantation. IL-10, along with its receptors, plays an
important role in the pathogenesis of various diseases,
including infectious, inflammatory, and autoimmune diseases
(25, 26). Studies have shown that bone marrow-derived MSCs
can inhibit Th17 cell differentiation via IL-10 secretion (27). IL-
17 is a signature cytokine of Th17 cells. The orphan nuclear
receptor ROR-gt is the master regulator that drives the
differentiation of Th17 cells (28). Recent evidence has shown
that ROR-gt can potently upregulate IL-17 reporter activity
without the involvement of any other factors (29).
Furthermore, IL-10 may suppress the expression of ROR-gt.
Foxp3+ Tregs are a special lineage of cells central to the
maintenance of immunological tolerance (11, 30). They
Frontiers in Immunology | www.frontiersin.org 5
function as transcriptional repressors for various transcription
factors. Foxp3 directly interacts with ROR-gt through the exon 2
region of Foxp3 (29). STAT3 signaling is essential for the
induction of ROR-gt and the subsequent Th17 cell
differentiation, and the SRY-related high-mobility group
(HMG) box5 (Sox5) and c-Maf may cooperatively induce
Th17 cell differentiation via the induction of ROR-gt as
downstream targets of STAT3 (31, 32). Therefore, we
speculated whether the changes in the levels of inflammatory
cytokines (IL-10 and IL-17) were related to the mRNA
expressions of ROR-gt, Foxp3, and STAT3.

As mentioned above, the imbalance of Th17/Tregs is involved
in the pathogenesis of EAE. STAT3 and ROR-gt can promote the
differentiation of Th17 cells. Foxp3 is necessary for Tregs to exert
immunosuppressive function and is negatively regulated by
STAT3. Genetic deletion of STAT3 in T cells has been shown to
abrogate Th17 differentiation, suggesting that the inhibition of
STAT3 can tilt the balance of Th17/Tregs toward Tregs.
Combined with the results of our study, we observed that,
compared to those in the EAE group, the expressions of STAT3
and ROR-gt in the transplantation groups were significantly
decreased, but the expression of Foxp3 was upregulated,
especially in the IFN-g-hUCMSCs transplantation group. We
assumed that IFN-g-hUCMSCs may affect the Th17/Tregs
balance through the Foxp3/ROR-gt/STAT3 signaling pathway to
reduce the inflammatory response, thereby improving the clinical
symptoms in EAE mice. This study has some possible limitations.
The inhibition experiment should be studied in the future.

In summary, we found that IFN-g-hUCMSCs could
significantly alleviate the body weight loss and clinical scores of
EAE mice and regulate the production of inflammatory
cytokines via the Foxp3/ROR-gt/STAT3 signaling pathway.
CONCLUSION

Our study demonstrated that transplantation of IFN-g-
hUCMSCs could reduce inflammation in EAE mice via the
FIGURE 3 | Messenger RNA (mRNA) expressions of Foxp3, ROR-gt, and STAT3 in the cell transplantation groups. The expressions of STAT3 and ROR-gt were
significantly downregulated and that of Foxp3 was upregulated in the cell transplantation groups, especially in the IFN-g-primed human umbilical cord mesenchymal
stem cells (IFN-g-hUCMSCs) transplantation group. *p < 0.05, **p < 0.01, (n = 8 per group).
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Foxp3/ROR-gt/STAT3 signaling pathway, which highlights the
therapeutic effects of IFN-g-hUCMSCs in patients with MS.
These results suggest that transplantation of IFN-g-hUCMSCs
may be a potential therapy for MS.
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