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Abstract: Candesartan cilexetil (CC), a prodrug and highly effective antihypertensive agent, is a
poorly soluble (BCS Class II) drug with limited bioavailability. Here, we attempted to improve CC’s
bioavailability by formulating several CC-loaded amorphous solid dispersions with a hydrophilic
carrier (PVPK30) and pH modifier (sodium carbonate) using the spray drying technique. Solubility,
in vitro dissolution, and moisture content tests were used for screening the optimized formulation.
We identified an optimized formulation of CC/PVPK30/SC, which at the ratio of 1:0.5:1 (w/w/w)
exhibited a 30,000-fold increase in solubility and a more than 9-fold enhancement in dissolution
compared to pure CC. Solid-state characterization revealed that in pH-modulated CC amorphous
solid dispersion (CCSDpM), CC’s crystallinity was altered to an amorphous state with the absence of
undesirable interactions. Stability studies also showed that the optimized formulation was stable
with good drug content and drug release under accelerated conditions of up to 4 weeks and real-time
stability conditions of up to 12 weeks. Furthermore, pharmacokinetic parameters, such as AUC and
Cmax of candesartan, had a 4.45-fold and 7.42-fold improvement, respectively, in CCSDpM-treated
rats compared to those in the CC-treated rats. Thus, these results suggest that CCSDpM is highly
effective for increasing oral absorption. The application of these techniques can be a viable strategy
to improve a drug’s bioavailability.

Keywords: amorphous solid dispersion; candesartan Cilexetil; PVPK30; pH-modulation; spray
drying; bioavailability

1. Introduction

Gradual shifts of drug therapeutics strategy toward targeting protein, ion chan-
nels, and synthesis/or regulation pathways have led to development of many lipophilic
molecules or higher molecular weights molecules, or molecules with both properties. These
lipophilic entities demonstrate low aqueous solubility, leading to erratic and limited oral
bioavailability and poor therapeutic inefficacy [1–3]. As a result, formulation scientists face
the significant challenges of improving the solubility and dissolution of lipophilic drugs
in the gastrointestinal (GI) fluid. A promising way to increase a drug’s dissolution rate in
GI fluids is to alter the solubility or the surface area of the dissolving drugs, or both [4].
Different drug formulation strategies, such as micro or nanoparticle formation [5,6], solid
dispersions (SD) [7–10], lipids-based formulation [11], inclusion complexation [12] and
prodrugs [13,14] have been used to increase the rate of drug absorption in GI tract.

SD is a promising and widely accepted technique to increase the aqueous solubility
of hydrophobic drugs [15,16]. Amorphous solid dispersion (ASD), a subset of SD, deals
with molecular dispersion of drug molecules in an amorphous nontoxic hydrophilic carrier
or matrix. The rationale behind ASD is to transform the crystalline form of drug into an
amorphous form, a high-energy state, thus reducing the energy required to break crystal
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lattice and enhancing dissolution [17]. Technologies such as spray drying, KinetiSol® dis-
persing, and hot-melt extrusion give polymeric stabilized amorphous formulations. Spray
drying is a popular solvent evaporation technique that atomizes a suspended or dissolved
drug in a polymer solution or suspension with high pressure in a chamber with hot air
to produce dried particles [18]. Commonly used polymers such as polyvinylpyrrolidone
(PVP), sodium carboxymethyl cellulose (Na CMC), hydroxypropyl cellulose (HPC), and
hydroxypropyl methylcellulose (HPMC) are highly water-soluble and help to increase
the uptake of water in ASD. Spray drying techniques reduce particle size, whereas the
hydrophilic polymer matrix provides an antiplasticization effect, stabilizing the amorphous
form of a drug through its viscous properties, reducing the chemical potential of the drug
and maintaining the drug’s supersaturation in the GI lumen thus, improving the solubility
and dissolution of drug candidate [18–20].

Polymer’s physicochemical properties, such as melting point, glass transition tem-
perature (Tg), solubility, molecular weight, viscosity, and miscibility with a drug molecule
play an essential role in an ASD [21]. Usually drugs with higher melting temperature (Tm)
have high lattice energy and drug with low glass transition temperature (Tg) have higher
mobility. Both have high chances of crystallization and by forming ASD with polymer,
the phenomena of recrystallization can be altered. The miscibility of polymer with drug
decreases the Tm of drug while the Tg of ASD is increased [22,23]. Generally, the use of
polymers with a higher glass transition temperature (Tg) in ASD increases the Tg of the
dispersion system, enhancing the physiochemical stability of ASDs [24]. For example,
Kollidon® 30 (polyvinylpyrrolidone K30, or PVPK30; Figure 1B) is a synthetic, almost
white water-soluble polymer with a Tg at 163 ◦C. It is nontoxic and used for film-forming,
solubilization, stabilizing, taste masking and supersaturation maintenance/precipitation
inhibitor agent [25].
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Figure 1. The chemical structure of candesartan cilexetil (CC) (A), Kollidon 30 (PVPK30) (B), and 
sodium carbonate (SC) (C). 
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Figure 1. The chemical structure of candesartan cilexetil (CC) (A), Kollidon 30 (PVPK30) (B), and
sodium carbonate (SC) (C).

Although ASD enhances the dissolution rate of hydrophobic drugs, inadequate drug
solubility of polymers might result into limited enhancement. One of the commonly
used strategies to maximize the aqueous solubility of weakly acidic or basic drugs is to
use pH modifiers (pHM) with a polymer. The intraluminal pH of GI tract is diversified
from highly acidic in stomach to alkaline at the intestinal regions. Such variation largely
affects the weakly acidic or basic drugs as the environmental pH plays crucial role in
solubility and dissolution [26]. The pHM used in formulation gets dissolved in the adjacent
diffusion layer and alters the microenvironment pH which induces higher saturation
solubility at diffusion layer. These phenomenon leads to increased drug dissolution with
supersaturation at the bulk solution. Since the supersaturation at micro-level involves
the risk of rapid precipitation and/or recrystallization of drug, use of polymer helps to
stabilize and maintain the supersaturation state for longer period of time which directly
affects the rate of absorption [27].

Candesartan cilexetil (CC) (Figure 1A) is an ester prodrug that is generally prescribed
for management of hypertension and heart failure by itself or with ACE inhibitors, beta-
blockers, and diuretics. CC is biotransformed into the active metabolite, candesartan, after
ester hydrolysis in the GI tract. Candesartan is a potent angiotensin II receptor blocker that
restricts the activity of vasoconstrictors and produces antihypertensive effects [28]. Despite
its potent therapeutic effects, CC is a BCS Class II drug with low aqueous solubility (at less
than 8 × 10−8 M, pKa 6.0) across various physiological pH environments, contributing
to its incomplete absorption in the GI tract [29,30]. CC was selected as a drug candidate
because of its erratic and low bioavailability (15% to 40%) after oral administration and
high first-pass metabolism. Therefore, approaches enhancing drug solubility can be handy
to enhance absorption and oral bioavailability of CC. Moreover, several studies have
reported enhanced candesartan bioavailability using SD [31], nano-based system [6,32,33]
but increasing solubility with pH modulation in ASD is an area of interest. However, the
inclusion of pH modifier comes with challenges related to production and stability due
to hygroscopicity of pH modifier so, formulation with less hydroscopic pH modifier and
smaller amount of pH modifier were more desired to maintain integrity of ASD.

This study aimed to design and fabricate a novel optimized CC-loaded ASD with
a pH modifier to improve candesartan oral bioavailability. The CCSDpM was prepared
by the solvent evaporation technique with selected polymer and alkalizer in a spray
dryer. The optimized formulation was characterized using solid-state characterization
tools, such as scanning electron microscopy (SEM), Fourier transform infrared (FTIR)
spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The
in vitro dissolution of CCSDpM was assessed in various media. Finally, the bioavailability
of CCSDpM was compared with pure drug CC in Sprague–Dawley rats.
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2. Material and Methods
2.1. Materials

CC (Hanmi Fine Chemical Co. Ltd., Siheung, Korea), candesartan (purity > 99%;
ALADDIN Biochemical Technology Co. Ltd., Shanghai, China), and Kollidon 30 (PVPK30;
BASF Chemical Co., Ludwigshafen, Germany) were obtained. Sodium carbonate, sodium
hydroxide, potassium hydroxide, and sodium bicarbonate were purchased from Duk-
san Chemicals Co. (Ansan, Korea). All other components and chemical agents were of
analytical or HPLC grade; they were used without additional purification.

2.2. Saturation Solubility Studies of CC

The saturation solubility of candesartan cilexetil (CC) was examined in different pH
(1.2, 4.0, 6.8, and 10) and deionized water. An excess amount of CC was added to an
Eppendorf tube containing 1 mL of the test solution. The mixture was thoroughly vortexed
and placed in an isothermal shaking water bath at 25 ± 0.5 ◦C at 100 rpm for five days.
Then, the samples were centrifuged at 10,000× g for 5 min followed with filtration using
a 0.45-µm membrane filter. Next, the filtrate was diluted with the deionized water to
determine the drug concentration using UV spectroscopy.

2.3. Screening of Polymer Carrier and Alkalizers

Various polymers and alkalizers were screened with the saturation solubility method
to select a suitable carrier and alkalizing agent. In short, an excess amount of CC was
added to a tube containing 1% (w/v) of a polymer or an alkalizer followed by vortexing.
All the samples were then incubated in a shaking water bath at 25 ± 0.5 ◦C and 100 rpm.
After five days, the samples were centrifuged at 10,000× g for 5 min and filtered using a
0.45 µm membrane filter. Then, the filtrates were analyzed with a UV spectrophotometer
at 254 nm.

2.4. Supersaturation Stabilization Assessment

Polymers are commonly known to stabilize or inhibit precipitation of supersaturated
drugs [20,34,35]. A polymer’s ability to stabilize supersaturation is studied using the
solvent shift method [36]. A dissolution apparatus (ERWEKA; DT 620, Heusenstamm,
Germany) was the ideal instrument to maintain the temperature and rpm of the test solution.
For each test solution, a selected polymer was dissolved at the concentration of 0.05% and
maintained at 37 ◦C and 50 rpm [37]. Here,1 mL of 25 mg/mL CC in DMSO was added into
a 900 mL of the test solution; 2 mL of the mixture was withdrawn with subsequent equal
replacement, filtered through a 0.22 mm Millipore filter at predetermined time intervals
within 240 min, and analyzed using a UV spectrophotometer (see Section 2.6).

2.5. Preparation of ASD

The selected polymer and alkalizing agents were used to formulate different pH-
modulated ASDs to identify the optimal formulation. A lab-scale spray dryer (ADL311S;
Yamato Scientific, Tokyo, Japan) was used to prepare ternary SDs of the drug, polymer, and
alkalizer. At 1 g of CC in 100 mL of methanol, the methanolic solution of CC was dispersed
into 200 mL of deionized water containing different amounts of carrier and alkalizer (fixed
at 1 g) with stirring to produce a clear homogenous solution (Table 1). The clear solutions
were then transferred at a rate of 3.5 mL/min with a peristaltic pump through a nozzle
with a 0.4-mm diameter. The air was heated to 120 ◦C in the drying chamber and the air
escaping from the spray dryer was at 65–70 ◦C. The atomizing was maintained at 0.15 MPa.
The average flow rate of drying air was adjusted at 0.13 m3/min by setting the blower
knob at 5.5. In total, five SDs were prepared for further evaluation to select the optimized
ternary solid dispersion.
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Table 1. Compositions of the pH-modulated amorphous solid dispersion (ASDs) with different
polymer ratios.

Formulation CC (g) PVPK30 (g) Na2CO3 (g)

F1 1 0.5 1
F2 1 1 1
F3 1 2 1
F4 1 4 1
F5 1 8 1

2.6. UV-VIS Spectroscopy

The quantitative measurement of CC was conducted with a UV-VIS spectrophotometer
(UV-1800; Shimadzu, Kyoto, Japan). The standard calibration curve was drawn from
known CC concentrations between 0.625 and 25 µg mL−1 in methanol measured at 254 nm
using Beer–Lambert plots. A standard curve with linearity (R2 = 0.9991) was used for the
quantification of CC.

2.7. Optimization of CCSDpM

2.7.1. Aqueous Saturated Solubility and In Vitro Dissolution Study

The solubility of the five CCSDpM formulations was examined to select the formulation
with maximal solubility. An excess amount of an CCSDpM was added to a vial containing
1 mL of deionized water. The resultant suspension was maintained at 25 ± 0.5 ◦C and
100 rpm in an isothermal shaking water bath for five days. Next, the CCSDpM suspension
was centrifuged at 10,000× g for 5 min and filtered to obtain a clear supernatant solution.
The drug’s concentration in the supernatant was determined with a UV spectrophotometer
at 254 nm.

The in vitro dissolution behavior is one of the crucial criteria in determining ASD
technique viability. The dissolution test of CCSDpM equivalent to 8 mg of CC and 8 mg
of pure CC was performed using a USP Type II dissolution apparatus (ERWEKA; DT
620, Heusenstamm, Germany). The CCSDpM or the pure CC powder was placed in a
capsule (size “0”), and a sinker was used to sink the capsule to the bottom of vessels
filled with 900 mL of distilled water maintained at 37 ± 0.5 ◦C with continuous stirring
at 50 rpm. Two mL of the medium was sampled at predetermined time intervals at 5, 10,
15, 30, 45, and 60 min; after each sampling, 2 mL of fresh medium was added to replenish
the volume loss. The sampled medium was filtered through 0.45 µm PTFE syringe filter,
and the drug released into the medium was analyzed using a UV spectrophotometer, as
mentioned above.

2.7.2. Moisture Content Measurement

The moisture content of the formulations F1–F5 was analyzed by a moisture analyzer
(OHAUS, MB 120). The instrument records the difference in the sample’s weight before
and, after heating up to 100 ◦C for 10 min. Finally, the difference in weight was displayed
as percentage of moisture content (MC), an indicator of water content in the sample.

2.8. Characterization of CCSDpM

2.8.1. Drug Content Assay

The estimation of drug loading is crucial to exclude drug loss by the spray drying
process. For drug loading assay, 100 µg/mL of CC in methanol was prepared with the
equivalent amount of CCSDpM, filtered, and analyzed using UV spectroscopy (Section 2.6).
The mathematical relation, drug content (%) = estimated drug content/theoretical drug
content × 100, was used to determine drug content.
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2.8.2. External Morphology

The surface morphology of pure drug, polymer, alkalizer, physical mixture (PM), and
optimized CCSDpM was assessed using a scanning electron microscope (SEM) (SU8220;
Hitachi; Tokyo, Japan). The physical mixture was composed of CC, Kollidon 30, and
Na2CO3 in the weight ratio of 1:0.5:1. The samples were fixed on the brass post with
two-sided adhesive tapes and sputter-coated for 4 min at 5.0 kV and 15 mA using a Sputter
Coater (EMI Tech, K575 K; West Sussex, UK).

2.8.3. Differential Scanning Calorimetry (DSC)

The change in the physical properties of CC, Kollidon 30, Na2CO3, PM, and CCSDpM,
F1, along with temperature against time, was measured using a thermal analysis instrument
(DSC Q20; Newcastle, DE, USA). Approximately 5 mg of a sample was placed in a non-
hermetically enclosed aluminum pan and heated with dry nitrogen purge at 50 mL/min.
The instrument was operated at a scan rate of 10 ◦C/min in a heating range of 30–220 ◦C.

2.8.4. X-ray Diffraction (XRD)

The X-ray diffraction (XRD) analysis of the pure drug, polymer, alkalizer, PM, and
CCSDpM was performed using a D/MAX-2500 XR instrument (Rigaku, Japan) equipped
with a Cu anode. The X-ray beam was operated at a voltage of 40 kV and a current of
40 mA. The scanning range was between 5◦–35◦ (2θ) with a scanning speed of 0.05◦/s. The
diffractograms was plotted using the SIGMA PLOT 12.0 software.

2.8.5. Fourier Transform Infrared Spectroscopy (FTIR)

The percentage transmittance of the pure drug, polymer, alkalizer, PM, and F1 was
analyzed with an FTIR spectrophotometer (Frontier; PerkinElmer, Norwalk, CT, USA).
The samples were placed with a KBr disk and scanned from 4000 to 400 cm−1 at a 2 cm−1

resolution. The KBr pellets were a mixture of 1 g of sample and 200 mg of KBr.

2.9. Stability Assessment

The optimized pH-modulated ASD (F1) was investigated for the changes in its at-
tributes over time under environmental conditions such as temperature and humidity. As
per ICH guidelines, the samples were introduced into a stability chamber maintained at
real-time (RT) at 25 ± 2◦C, 60 ± 5% relative humidity (RH) and the accelerated stability
conditions (ACC) of 40 ± 2 ◦C and 75 ± 5% RH [38]. At predetermined intervals, 1, 4, 8,
and 12 weeks for RT and 1 and 4 weeks for ACC, the samples were analyzed for drug
content and in vitro dissolution by UV spectroscopy.

2.10. Pharmacokinetic Study
2.10.1. Animal Handling and Blood Sampling

Sprague Dawley rats aged 7–9 weeks and weighing 280–343 g, were used for the
in vivo experiments. The rats were adapted to the controlled conditions of 25 ± 2 ◦C,
55 ± 5% RH, and 12-h light/dark cycles for at least 3 days. The rats were abstained from
food and had free access to water for at least 12 h ahead of the oral administration of the
drugs. All the procedures were as per established codes at Kyungpook National University
(Institutional Animal Care and Use Committee, License Number: 2019-0054, Authorization
date: 1 March 2019).

Twelve rats are divided into two groups, with 6 per group (n = 6). Each rat was given
10 mg/kg CC aqueous suspension or F1 (the optimized CCSDpM) at a single dose with oral
gavage. The CC aqueous suspension was developed by dispersing the pure CC powder
in 0.5% w/v in Na CMC. Subsequently, approximately 0.3 mL of the blood sample was
collected in a heparinized tube at predetermined intervals of 0.083, 0.25, 0.5, 1, 2, 4, 8, 12,
and 24 hr. Juglar vein was selected for blood sampling after the rats were anesthetized
with diethyl ether. The collected blood samples were immediately centrifuged at 13,000× g
for 10 min at 4 ◦C and stored at −20 ◦C.
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2.10.2. Plasma Sample Analysis

A 90 µL plasma sample was vortexed with 40 µL of irbesartan (IS), internal standard,
and 270 µL of ACN, a precipitating agent, for a few minutes, and centrifuged at 1000× g
for 20 min. The final concentration of IS was maintained at 1 µg/mL. The clear supernatant
liquid was transferred into an HPLC vial, and 20 µL of it was injected into a column
(Capcell Pak C18, 4.6 × 250 mm) equilibrated at 25 ◦C with a mobile phase of ACN: MeOH:
Potassium dihydrogen phosphate at pH 3.0 at a ratio of 30:30:40 (v:v:v). The samples were
injected at a flow rate of 1.0 mL/min, and the quantification was done at Lmax 254 nm.
A standard plasma curve was projected in the range of 25–5000 ng/mL, showing good
linearity (R2 = 0.9998).

2.10.3. Statistical Evaluation

The pharmacokinetics parameters of candesartan, such as the area under the concentra-
tion-time curve (AUC), half-life (T1/2), peak plasma concentration (Cmax), time for Cmax
(Tmax), and elimination-rate constant (Kel) of each rat, were determined by fitting to a
noncompartmental analysis using WinNonlinTM (Pharsight Corp.; Mountain View, CA,
USA). The AUC0–24h was estimated using the trapezoidal rule. Unpaired Student’s t-test
was used to analyze the level of statistical significance (p < 0.05).

3. Results and Discussion
3.1. Saturation Solubility and Screening Studies

Understanding the solubility profile of a drug in various test solutions would help
select the carriers and solubilizers that are optimal for the preparation of ASDs. Polymers
and other excipients must have good compatibility and affinity with the drug to achieve the
desired in vitro dissolution rate, which is correlated to a favorable in vivo drug profile [9].
CC behaves like a weakly acidic drug and gets deprotonated in solutions with a high pH
(pH > pKa), resulting increased solubility profile [39].

Among the test solutions with different pH values, CC had remarkably high solubility,
at 3148.29 ± 338.32 µg/mL, at pH 10.0, and very low solubility at pH 1.2, 4.0, 6.8, and water
(Figure 2A). These data demonstrate that ASD with alkaline pH modifiers will enhance
CC’s solubility. In the solubility screening of the alkalizers as pH modifiers, the CC in 1%
w/v sodium hydroxide solution had the highest solubility at 78,254.85 ± 2239.49 µg/mL;
in contrast, the CC in sodium bicarbonate had the lowest solubility at 34.67 ± 2.03 µg/mL
(Figure 2B). Though the highest solubility was demonstrated by hydroxides of sodium and
potassium, sodium carbonate was chosen because the hydroxides were strong alkalizing
agents with more hygroscopicity properties that would impact the stability of formulations.
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Similarly, the solubility study (Figure 3A) of the polymeric carriers showed that
Kollidon 30 (PVPK30) had the highest drug solubility at 31.60 ± 5.84 µg/mL whereas
copovidone had the lowest drug solubility at 3.83 ± 0.67 µg/mL among the hydrophilic
carriers. Kollidon 30 is a hydrophilic polymer with successful pharmaceutical applications.
Its amorphous nature, higher Tg, and hydrophilicity indicate its suitability for the spray
drying technique.
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Figure 3. (A) The solubility of CC in different polymer solutions (1% w/v). (B) The concentration-time profile of CC
in various test solutions. Each value represents the mean of three experiments (n = 3), and the error bar represents the
standard deviation.

In addition to solubility screening, the supersaturation maintenance test was also
conducted to analyze ability of polymer to stabilize or inhibit precipitate from saturated
state of drug in a non-sink condition. Generally, ASD techniques generate drugs in an
amorphous state that tends to precipitate rapidly in GI lumen; thus, polymeric stabilizers
can extend and maintain a drug in a supersaturable state in GI lumen [40]. Here, PVPK30,
HPMC, HPC, and distilled water were used as test solutions to study the supersaturation
maintenance behavior for 4 h, which mimics intestinal transit. The supersaturation profile
(concentration-time) of the individual polymers was examined (Figure 3B). In all the
test solutions, a rapid decrease in CC concentration was observed immediately after the
injection of concentrated CC; subsequently, CC concentration was maintained based on
the polymer’s supersaturation maintenance ability. HPC had highest ability to maintain
CC concentration of 20.38 µg/mL for up to 240 min, whereas HPMC had least ability. In
addition, PVPK30 could also maintain a CC concentration of approximately 19.3 µg/mL
for up to 240 min. Similar behavior can be correlated with the saturation solubility study,
as polymers can increase CC’s solubility.

The stabilization of the supersaturation state is a complex phenomenon which can
be regulated with increasing the solubility by reducing nucleation and crystal growths,
increasing the viscosity by reducing molecular mobility, thus decreasing nucleation and
crystal growth and altering the solvation level at the crystal/liquid interface [41]. A slight
increase in supersaturation maintenance of CC by HPC could be related to the viscosity
phenomenon by cellulose-based polymers, which in turn limits molecular mobility [42].
Considering the results from the solubility enhancement and supersaturation stabiliza-
tion studies, PVPK30 was chosen for developing pH-modulated ASDs using the spray
drying method.
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3.2. Optimization of CCSDpM Formulations

Sprayed dried CCSDpM formulations (F1–F5) were prepared using a spray dryer
(ADL311S; Yatamo Scientific) with PVPK30 as a hydrophilic carrier and SC as an alkalizer.
The effect of varying weight ratios of PVPK30 on the solubility of a CCSDpM formulation
was studied by assessing the solubility profiles of all the formulations (Figure 4A). The
incorporation of SC and PVPK30 demonstrated a phenomenal enhancement of CC solu-
bility, in CCSDpM’s compared to the CC powder, at more than 15,000-fold, irrespective of
the polymer ratios. Additionally, increasing PVPK30 did not consistently improve CC’s
solubility as F1 with the lowest PVPK30 showed maximum solubility.
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Figure 4. (A) The drug solubility of the CCSDpM formulations (F1–F5). (B) The in vitro release profiles of the pure drug
from the capsules compared to that of the different CCSDpM formulations in distilled water. (C) The moisture content of the
CCSDpM formulations.

The degree of pH modulation with SC in varying drug: polymer ratio is an important
aspect for such differences in solubility of five formulations. The maximum enhancement
in F1 could be due to adequate microenvironmental pH modulation with SC in given
lower amount of PVPK30. Additionally, drug particles might have extensive size reduction
achieving increased surface area with molecular dispersion into given amount of PVPK30
matrix [9]. Surprisingly, F2–F4 have increasing trends in solubility and F5 shows slight
reduction in solubility enhancement. The uptrend of F2–F5 suggest that, SC doesn’t have



Pharmaceutics 2021, 13, 497 10 of 18

major effect as in F1 but the increasing amount of PVPK30 in presence of SC increased the
solubility. However, in F5, there was not significant cumulative effect of PVPK30 and SC as
amount of PVPK30 was highest. Although, there was slight reduction in solubility of F5, it
still had more than 15,000-fold improvement in comparison with pure CC.

While the conventional SD system increases the solubility and dissolution profile of
hydrophobic drugs, using large amount of polymer with exclusive or heavy use of organic
solvent in the formulation had been a major issue. Organic solvents are not ideal from
health, environmental and industrial-scale perspectives. Thus, the difference in solubility of
polymers and drugs in an organic solvent and incomplete removal of organic solvents are
significant limitations associate with conventional SD techniques [14,43]. We attempted to
reduce the toxicity of an organic solvent by dissolving the drug in a relatively small volume
of organic solvent followed with dispersion in the aqueous phase. In addition, a relatively
small amount of polymer was used for solubilization in the presence of an alkalizer.

The dissolution study of the CCSDpM formulations in deionized water revealed that
the incorporation of SC as an alkalizer and PVPK30 as a hydrophilic carrier greatly enhances
their drug release rate compared to the CC powder. The CC powder’s release rate was
only about 11% at 60 min, while all the CCSDpM formulations released more than 90%
of their drugs at 30 min. F2 had a slower release rate than others before 30 min, while
other formulations had a similar release rate (Figure 4B). The difference in the release
rate of the CCSDpM formulations may be due to the differences in their solubilities, water
penetration time inside the capsule, and relative time for the alkalizer to maintain the
alkaline microenvironment. Once CCSDpM formulations were in contact with water, the
alkalizer modulates the solution surrounding the CCSDpM to enable CC’s transformation
into an unprotonated state [44]. Besides the alkalizer, another contributing factor may be
the wetting ability of the polymer along with the transformation of the crystallinity state
into the amorphous state (from results of solid-state characterization).

The amount of moisture can directly affect a drug’s physical stability as well as the
recrystallization phenomenon. Here, the water content of all the formulations (F1–F5) was
also measured. About 10.9% moisture was observed in the F4 formulation, the highest
among the ASDs. On the other hand, F1 had the lowest moisture content at about 5.96%,
which was correlated to its smallest amount of hydrophilic polymer among the formu-
lations (Figure 4C). The differences in the moisture content might be due to incomplete
drying after spray drying and a varying amount of PVPK30 that attribute to different hy-
groscopicity in the formulations. After reviewing the results from the dissolution, solubility,
and moisture content studies, F1 was selected for further characterization and assessment
as it had the highest solubility, a better drug release rate, and lower moisture content.

3.3. Assessment of Selected CCSDpM Formulations

The in vitro dissolution profile of the selected CCSDpM, F1, was investigated at various
solutions including distilled water and solutions at pH 1.2, 4.0 and 6.8, and then compared
with the dissolution profile of the PM and the free CC (Figure 5). It was observed that F1
had a substantially higher drug release rate at all conditions than the PM or the free CC.
At pH 1.2 and 4.0, the drug release of F1 was above 60% within 60 min; at higher pH, F1’s
drug release was above 90%. On the other hand, no significant changes were observed in
the release characteristics of the free CC under different conditions. However, significant
variations of drug release were observed in the case of PM. There was a difference of
approximately 30% in drug release at pH 4.0 solution and distilled water whereas more
than a difference of 60% in drug release at pH 1.2 and 6.8 between PM and F1. The low
drug release rate of PM further confirmed the superiority of CCSDpM F1. The variation
in drug release from F1 at different pH media solution suggest that there is an influence
of pre-existing pH conditons of media (diffusion layer) in the microenvironmental pH
modulation capacity of alkalizer. It was also seen that the pH of the dissolution solution
was not altered drastically during the experiment, and all the dissolution profiles were
correlated to the solution’s pH.
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Figure 5. The in vitro dissolution study of CC from capsules filled with optimized formulation (F1), physical mixture (PM),
and pure drug in (A) distilled water, (B) a solution at pH 1.2, (C) a solution at pH 4.0 and (D) a solution at pH 6.8. Each
value represents the mean of three experiments (n = 3), and the error bar represents the standard deviation.

In addition, the saturated solubility of F1, PM, and free CC was studied at pH 1.2, 4.0,
and 6.8 and in water (Table 2). The optimized CCSDpM, F1, displayed notable improvement
in the saturated solubility over free CC and the PM. F1’s saturated solubility was more
than 30,000-fold of that of free CC and at least 3-fold of that of PM. F1’s improvements in
dissolution and solubility over the PM are due to ASDs that transform crystalline materials
into amorphous forms and the solubilization, stabilization, and wetting effects of the
polymers and alkalizers [44]. Further, a drug loading study showed that F1 had the highest
drug content at about 99%, which could be correlated with its excellent dissolution profile.

Table 2. The solubility of the free CC, physical mixture (PM), and F1 in solutions with different pH.

Medium CC
(µg/mL)

PM
(µg/mL)

F1
(µg/mL)

Water 1.03 ± 0.06 7613.11 ± 6480.31 31,156.05 ± 4552.69
pH 1.2 0.89 ± 0.13 10,462.60 ± 6492.75 32,212.37± 4785.75
pH 4.0 0.48 ± 0.03 103.78 ± 76.71 31,095.11 ± 5395.98
pH 6.8 2.30 ± 0.37 822.71 ± 171.25 38,424.75 ± 7539.25

Each value represents the mean of three experiments (n = 3) ± standard deviation.

3.4. Physiochemical Characterization

The solid-state properties of free CC, PM, and F1 were investigated using charac-
terization tools, such as SEM, DSC, and XRD. The external morphological view of CC,
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PVPK30, SC, PM, and F1 was imaged with SEM (Figure 6). The CC powder appeared
as irregularly shaped crystalline structures (Figure 6A), whereas PVPK30 and SC had
spherical particles with a smooth surface and fine particles with no distinctive shape,
respectively (Figure 6B,C). The PM (Figure 6D) in the same ratio as F1 had the alkalizer
and drug particles adhering to the carrier’s surface. Surprisingly, F1 appeared to have
spherical and some dented particles without the presence of drug particles on its outer
surface (Figure 6E).
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On the other hand, DSC analysis revealed the thermal characteristics of pure drug
CC, PVPK30, SC, and F1 (Figure 7A). The DSC curve of CC showed an endothermic peak
around 170 ◦C, consistent with the previous finding that CC was thermally stable at below
162 ◦C [45,46]. The sharp endothermic peak also confirms that CC’s structure is crystalline.
Moreover, PVPK30 and SC had not shown any characteristic sharp endothermic peak
except the broad endothermic peak at 50–130 ◦C for PVPK30 and 70–85 ◦C and 110–112 ◦C
for SC. In addition, DSC of PM revealed a reduced endothermic peak of CC, suggesting
weak interaction with the carriers. However, CC’s characteristic endothermic peak is absent
in the F1 DSC curve, suggesting inhibited crystallinity.
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The powder X-ray diffraction (PXRD) of CC, PVPK30, SC, PM and F1 were performed
(Figure 7B). The diffraction pattern of CC shows numerous distinctive peaks up to 30◦,
corroborating with its highly crystalline nature [46]. In contrast, PVPK30 had no peaks due
to its amorphous nature. Additionally, SC’s PXRD pattern showed smaller and fewer peaks,
consistent with its reduced crystalline form. In addition, the PM retained intrinsic peaks of
the respective ingredients with a reduced crystalline form. Lastly, the characteristic peaks
of CC and SC were absent in the F1 sample, again consistent with F1’s amorphous nature.

The FTIR analysis was used to investigate the drug-polymer interaction in ASDs as it
will unveil the mechanism of stabilization of ASD. The FTIR spectrum of CC, PVPK30, SC,
PM, and F1 was compared (Figure 7C). The CC spectra revealed prominent peaks bands
characteristic of the polymeric form I of CC [47]; the aromatic and aliphatic CH stretching
in 3070–2855 cm−1 range with peaks at 3068, 3000, 2940, and 2860 cm−1; the C=O group
stretching from the asymmetric organic carbonate -OC(=O)O- moiety with an intense band
at 1753 cm−1; an ester carbonyl group at 1713 cm−1; the -NH bending at 1622 cm−1; and
the aromatic C-N stretching at 1348 cm−1 and C-O ether stretch at 1032 cm−1. PVPK-30
showed distinct -C=O stretching at 1651 cm−1 and broad absorption bands at 3434 cm−1

from -OH stretching vibrations, correlating to the broad endotherm peak in the DSC study.
SC’s spectrum also exhibited a broad band peaking at 1420 cm−1 and sharp peaks at 872
and 702 cm−1. Further, the PM exhibited a characteristic peak of CC and other excipients
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along with some superimposition. CCSDpM F1’s spectra retained the characteristic peaks of
CC with some enclosure suggesting weak inter-molecular H-bonding. Further examination
in conjunction with other techniques, such as Raman spectroscopy and 1H NMR, will
provide more insights into the phenomena, such as the masking and shifting in spectra.

3.5. Stability Studies

The stability study of a formulation uncovers the changes in the quality parameters
under normal and stress conditions within a time frame. Different variables, such as the
manufacturing process, quality of drug, excipient, and packaging material, may impact
a product’s quality over time. However, the impact of heat and moisture has been iden-
tified as the principal factor determining product quality [48]. The in vitro drug release
studies confirm that CCSDpM(F1) under real-time and accelerated stability conditions
have comparable release characteristics (Figure 8). All the samples had more than 90%
cumulative drug release in 30 min, indicating a consistent release profile with the 0-week
sample. In addition, the drug content of F1 after 12 weeks in RTS and 4 weeks in ACC
conditions was 96.38 ± 1.040 and 95.75 ± 3.53%, respectively, indicating an absence of
potential degradations (Table 3).
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Figure 8. The stability study of CCSDpM (F1). (A) The dissolution study after 1, 4, 8 or 12 weeks under real-time stability
condition at 25 ± 2 ◦C and RH 60 ± 5%. (B) The dissolution study after 1 or 4 weeks under accelerated stability condition at
40 ± 2 ◦C and RH 75 ± 5%.

Table 3. Drug content study.

Weeks Drug Content (µg/mL)

Real-Time Stability
Condition

Accelerated Stability
Condition

0 99.99 ± 2.55
1 96.45 ± 2.98 96.08 ± 6.75
4 94.90 ± 1.75 95.75 ± 3.54
8 95.61 ± 3.06 -
12 96.38 ± 1.04 -

Each value represents the mean of three experiments (n = 3) ± standard deviation.

Usually, a stability study of at least six months is required to demonstrate a product’s
stability. However, in our study, the 4-week accelerated conditions and 12-real-time
conditions provide a level of understanding of the effect of temperature and moisture
on CCSDpM formulations. Further, a formulation’s stability can be correlated with a



Pharmaceutics 2021, 13, 497 15 of 18

smaller alkalizer-to-drug ratio, as high alkalizer content can give rise to instability. Though
the study was of a limited time frame with only in vitro and drug content analysis, these
results validate pH modulation approach to enhance absorption. Additionally, extending
the study time and quantifying the impurities will further strengthen the feasibility of
this approach.

3.6. Pharmacokinetic Studies

Candesartan is the major metabolite of CC that induces an antihypertensive effect. CC,
the prodrug, is rapidly hydrolyzed to candesartan by the esterase in the gastrointestinal
tract. As a result, only candesartan can be quantified in the plasma. Here the plasma
concentration of candesartan at the 10 mg/kg dose for CCSDpM F1 and the pure CC was
successfully quantified in rats (n = 6) using a reverse UHPLC system.

The mean plasma concentration-time plots and pharmacokinetic parameters of CCSDpM
and pure drug are summed up in Figure 9 and Table 4, respectively. As shown in Figure 9,
the mean plasma concentration of candesartan from CCSDpM F1 was higher than pure CC at
all the time points, suggesting increased bioavailability. The maximum plasma concentration
(Cmax) in rats administered with CCSDpM was 188.75 ± 41.06 ng/mL, considerably higher,
by 7.42-fold, than that of the pure CC at 25.44 ± 6.28 ng/mL. In addition, the AUC of
candesartan from the rats administered with CCSDpM, at 771.87 ± 227.63 h·ng/mL, was
significantly higher than that from the pure CC administration at 173.29 ± 30.27 h·ng/mL.
Other pharmacokinetic parameters, such as t half (t1/2) was shorter in F1, while k elimination
(Kel) and Tmax of CCSDpM were similar in F1 and pure CC.
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Figure 9. Plasma concentration-time profiles of candesartan after oral administration of pure drug
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Table 4. Pharmacokinetic parameters of pure drug (CC) powder, and CCSDpM formulation (F1).

Formulations CC F1

AUC (h·ng/mL) 173.29 ± 30.27 771.87 ± 227.63 *
Cmax (ng/mL) 25.44 ± 6.28 188.75 ± 41.06 *

Tmax (h) 0.83 ± 0.60 0.50 ± 0.27
t1/2 (h) 7.47 ± 2.81 4.93 ± 1.42

Kel (h−1) 0.10 ± 0.03 0.15 ± 0.05
Each value represents the mean of six experiments (n = 6), and the error bar represents the standard deviation.
* p < 0.05 compared to free CC.
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Altogether, these data indicate that better solubility and dissolution rate at the physio-
logical pH range increases bioavailability, resulting in a significant enhancement in oral
absorption. The rapid absorption of CCSDpM can be due to its amorphous nature, increased
solubility, and super-saturable state in the physiological environment. The use of polymers
alone has also been accounted for increased absorption [31] but addition of pH modifiers
was found to improve the overall performances significantly without any stability issues.
However, the optimization of the use of alkalizers needs to be thoroughly examined with
a better correlation between the in vitro and in vivo parameters. This study has taken a
step to address the low bioavailability issues of weakly acidic drugs, such as CC, using
polymers, alkalizers, and a spray drying technique to achieve notable improvement in
the in vitro-in vivo, stability study. Furthermore, this strategy can help reduce the ther-
apeutic dose due to the increase in bioavailability, excipients amount due to the lower
carrier-to-drug ratio, and cost-effectiveness compared to the conventional methods.

4. Conclusions

A novel CC-loaded spray-dried ASD with pH modifiers was successfully designed
and formulated to enhance candesartan’s bioavailability. The optimized formulation
exhibited increased solubility, enhanced dissolution with good stability. The enhanced
properties could be due to the solubilization of CC by the added polymer matrix as well as
the modulation of the microenvironment pH with alkalizers. In addition, polymer PVPK30
and pH modulator sodium carbonate contributed to the maintenance of a supersaturable
state, increasing the absorption potential at GI lumen. The physicochemical characterization
also confirmed that CC was amorphous in the dispersed state with the polymer matrix. The
pharmacokinetics of optimized CCSDpM were remarkably increased compared to the pure
CC, indicating better absorption and bioavailability. Although CCSDpM had good stability,
long-term studies are needed to reinforce and support the pragmatic shift of formulation
technology. Overall, a spray-dried ASD system based on the use of a pH modifier could be
a potential approach to enhance the limited bioavailability of poorly soluble drugs.
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