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This paper offers a prospectus of what might be achievable in the development of

emotional recognition devices. It provides a conceptual overview of the free energy

principle; including Markov blankets, active inference, and—in particular—a discussion of

selfhood and theory of mind, followed by a brief explanation of how these concepts can

explain both neural and cultural models of emotional inference. The underlying hypothesis

is that emotion recognition and inference devices will evolve from state-of-the-art deep

learning models into active inference schemes that go beyond marketing applications

and become adjunct to psychiatric practice. Specifically, this paper proposes that a

second wave of emotion recognition devices will be equipped with an emotional lexicon

(or the ability to epistemically search for one), allowing the device to resolve uncertainty

about emotional states by actively eliciting responses from the user and learning from

these responses. Following this, a third wave of emotional devices will converge upon

the user’s generative model, resulting in the machine and human engaging in a reciprocal,

prosocial emotional interaction, i.e., sharing a generative model of emotional states.

Keywords: free energy (Helmholtz energy), artificial intelligence, emotion recognition (ER), active inference,

Markov blanket (MB), bayesian brain

INTRODUCTION

How does the mind formulate ideas about the world around it? How does the spontaneous
interpretation of human emotion guide our behavior and beliefs, and how are these emotional
states predicted and understood? Recent advances in theoretical neurobiology are shedding light
on emotionally intelligent artifacts—advances that may provide insight into the future of psychiatry
and human-machine interaction. In this paper, we focus upon developments afforded by the free
energy principle.

The free energy principle derives from a view of the brain as a statistical machine. This concept
originated from the German physicist Hermann von Helmholtz, who in 1866 suggested that
the brain performs unconscious inference (von Helmholtz, 1866). The implicit Bayesian brain
hypothesis addresses the divergence between the inferences drawn by the brain, and the “hidden”
surroundings in the external environment. These are hidden in the sense that they must be inferred
vicariously through sensory samples. The brain is Bayesian, so to speak, because its prior knowledge
and beliefs act as a starting point fromwhich it can perform statistical inference on the hidden states
of the environment, that underwrite perception and action (Friston, 2012).

In contemporary research, a Helmholtz machine is a statistical engine that can infer the probable
causes of sensory input. These machines can learn to perform inferences on their own, with a
bottom-up recognition model that infers causes from sensory input, and a top-down generative
model which trains the recognition model (Dayan et al., 1995). Building upon this, the free energy
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principle was introduced to describe how living, self-organizing
agents have evolved to exist in a confined “state space” with a
bound on their long-term entropy (Friston, 2012). The value
of the free energy principle is its mathematical rigor, which
allows for the modeling of many different forms of behavior
across species. For the purpose of this review, we focus on an
application of this principle to the inference of human emotion,
where we define emotion as simultaneously a result of sensation
and a cause of action. As a result, we can begin to see how
emotions guide human perception, beliefs and behavior and how
the communication and inference of emotions may be simulated
with intelligent devices.

We hypothesize that the foundations of the free energy
principle and active inference can give rise to more advanced
emotion inference devices, and we unpack the underlying
principles and advantages of these potential developments.

THEORETICAL OVERVIEW

The free energy principle conjectures the imperative that
underwrites adaptive behavior in biological systems—from split
second decisions through to evolution and generations. The
principle describes how biological agents restrict themselves to
a limited number of (likely) sensory encounters by continuously
updating expectations about their environment and acting to
minimize sensory entropy and maintain order (Schwartenbeck
et al., 2015; Friston, 2009). The key idea is that their brains encode
a Bayesian recognition density, with neural dynamics determined
by the internal (generative) model that predicts sensory data
based upon alternative hypotheses about their causes. These
dynamics are interpretable as an inference of the probable cause
of observed sensory data that “invert” the generative model,
finding the best “fit” to the environment. Crucially, there are two
ways of ensuring the model and environment are a good fit to one
another. The first is the optimization of the recognition density
to capture the most probable environmental configurations. The
second is by changing the environment through action to make
it more consistent with model predictions. Via these two (active
inferential) mechanisms, the brain will self-organize to avoid
improbable (under the generative model) sensory encounters;
i.e., those associated with existential risk.

The objective function that is optimized through Bayesian
inference is the surprisal (negative log probability) of sensory
data under a model. This quantifies the fit of the model to
the data (Schwartenbeck et al., 2015). The above suggests that
action and perception are both engaged in minimizing surprisal.
Interestingly, the average surprisal is the entropy alluded to
above. Minimizing the former on average corresponds to the
minimization of sensory entropy and ensures the occupancy of
a small number of highly probable states—i.e., self-organization.
While surprisal is a difficult quantity to directly assess, it is
bounded by a more tractable quantity: variational free energy.
As such, minimizing free energy ensures an upper bound on
surprisal and entropy.

Computationally, free energy minimization occurs in relation
to a generative model through performing active inference. This

allows for a continuous and reciprocal optimization of sensory
information (via action) and expectations (via inference). Our
focus here is on how these fairly abstract notions translate to
the computations that underwrite a specific problem—that of
social interaction and inference about emotional states. When
it comes to social interactions, active inference allows for the
communication of emotions through action (through generating
speech or facial expressions) and inference about another’s
emotional state from sensory input such as auditory signals or
visual impressions of facial expressions (Vogt et al., 2008). The
active inference approach assumes a person employs a predictive
model of what they would expect from a social interaction in
terms of emotional content, what alternative emotional content
predicts in the auditory or visual domain, as well as what would
cause these expectations to change.

An active inference approach to emotion recognition, other
than being useful for industrial applications, is valuable for
psychiatric research and practice in order to understand, model,
and potentially help recovery from psychological false inferences
that lead to altered perception of emotions and behavior.

Markov Blankets
The free energy principle is underwritten by the conditional
dependencies implied by a Markov blanket, which is a
mathematical structure that distinguishes self-organizing systems
from the external world. Markov blankets formalize the recurrent
interactions between internal, sensory, active, and external states
and explain how it is possible for inference to occur in multiple
(and nested) spatial and temporal scales. In brief, a Markov
blanket is a statistical boundary that renders everything outside
the blanket conditionally independent of everything inside of it
(Pearl, 2014). A common rhetoric used to unpack this is that
the blanket states of a given internal state are the parents (things
that cause it), children (things that it causes), and parents of its
children. The parents of internal states are the sensory states that
mediate the influence of the outside world, and their children are
the active states that mediate their influence on the outside world.
The Markov blanket framework is essential in understanding
how any agent is able to achieve autonomy and actively interact
with its environment, including other agents.

All living systems have a Markov blanket, because in order for
a system to be alive, it must be endowed with some degree of
conditional independence from its environment, or else it would
be indistinguishable from it. What results from this partition is 4
sets of states: 2 blanket states, which are sensory and active states,
that insulate internal states from external states (Ramstead et al.,
2018). Figure 1 illustrates the structure of a Markov blanket as
formulated for the emotional inference setting we have in mind.
The key thing to draw from this is that internal states appear to
infer external states vicariously, as they are only influenced by
external states via blanket states.

Self-Organization
Systemic states are variables that interact with each other,
at a given time and within a given environment. If the
system is disordered, the interactions between states lack any
recognizable pattern, symmetry, or rules. Self-organization is the
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FIGURE 1 | This figure represents the relationships between the various states due to the Markov blanket partition: active states are directly influenced by internal

states and sensory states are directly influenced by external states. Only through these influences are the internal and external states are coupled to one another. The

figure illustrates the process of an emotion being communicated between two human agents. Another person (external state) expresses an emotion audibly, which

furnishes sensation for the agent. The agent performs inference, by listening and interpreting the sound based on prior knowledge, experience, and contextual

expectation, performing motor action if needed (such as listening attentively). This leads to the agent forming an understanding and updating their internal states

accordingly. Here, our classification of emotional states is quite simple: emotions are either part of an agents’ “internal states” or “external states” (which are just the

internal states of another agent) meaning they are a feature of the self or the other. In this sense, emotional states exist as the result of a sensation (i.e., as an inference

about the cause of that sensation). In terms of communication, this then means that the awareness of other people’s emotional states results in a kind of advantage

for a human, in the form of a more accurate generative model for the reasons behind other humans’ actions. Clearly this is a very coarse-grained view of emotional

inference. For greater detail on the intricacies of emotion research, please see (LeDoux, 2000; Seth, 2013; Smith and Lane, 2016; Panksepp et al., 2017).

process by which the local interactions between systemic states
spontaneously develop order, usually due to negative feedback
mechanisms; where deviations from an ordered configuration
are corrected, resisting the dispersive influence of random
fluctuations (Nicolis and Prigogine, 1977; Kauffman, 1993; Kelso,
1995; Pasquale et al., 2008; Bruineberg and Rietveld, 2014;
Halatek et al., 2018; Friston, 2019). The theory goes that brains
are systems with the ability to self-organize to attracting states
(i.e., goals) or equivalently non-equilibrium steady states.

Imagine that every single state of being has a position in
an abstract state space. There are 4 important kinds of states
(i.e., dimensions) in this space: sensory states (e.g., the sound
of a voice), active states (e.g., listening1), internal states (e.g.,
thoughts, feelings), and environmental states (e.g., location,
context). These states are by definition the partitions afforded by
Markov blanket.

Now imagine different biological agents, like dogs, cats,
humans, and bacteria. These different agents have different
phenotypic traits, different abilities and different goals, and
because of this, each will occupy a different limited repertoire
of states in state space (Friston, 2019). The classical example is

1Listening is used here in the sense of orienting to a sound. Active states of this sort

could be framed in terms of motoric (turning one’s head) and mental (attentional)

states. See Metzinger, 2017 and Friston, 2018.

a fish in water, which is an (environmental) state of a fish that is
necessary for the fish’s traits to be sustained. Once outside of the
water, the fish can no longer possess the active trait of swimming,
or the internal state of oxygenation, and so it ceases to be a living
fish (Friston, 2019). This example highlights the importance of
surprisal minimization, as being in water is a less surprising state
in which to find a fish compared to finding it out of water.

From this, we can characterize the interactions that this
agent has with the world around it, i.e., the exchange between
environmental and internal states, which are mediated by
sensory input (sensory states) and action (active states). These
interactions will be self-organizing in a way that ensures that
the pattern of interactions between these states is preserved
over time. In other words, a living, self-organizing agent is
spontaneously attracted to a certain set of states and will tend to
converge to those states with a low entropy (e.g., the fish will tend
to be found in water). This convergence appears mathematically
analogous to the minimization of free energy, an upper bound on
uncertainty, or surprisal. In terms of emotional states, free energy
minimization allows for a generalized emotional homeostasis, or
emotional balance.

The Free Energy Principle
We define a state as a set of possible events (i.e., each event is a
possible realization of the state). When a (living) agent occupies
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some state, each event in the state is assigned a probability, with
the probability over all events summing to one. This distribution
of probabilities is associated with different levels of certainty,
or equivalently precision (inverse variance) negentropy. These
quantify how peaked the distribution is.

If very precise, we can be confident that a specific event will
occur. If imprecise (i.e., flat), probability mass is shared over a
greater number of plausible events. In this case, an agent will be
uncertain about whether or not an event will occur, meaning it
will not know precisely what to expect, and this uncertainty is
equivalent to a large number of potential occurrences.

The entropy of a distribution is the average surprisal of all
states or events. The free energy principle places an upper bound
on surprisal, therefore bounding the entropy and ensuring a
degree of certainty about what is going to happen (Schwartenbeck
et al., 2015; Friston, 2009).

BOX 1 | Free energy minimization.

See Friston, Karl Trends in Cognitive Sciences, vol. 13, no. 7, 2009

for a full mathematical description of the free energy principle in the

context of continuous state-space generative modes. In short, states are

mathematically described in terms of random variables that have defined

flows with deterministic and random contributions. These flows, and the way

in which these variables generate observable data, make up the generative

model. Holding beliefs of this sort—that describe the generation of sensory

data—affords the opportunity to invert this process to draw inferences about

the environmental causes.

Minimizing free energy is equivalent to minimizing a Kullback-Leibler (KL)

divergence between two probability densities that are specified by their

sufficient statistics, µ which are supposedly encoded in the brain. The KL

divergence is between a conditional density for the causes of sensations,

p (η|s) and a recognition density, q(η|µ). The free energy principle states

that action α and sufficient statistics (i.e., internal states) µ change to

minimize free energy, resulting in the recognition density that approximates

the conditional density.

Free energy is defined as the sum of the KL divergence and surprisal, where

surprisal is now a function of the agent’s sensory input (s|m where m is the

agent). Thus, free energy minimization makes the KL divergence small (but

always positive), which results in the free energy being a tight upper bound

on surprisal, by definition:

FreeEnergy = KLDivergence+ Surprisal

F = D
(

q(η|µ)
∣

∣ |p (η|s,m) − ln(p (s|m))

With a large free energy, there is room for strange
(improbable) things to happen to the agent that might threaten
its existential integrity. It has a wide range of sensory states that
it can occupy and a lot of uncertainty about the environment.
This goes against the idea above of a structure that guarantees
that phenotypic bounds are not transgressed. The free energy
principle (Box 1) requires that any adaptive change will minimize
the agent’s free energy. In other words, living agents will
continuously restrict their available sensory states by placing an
upper bound on how surprising sensory states can be, on average.

A state x ∈ {x1 . . . xn} Probability distribution: p (x) = Cat (x)
Surprisal: I (x) = −l n

(

p (x)
)

Entropy: H (X) = E [I (x)] =
∑

i p (xi)I (xi)

In Figure 2, the states and their probability distribution
are modeled continuously, and this conceptualization raises
an important point when it comes to applying this model to
emotional inference. In our discussion so far, we have treated
the problem of inferring emotions to be a categorical problem.
To some extent, this is licensed by the way in which we
describe emotions; ascribing labels such as “happy” and “sad.”
However, we also know that our experience of emotions allows
for mixtures of these categories to co-exist. This implies emotions
are most likely more complicated than states in a discrete set,
and the difference between a discrete and continuous distribution
of possible emotional states (i.e., a discrete probability mass
function over a set {happy, sad, tired} or a continuous probability
density function over a spectrum of these states) defines the
difference between these two conceptions of emotional “states.”
Thus, the prior beliefs and inferences of the emotional device
can be imagined as more of a “position” in emotional space,
rather than an exact state. Despite the fact that we will treat
emotions as discrete states throughout this paper for the sake
of simplicity, it is important to remember that a continuous
description is possible and may co-exist. It is also likely that,
if represented discretely, emotional states live on a discretized
version of a continuous spectrum. Furthermore, different axes of
emotional states may be factorized from one another [c.f., mean-
field assumptions (Friston and Buzsáki, 2016)]. This facilitates
feeling happy and disgusted at the same time.

Generative Models and Active Inference
Given that the environment is only seen by agents through a
Markov blanket, an agent’s best bet at survival is to generate
probabilistic inferences about its environment via sensory signals.
In predictive coding formulations of free energy minimization,
this may proceed through generating predicted observations
(i.e., predicted sensory states) from an internal generative model
and comparing these to observed states. The results of this
comparison comprise a prediction error and can be thought of as
a simple form of free energy. These prediction errors can either
be used to update beliefs generating predictions (i.e., perception)
or they can be used to sample the environment in a way that
conforms to predictions (i.e., action) (Feldman, 2009). For an
accurate prediction of what the environment entails, the agent
must minimize free energy or prediction errors (Conant and
Ashby, 1991; Ashby, 1947; Conant and Ashby, 1970; Mansell,
2011; Solway and Botvinick, 2012). Mathematically, this is the
same as maximizing model evidence. In the context of machine
learning, this is equivalent to maximization of an evidence lower
bound or “ELBO” (Winn and Bishop, 2005).

An intelligent adaptive agent will continuously evince this
inference process to create new assumptions and update prior
beliefs about the world (Friston et al., 2017a; Parr and Friston,
2017). It will first sample the environment based on sensory
input, then act on the environment in a purposeful way, and
then update its internal model. By acting on the environment
(increasing range of view, jumping to see higher, squinting
to see better; all examples of acting in response to visual
input), it will effectively change sensory input (seeing more,
seeing better), which directly follows from the structure of the
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FIGURE 2 | Entropy is the average surprisal and represents the uncertainty over states at a given moment in time. The free energy is a quantity that will always bound

the surprisal from above. In the inference step (i.e., perception), free energy is minimized, i.e., the upper bound on surprisal is “pushed” down by changing beliefs or

predictions concerning sensory outcomes. This minimization enforces a tight upper bound on the entropy. In the active (i.e., action) step sensations are sampled from

the external states that reduce surprisal and thus ensure an upper bound on entropy.

Markov blanket. This exchange is extremely important to the
continuous minimization of free energy, because it becomes an
autonomous cycle, recapitulating the “action-perception” cycles
that underwrite modern cognitive science (Fuster, 1990).

Agents that obey the free energy principle via “adaptive
action” are said to engage in active inference. This means the
agent will perform the actions associated with the least free
energy, i.e., the actions that confirm its causal predictions of the
most likely sensory states. In other words, the minimization of
free energy requires the agent to act in order to avoid surprising
sensory encounters, thereby increasing the accuracy of its sensory
data (Friston, 2009). An introduction to the mathematics of
active inference can be found in Box 2.

In summary, this section has outlined the principles that
underwrite active inference. Crucially, this rests upon a
separation between the internal and external components of a
generative model, such that the external world (e.g., other people)
must be inferred vicariously. Given that the problem raised in the
introduction—“how can we draw inferences about the emotional
states of others?”—relies upon the notion of self and not-self
(other) and upon the idea of vicarious inference, this implies the
formalism afforded by active inference is well-suited to address
this problem. In the next section, we provide an overview of some
of the applications of active inference, with a special focus on
inference about another’s emotional state.

EMOTIONAL INFERENCE, SELFHOOD,
AND THE HUMAN BRAIN

Up until now, our formulation of the free energy principle—and
corresponding concepts—have been articulated in terms of any

BOX 2 | Active inference.

See Solopchuk, Oleg, “Tutorial on Active Inference” for an in-depth

mathematical description of active inference. In brief, one needs to make

an approximation to the posterior purely based on sensory states and free

energy minimization and then use this approximation to infer the conditional

probability of hidden states. Generally, this approximation is done by

introducing an arbitrary distribution, say q(η|µ), which depends on the internal

states, and is integrated within the generative model so that free energy

becomes a functional of q(η|µ). Then, by minimizing free energy, we bring our

approximate distribution closer to the posterior. When free energy= surprisal,

then our arbitrary distribution is exactly this posterior (Solopchuk, 2019).

Note that this does not happen only once but over and over again at each

time step, and also that within this interval of time steps, the agent is free to act

on its environment, thus changing the sensory input over the time steps that

follow. However, actions are not independent, in fact they follow each other

in some kind of a plan, called a policy, which is a series of actions oriented

toward a goal which is distant in time (Solopchuk, 2019). Therefore, the brain

will plan a policy and integrate this in its generative model and its process of

inference. There will be many possible actions and many future time points,

and therefore there will be several potential policies. The generative model

will consider every plausible policy and pick a policy that has the smallest

expected free energy in the future (Solopchuk, 2019).

A final intricacy to note is that since the model doesn’t have access to

future observations, it must therefore guess what they could look like based

on a given policy (Solopchuk, 2019).

self-organizing biological agent. Nowwe turn to the human brain
and consider how active inference provides a computational
architecture that allows the brain to distinguish between the
self and other—and make inferences about emotional states
in particular.
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According to theory of mind, the prerequisite for any
inference about another is the ability to form a clear distinction
between the “self ” and “other” (Zahavi, 2008) This distinction
can be modeled perfectly with a Markov blanket, in which
the “self ” consists of internal states, and the external states
consist of everything other than the self (Seth and Friston,
2016). However, this does not mean that the internal states
“know” that they are internal. To associate active inference
with a minimal sense of self, requires a bit more work
(Zahavi, 2008; Limanowski and Blankenburg, 2013; Seth, 2013;
Williford et al., 2018).

From the point of view of active inference, things only exist
as a label for a hypothesis or inference about hidden states (i.e.,
hidden behind the Markov blanket). This means that, in order
for the “self ” to exist, there must be a generative model that
has “self ” as a hypothesis. Not all living agents have this model;
viruses, for example, may not have self as a hypothesis. When
we have “experiences,” we hypothesize that it is the self that is
“experiencing,” as oppose to the other.

When it comes to emotions, if an emotion provides a simple
explanation for the myriad of social cues in the environment,
then the hypothesis of a given emotional state will equip the brain
with a better generative model; namely, a model that best reflects
the fact that much of the sensory evidence at hand is generated
by an agent with emotional states (Seth and Friston, 2016).

For the ability to disambiguate an emotional states, it is
necessary for an artifact to have a good generative model for
emotional inference, with the capacity for emotional perspective.
It is generally considered that emotional inference entails some
predictions about interoceptive states, that may or may not be
realized through autonomic reflexes and, literally, provide the
basis for “gut feelings” (Ainley et al., 2012, 2016; Barrett and
Simmons, 2015; Palmer et al., 2015; Fotopoulou and Tsakiris,
2017).

When it comes to the interaction between two self-organizing
agents that both possess their own Markov blankets, the external
states from the perspective of one agent are the internal states
of the other. The existence of this shared narrative presents the
opportunity of building emotionally responsive artifacts that can
be both observers and recipients of emotional observation and
interaction (Friston and Frith, 2015a).

Moreover, it is important to consider all of the ways that
the brain and its generative model can go awry, so that we
can pre-empt this in developing artificial systems. Interestingly,
conditions seen in psychiatry are almost exclusively about the
self in relation to others (Seth and Friston, 2016). For example,
anorexia nervosa is a disorder of how others perceive the self
physically, schizophrenic symptoms are often related to feeling
threatened (or controlled) by others, and agoraphobia is the
unwillingness to go outside for fear of the presence of other
people. In general, psychiatry is concerned with the failure of
interpersonal inference, and this necessarily has an emotional
aspect to it. Under the active inference framework, these
psychiatric symptoms occur due to a chemical imbalance which
results in the failure of emotional inference. This underwrites
the importance of a hierarchical generative model capable
of optimizing beliefs about precision in developing synthetic

systems capable of determining emotional states of others
(Limanowski and Blankenburg, 2013; Corlett and Fletcher, 2014;
Friston, 2017; Powers et al., 2017; Limanowski and Friston, 2018;
Rae et al., 2019).

A Model of Neural Structure
Evolutionary Systems Theory (EST)—under the Hierarchical
Mechanistic Mind (HMM) model—considers how mechanisms
such as evolution, enculturation, development, embodiment,
and behavior act on different time scales to shape a reciprocal
brain-body-environment system and engender the structure and
function of the brain (Badcock et al., 2019).

The human brain is a self-organizing hierarchy of neurons
that interact bidirectionally over multiple spatiotemporal scales.
The lowest levels of the hierarchy are those on the periphery
of the brain, interfacing with the peripheral nervous system,
which in turn interfaces with muscles and sensory receptors.
Higher cortical levels are further removed from primary cortical
areas in the brain. Some of these higher regions, notably the
hippocampus, are associated with greater plasticity than some
others. This ensures they respond flexibly to input received
from lower levels (Badcock et al., 2019). Through a complex
mixture of short and long range connections on different scales,
these cortical levels interact and, from these interactions, human
cognition, and behavior emerge (Box 3).

BOX 3 | Pyramidal cells.

For a more detailed explanation see (Friston et al., 2016b) “The

Dysconnection Hypothesis”.

Neurobiologically, the passing of messages between hierarchical cortical

areas is mediated by pyramidal cells, among the largest neurons in the brain.

Pyramidal cells exist both in superficial regions of the neocortex as well as

deeper layers, and cells in different regions play different roles in the process

of cognition and sensory processing. Under predictive coding models of

neuronal message passing conditional expectations are encoded by deep

pyramidal cells at each level of the cortical hierarchy that convey predictions

downward to suppress errors, which are encoded by the superficial pyramidal

cells (Bastos et al., 2012; Shipp, 2016; Friston et al., 2017b). This organization

explains why superficial pyramidal cells have so many synaptic gain control

mechanisms (NMDA receptors, D1 dopamine receptors, etc.), in order to

set the gain or precision of prediction errors—thought to be encoded by

superficial pyramidal cells (Pinotsis et al., 2014; Kanai et al., 2015; Shipp,

2016).

The HMM and EST view the brain as a fractal and nested
modular hierarchy, which is self-similar across scales and can
be modeled mathematically by a system of nested Markov
blankets. This requires that the interaction between these nested
hierarchical levels must itself be optimized. In the brain, this
organization may be a key role of neuromodulatory systems,
which act to control the gain of signals passed up or down the
cortical (and subcortical) hierarchy.

From the perspective of a generative model, the confidence
with which a variable at a lower hierarchical level may be
predicted by that at a higher level is quantified by the precision
of the distribution mapping the latter to the former (Clark,
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BOX 4 | Mirror neurons: from action observation to emotion observation.

The proposed emotional echopraxia achievable by an emotionally intelligent

artifact can be interpreted as an extension of the brain’s mirror neuron

system—from action observation to emotion observation.

It has been established that when the brain observes another’s motor

behavior, this observation activates the same neural systems in the observer’s

brain as if she was herself performing the other’s actions. This “reflected”

neural structure is described in terms of mirror neurons, which are the neurons

that fire in synchrony with the observer during action observation.

From the point of view of active inference, the role of mirror neuron system

is to enable the brain to repurpose its generative model of motor behavior

from understanding the self to inferring the intentions of another person (Kilner

et al., 2007). In other words, because an agent knows their own intentions for

moving, the mirror neuron system in action observation can repurpose this

knowledge to interpret another’s intentions for moving. This inference—that

rests upon the mirror neuron system—is analogous to what we are proposing

for emotion; namely, a mirror neuron system for emotion observation as

oppose to motion observation.

2013b). In predictive coding, this reduces to the precision of
prediction errors that are sent from one level to the next—
thought to be encoded by superficial pyramidal cells (Feldman
and Friston, 2010). The brain’s neuromodulatory mechanisms
appear to perform gain control operations in amanner analogous
to the precision optimization (see Box 4). This underwrites
attentional processing in computational models of predictive
coding and active inference (Parr and Friston, 2013).

A Cultural Markov Blanket
Not only do biological agents conform to the free energy principle
but ensembles of biological agents—brought together in the same
environment (a niche)—should obey the free energy principle,
too (Friston et al., 2015a; Constant et al., 2018). A model of
free energy optimization provides a useful insight into how
priors may be formed through evolution and culture, furnishing
a new perspective on the origin of different emotional priors
across people (Box 3). This process of optimization in evolution
allows for an analysis of the way emotions are predicted and
evinced differently across cultures, and an understanding of these
processes is fundamental in an effort to build an emotionally
intelligent agent (Heyes, 2018).

Ecologically, we speak of cultural niches within which
organisms operate, and within these niches there are
“affordances” referring to what the environment offers the
organism: a shoe “affords” protection for his/her feet and
“affords” a dog a chew toy (Ramstead et al., 2018). These
affordances are examples of prior beliefs that have been encoded
culturally, rather than arising independently in an organism.
Crucially, the interaction between environmental affordances
and human sensory states can be modeled with a Markov blanket
(Ramstead et al., 2018). According to the free energy principle,
over time and on average, human behavior will tend to reflect
the statistical structure of the environment; i.e., actions will
be guided by “encultured” beliefs (Constant et al., 2018). In
fact, the structure of the human brain reflects the structure of
its environment, i.e. environmental causes that are statistically

independent are encoded in functionally and anatomically
separate neuronal regions (Ramstead et al., 2018). The classic
example of this is the separation of visual processing into a
“what” and a “where” stream (Ungerleider and Haxby, 1994).
From this perspective, the free energy principle can be applied
to the internal states of the brain, the individual, or even the
culture, where the levels of the nested internal states interact
with the environment in different ways and to varying degrees
(Kirchhoff et al., 2018).

There is a distinctive difference between the optimization
performed by an adaptive agent’s brain in real time, and that
which occurs over generations. In ethology and evolutionary
biology, the desired non-equilibrium steady state of phenotypes
is defined through co-evolution and natural selection, meaning
that it is a necessary consequence of natural selection, rather
than the agent having to actively optimize policies to attain a
specific non-equilibrium steady state (Frank, 2012; Campbell,
2016; Constant et al., 2018). This is plausible evolutionarily,
because the model optimizes perceptual inference by allowing
the organism to accumulate evidence across timescales and
derive the best explanation for sensory data to achieve distal
goals. Given the hierarchical time-scales inherent in the natural
world, there is good reason to assume that organisms with
this kind of cortical hierarchy would be favored by natural
selection (Ramstead et al., 2018). Another way of phrasing
this is that natural selection is Bayesian model selection,
and that the best models (conspecifics) are those with the
greatest evidence (lowest free energy) in a generation (Campbell,
2016).

If every organism is equipped with naturally selected Bayesian
priors that have emerged from ecological niches and influence the
species morphology, cognition and behavior, then an ecological
niche will itself minimize free energy by “enculturing” its
members so that they share common prior beliefs (Ramstead
et al., 2018). Prior beliefs are therefore conditional on the
unique ecological niches in which animals adapt through natural
selection, development and learning, which explains why the
inhabitants of different niches behave differently. At the same
time, expectations within the same family, or species, are
inherited and conserved across generations, and from this
interplay emerges the phenotypical variety of life (Limanowski
et al., 2015; Ramstead et al., 2018).

This resulting variety of behaviors due to evolution and
adaptation in different ecological niches can offer insights into
how humans express and interpret emotions. The way in which
humans express emotions varies across cultures, differing in
intensity for physical gestures, vocal emphases, or patterns of
spoken and body language. This expression mechanism is an
encultured prior, formed through cycles of updating prior beliefs
to match expectations in each nested conspecific’s generative
model. Therefore, in order to successfully build an emotional
inference agent, careful contextualization must be considered.
The same sensory data (word choice, pitch, speed of articulation)
could imply different kinds of emotional state for different
people or in distinct social contexts. It is only by having a deep
hierarchical model that accounts for this context that we might
hope to draw sensible inferences about a person’s emotional state
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from their voice. Part of this abductive capacity is being able to
use context to work out which data features to “attend” to. If
successful, a nested, recurrent model of emotion recognition and
expression could be simulated using active inference, providing
artificial intelligence with a way to accurately decipher emotions
across different modes of expression.

Sensory Attenuation
In active inference, the precision of prior expectations is crucial,
because it regulates how confident the agent will be in its
inferences and subsequent planning; i.e., behavior (Clark, 2013b).
Increasing precision creates confident behavior and motivates
action, whereas decreasing precision subverts action through
uncertainty (Friston et al., 2012; Clark, 2013a; Hohwy, 2013;
Seth and Friston, 2016; Badcock et al., 2017; Parr and Friston,
2017; Peters et al., 2017; Clark et al., 2018; Palmer et al., 2019).
This must be balanced with the precision ascribed to predictions
about the sensory consequences of behavior. Crucially, the active
inference perspective on movement is that motor commands are
simply predictions about the sensory consequences of a planned
act. Action then corrects any discrepancy between predictions
and sensory data. This raises an interesting problem—how do
we start predicting movement related signals when we are not
actually moving? In other words, if sensory data is consistent with
being stationary, why do we update the world through action
as opposed to updating our predictions? The answer to this is
sensory attenuation.

Sensory attenuation occurs when brain adjusts the precision of
its sensory input in order to properly modulate future action. In
other words, the brain can act to suppress ascending prediction
errors, thereby momentarily increasing the divergence between
internal and external states in order to act (Blakemore et al.,
1999; Shergill et al., 2005; Brown et al., 2013; Parees et al., 2014;
Oestreich et al., 2015; Wiese, 2017). For example, one needs to be
able to suppress the prior expectation of the position of their arm
in order to be able to move their arm. In terms of psychophysics,
sensory attenuation is a reduction in the intensity of sensory
experience when action is self-generated, which can be measured
with newer physiological methods by the amplitude of sensory
evoked potentials (Brown et al., 2013).

The concept of sensory attenuation will become relevant in
the following section, when we discuss a third wave of emotion
recognition artifacts, which will potentially be able to engage with
their users. In order to perform reciprocal prosocial interactions,
the artifact will need to employ sensory attenuation in order to
convey emotional information, and the user will do the same
in order to infer the emotional state of the device. Creating
an artifact that can accomplish this “turn-taking” behavior by
performing sensory attenuation is significant in psychological
research on disorders such as schizophrenia, because it is
exactly a failure in sensory attenuation that is said to cause the
associated delusions (Shergill et al., 2005; Brown et al., 2013;
Parees et al., 2014; Quattrocki and Friston, 2014; Oestreich et al.,
2015; Beedie et al., 2011). Its key role in communication and
turn taking is exemplified in simulations of active inference
in Kirchhoff et al. (2018).

Paranoid delusions, often involving the feeling of being
threatened, arise in the brain’s inability to perform sensory
attenuation in the same way as non-schizophrenic brains. In
order to overcome this, the brain increases its confidence
(precision) in high level beliefs rather than in low level
expectations. Thus, the brain becomes resistant to sensory
evidence that contradicts its beliefs (Adams et al., 2013). When
prior beliefs dominate perceptual inference, hallucinations such
as hearing voices can occur. The brain can only understand this
situation by falsely inferring, with a high degree of certainty, that
an internal sensation is being generated by an outside agency, and
this is a paranoid delusion (Friston et al., 2016b). For recent work
on simulations of auditory hallucinations resulting from these
false inferences, see (Benrimoh et al., 2018, 2019; Parr et al., 2018).

This anomaly in schizophrenic brains, possibly fueled by
chemical imbalances in the neuromodulatory interactions
between pyramidal cells and fast spiking inhibitory interneurons
(Spencer et al., 2003; Sohal et al., 2009; Jardri and Deneve, 2013;
Ranlund et al., 2016), sheds light on how schizophrenic patients
misinterpret sensory information. Similarly, psychological
phenomena of sensory misinterpretation arising in paranoia,
depression, and autism can be explained with similar models
(Lawson et al., 2017; Palmer et al., 2015; Clark et al.,
2018). If one can simulate the way humans neurologically
interpret emotions with generative models performing
active inference, one could then adjust the simulation to
characterize a schizophrenic, paranoid or autistic brain, and
therefore better understand what the patient is inferring
emotionally from their surroundings, gaining insight on how
to approach patients with perceptual disorders in a formal
way (Oestreich et al., 2015).

Inferring Human Emotion
The remainder of this paper will be dedicated to comparing
different machine learning approaches to emotion recognition
and proposing second and third waves of emotional inference
devices. Building a machine that can recognize and infer human
emotions from facial expressions, body language and speech
represents may be accomplished by replicating the brain’s deep
(i.e., hierarchical) inference—to recapitulate artificially what
humans do instinctively (Vogt et al., 2008). This new form of
artificial intelligence has clear applications in marketing, and
also offers the potential for revolutionizing traditional clinical
psychiatric practice; with the opportunity to model, understand,
and possibly treat psychological disorders. Improvements in
emotional inference devices could lead to studies of action
observation that could have profound implications in disorders
such as autism, potentially resulting in the creation of emotional
companions that can update social priors (Lawson et al., 2017;
Seth and Friston, 2016).

Any computational implementation of inference requires that
the agent optimize a probabilistic model of how its “sensations”
are caused. This requires a prior density that encodes beliefs
about emotional states, a likelihood that specifies the ensuing
sensory evidence, as well as the ability to act in order to modulate
or confirm these expectations. The resulting updated predictions
would then guide an agent to actively sample its sensory data to
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reach a non-equilibrium, low entropy steady state density. This
entails matching a generative model as closely as possible to the
environment (Friston et al., 2009). The resulting (approximate)
isomorphism between the agent’s internal model and external
contingencies meets the necessary requirements of Conant and
Ashby’s Good Regulator Theorem; implying that the agent can
be maximally successful at regulating environmental and sensory
inputs (Conant and Ashby, 1970, 1991).With regards to inferring
human emotions, the unknown causes (a.k.a., external states,
hidden states, or latent variables) would be the emotional states;
happy, sad, angry, disgusted, etc. (Panksepp et al., 1984; Craig,
2002; Barrett, 2006; Solms and Panksepp, 2012). The sensory
states will be the medium through which the agent must infer
emotional causes (speech, facial expressions, body gestures).

This categorization of emotional states raises an interesting
question. Under the emotional inference perspective, emotions
are hypotheses about the causes of data; but how do we define
this hypothesis space? Broadly, there are two routes toward doing
so. The first is to appeal to existing emotional taxonomies and
to use this prior information to define alternative hypothetical
emotions. The second is to appeal to structure learning, and to
explore potentially very large hypothesis spaces to assess which of
these hypotheses best account for the data at hand. Conceptually,
this is like in clustering techniques, which posit a number of
clusters and then find the parameters of each cluster that account
for the data. The number of clusters in then optimized by
penalizing excessively complex solutions (with many clusters).
Ultimately, we anticipate using some combination of the two,
using prior information to constrain the space of plausible
emotions and optimizing these through structure learning.

Once the emotional states have been classified an agent must
engage a combination of explorative and exploitative behavior
in order to perform an inference about the current state. The
present standard of emotional inference rests on a supervised
learning approach, yet we suggest that the coming stages of
emotional devices will use an active inference approach, which
can eventually be improved upon to synchronize generative
models and result in artifacts capable of emotional engagement.
These distinct approaches speak to three waves of emotion
recognition devices, from the current state of the art to emotional
artifacts in the decades to come.

Wave One
The current state of the art—in terms of emotional inference
devices—consists of deep learning models, often implemented
in phone apps using cameras (Alshamsi et al., 2016). To train
these agents, an enormous amount of visual information is
collected, and the agent is trained on which emotions the
photographs display. Over time, the agent begins to recognize
patterns within this visual information—and attempts to infer
emotions accordingly (Alshamsi et al., 2016).

The most advanced form of deep learning uses a variational
autoencoder that has a particular deep structure. The supervised
agent is initially placed in a controlled environment to facilitate
learning, and then placed in an uncontrolled environment to
assess performance (Jeon and Shin, 2019). The sophistication
of this supervised neural network derives from its implicit

generative model which underlies an explicit representation of
uncertainty, allowing for the backpropagation of errors (Jeon and
Shin, 2019). Interestingly, the objective function for learning how
to recognize or encode particular emotions is exactly the same
as the variational free energy that underwrites active inference
(Winn and Bishop, 2005).

During learning, the agent does not perform any actions
but rather is passively pushed toward the “correct” classification
in the presence of exemplar (i.e., training) datasets. This
leads to learning a distribution in which the sensory input as
well as the resulting “correct” response are more probable in
conjunction with one another. The agent learns to understand
the causal structure of the training environment, inferring
the causes of sensory states, and these inferred causes induce
prior expectations, which the agent will then retain for its
test phase in the uncontrolled environment (Jeon and Shin,
2019). When the parameters of the agent’s internal model have
converged to the parameters of the controlled environment,
the agent is successfully programmed to expect to give the
correct classification of the desired emotional state based on
the environmental signal (Gan et al., 2017). The result is an
agent that has an optimum policy for each situation that it is
confronted with.

So far, the above approach has not been successful in inferring
emotion as efficiently as a human being. This is because of
three main reasons; firstly, from a structural point of view,
the supervised backpropagation of errors in a neural network
only supports an implicit generative model, and thus the
agent lacks explicit control of prior beliefs that are important
in generating predictions of emotion. Second, in supervised
learning, the objective function (the function that the algorithm
aims to optimize) is a scalar function of an outcome, usually a
classification of accuracy, rather than a functional of beliefs (Gan
et al., 2017). This means that supervised learning models do not
have an explicit or proper way to accommodate uncertainty, nor
can have beliefs about the consequences of action. Thirdly, deep
learningmodels never perform action to optimize belief updating
all learning, and they are unable to actively elicit responses from
their users.

The eliciting of emotional responses is the most essential
component that deep learning lacks when it comes to emotional
inference. If one cannot act, one cannot learn how the user will
react to an action, which is most likely explains why human
beings are so efficient at gauging emotional states; consider how
much a slight eye roll or twitch of the head can communicate
from one individual to another (Parr and Friston, 2019). We
argue that an active agent—operating under an explicit generative
model—with an objective (variational free energy) functional
of beliefs will allow for machine-human interaction, setting the
stage for the second wave of emotional recognition technology, in
which an agent will be able to perform active inference to evoke
emotional responses from its user.

Wave Two
Active agents are compelled to sample outcomes that are
relevant to the task at hand, even if they are associated
with high uncertainty, which is an emergent behavior under
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the minimization of expected free energy (Barto et al., 2013;
Schwartenbeck et al., 2013, 2019; Friston et al., 2015b, 2017c;
Limanowski et al., 2015). An agent will first select between
plausible policies, and then choose those that resolve the
most uncertainty about the parameters of its generative model;
here, between its emotional priors and latent emotional states.
Following this, the agent will be placed in an uncontrolled
environment where it would infer emotional states from external
signals based on its prior expectations and the emotional
affordances of particular behaviors (Smith et al., 2019a).

Crucially, the active inference formulation of the problem
frames it as an optimization problem. The quantity being
optimized is Bayesian model evidence (which is maximized) or
its complement, surprisal (which is minimized). This gives us
a simple way to evaluate performance. The greater the model
evidence, the better the categorization. To unpack this further,
model evidence may be decomposed into two parts: accuracy
and complexity. As the accuracy with which the model predicts
sensory data increases, so does the evidence. However, this is
penalized by the complexity. As complexity increases, the model
evidence declines (unless there is a compensatory increase in
accuracy). This tells us that the best emotional categorization will
be the simplest that accurately accounts for the data available to
our system. For an example of this approach in the context of
inferring abstract rules, see (Friston et al., 2017a).

The first advantage of using active inference is that the agent
can leverage the potential epistemic richness of very different
sorts of data, beyond just profiles of faces. An active inference
agent will have an explicit generative model of emotional states,
and therefore it will generate predictions in multiple modalities
present at various temporal scales, such as facial motion, heart
rate, hyperemia in the face, posture, etc. (Seth and Friston, 2016).

This highlights the important distinction between the implicit
generative model of a deep architecture explained above, and the
explicit generativemodel of active inference (Buckley et al., 2017).
A deep architecture will first gather all of the available data and
then attempt to identify a small number of latent nodes at the
top of the [de]convolutional network that represents emotional
states (happy, sad, angry, etc.). Conversely, the generative model
of active inference is the inverse of this deep architecture. In other
words, starting from these latent emotional states, the model
generates all of the high dimensional consequences, including
the modalities referred to above, which will be contextualized by
being in the current emotional state (Friston, 2009). Therefore,
everything it can predict from an emotional state becomes a
potentially useful data feature—that will inform and update
the model.

The nature of this inverse model means the agent will learn
to understand infer “where to look” next in order to resolve
the uncertainty about the emotional state of the subject. This
epistemic foraging, or “active vision,” implies that the agent
will learn to deploy its attention only on emotionally salient
parts of the face (Smith et al., 2019b). Therefore, rather than
wasting computer floating point operations on the entire visual
field, the agent can imitate the way a human will saccade to
garner visual information, focusing only on the eyes, mouth,
nose, and possibly forehead. This will result in a simulated

agent that can correctly deduce emotional states that it has
not yet encountered, by using its internal model to choose the
most likely (and therefore correct) outcome. This model has
the advantage that a smaller dataset with shorter training time
may suffice, as data are autonomously selected to optimize the
model (Friston, 2009).

This generative model can lead to all sorts of learnable features
that can potentially provide insight into psychiatric disorders.
For example, if a psychiatrist is unsure what depression looks
like, they can train the generative model by providing it with
the emotional states of a depressive inventory, and it will learn
to associate this profile of depressive-like scores with a cause
(Cullen et al., 2018). Instead of initially presenting labels of
depressed or not depressed, which is what supervised learning
would do, the generative model is able to learn the nature of
its environment on its own, and then come up with a specific
set of complex responses that correspond to one or more
emotional states.

In addition to this, an artifact from the second wave will
also engage in active learning, allowing it to then ‘learn on the
job’ from the user’s reactions to its perturbations (Friston et al.,
2016a). This might involve equipping it with the opportunity to
take actions to elicit responses from the person it interacts with
(e.g., asking questions, or for feedback). By selecting courses of
action that minimize expected free energy, these actions would
be used to resolve uncertainty about the model over time, and
about emotional states at any given time. In addition to the
principled underpinnings of active inference, it is this capacity
to autonomously optimize beliefs about the world through
selecting the best (epistemically valuable) actions that renders this
approach distinct from alternatives (Friston et al., 2016a).

Eliciting emotional responses from the user can be
accomplished most efficiently with the conveyance of visual
(and perhaps auditory) information, as opposed to other sensory
signals or collecting personal data. This immediately suggests
that the second wave of emotionally intelligent artifacts will
require a visual representation of a face with which the artifact
can perform actions (eye movements, smiling, blushing etc.) and
observe how the user responds. This is crucial, because—if the
inference device is uncertain about which emotional state the
user is in—free energy minimization will enable it to display
the expression (epistemic perturbation) that will resolve the
most of this uncertainty, given the lexica of emotional states
that the device is equipped with (Smith et al., 2019a). In other
words, the device will continuously select from its available
actions to maintain a precise (i.e., confident) inference about
the emotional state of the user, very much like a human would
do (Friston et al., 2016a).

Due to the ability of the device to gauge the emotional
states of the user in a matter of seconds and learn from
the user’s responses, the artifacts of the second wave will
prove to be significantly superior to those of the first wave.
These devices have clear applications in marketing, such as
understanding how people interact with certain products.
Perhaps more importantly, they are relevant in terms of e-health,
potentially allowing for automated diagnosis of psychological or
emotional disorders.
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FIGURE 3 | This figure represents the essence of a third wave emotional device, in which the artifact and user are able to synchronize their internal models such that

they become each other’s external states. In this sense, the device itself is emotional, and the human interacts with it emotionally—in the same manner as it would

with another human.

Wave Three
A potential improvement upon the above active inference model
is an agent that actively engages with the user. In wave two, the
device infers the user’s mood by performing active learning and
inference under a generative model of the user’s emotional states.
This is conceptually different from an artifact that the user can
actually engage in emotional exchanges; meaning that the user’s
generative model will also begin to predict the artefact’s behavior.
This machine-to-human reciprocal emotional interaction may
eventually be feasible, as suggested by recent research in songbird
simulations that demonstrate how communicating agents that
have the same underlying brain structure can synchronize
their generative models (Friston and Frith, 2015a). This
conceptual leap defines the difference between an emotionally
intelligent artifact in wave two, and an emotional artifact
in wave three.

Recent work proposes an active inference approach to
communication, explaining how in order to communicate, two
agents must be modeling each other in an infinite regress
(modeling you modeling me modeling you and so on), and
through this coupling the agents adopt the same generative
model, i.e., they adopt generalized synchrony between internal
brain states (Friston and Frith, 2015a). This work demonstrates
how through sensory information, an agent can gain insight into
the internal model of another.

Furthermore, this model of communication is intricately
linked with the sensory attenuation discussed in section
Emotional inference, selfhood, and the human brain,
demonstrated through a simulation of a songbird that must
attenuate the sensory consequences of acting in order to act (in
order to sing). In a communication context, this underscores the
fact that one cannot listen and speak at the same time; further
supported by a simulation of two songbirds who sing to each
other, both undergoing this intermittent sensory attenuation in

which they listen to each other. By synchronizing their internal
models, generalized synchrony emerges and communication
results (Friston and Frith, 2015a). In the context of emotion
recognition, this demonstrates the possibility of synchronizing
internal brain states of the emotional device and its user, such
that the device and user are both attending to and attenuating
sensory information in order to properly cause and predict
another’s emotional states (Friston and Frith, 2015a).

This form of an artificial emotional companion can only be
achieved once the circle is closed between human and machine;
meaning that not only does the machine actively infer emotions
from the human, but the human actively infers emotions from the
machine as well. Therefore, it would be necessary for the artifact
to process interoceptive signals, and possibly verbal signals as
well. The artifact would need to learn this implicit “emotional
lexicon” through a human agent; i.e., it would start off with an
emotional dyslexia and then learn from interactions with its user.
The hypothesis is that through this training, the artifact would
eventually converge to the user’s generative model of emotional
states. The potential convergence of a “student’s” generative
model upon the generative model of a confident “teacher” (of
the same type) is exactly what the bird song simulations above
aimed to demonstrate (Frith and Wentzer, 2013; Friston and
Frith, 2015b).

This convergence of generative models can also be interpreted
in terms of coupled Markov blankets, demonstrated in Figure 3.
The Markov blanket description in section Theoretical overview
represents a single agent’s separation between “self ” and
“other,” in which the conditional independence of the blanket
states separates the agent’s internal world from its external
world through active and sensory states. A representation of
synchronized generalized models, on the other hand, would
exclude external states entirely, because the “other” now becomes
another agent’s internal states (Friston and Frith, 2015a).
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In wave three, the epistemic foraging for disclosing
information about the user’s emotional state requires the
additional constraint that the artifact shares the same generative
model that it believes the user has. Under these synchronized
generative models, the artifact will engage in active inference to
resolve uncertainty and effectively be able to interact emotionally
with the user (Seth and Friston, 2016). This prosocial and
reciprocal interaction can be interpreted as the machine
possessing an emotional echopraxia, i.e., it will effectively mirror
its user’s emotions (Ainley et al., 2012).

Finally, the emotion recognition architecture of the second
wave is largely epistemic, so it is not necessary to implement
explicit goals or preferred outcomes in the generative model.
Without preferred outcomes, the device learns a set of minimally
complex emotional states, under the prior that the user’s
generative model is congruent to that of the device. However,
once the device and human have established a generalized
synchrony, it would be possible to implement prior preferences
in the agent’s generative model—so that it can steer the emotional
synchrony to a specific desired emotional state (happy, calm,
etc.). This holds promise in therapeutic applications, because the
model will be able to guide humans to interact in certain ways
by inducing a desired state in the brain as the best explanation of
the sensorium (Seth and Friston, 2016). This has potential clinical
applications in disorders such as autism and schizophrenia, in
which patients experience a failure of interpersonal inference,
false inference about the intentions of others, or failure to
develop proper theory of mind (Lawson et al., 2017). By training
synchronized generative models to prefer desired states, the user
could potentially learn how to overcome neurological tendencies
via the device.

DISCUSSION

Several accounts of free-energy minimizing models of
communication and personal emotional awareness serve as
a foundation for further and more complex representations of
how emotions can be taught and learned socially, in two person
(dyadic) interactions or group situations, as well as how one
can (or cannot) develop an emotional model based on sensory
information throughout childhood and adulthood (Smith
et al., 2019b). These models demonstrate certain important
intricacies that must be carefully considered when building such
an emotional inference device, such as the precision of priors,
contextual information, and Bayesian filtering.

A good model of an emotionally aware agent depends on
precise priors over external factors, as well as the ability to quickly
switch between contextual information. In order to model a
complex form of emotional communication between individuals
or in society, the priors become supremely important, due to their
direct influence on the confidence with which the agent can act
on its beliefs. In other words, not only do the priors need to be
accurate, they also need to be precise in order for the agent to
have sufficient confidence to act accordingly.

Furthermore, while there may be some universal micro-
expressions or vocal patterns that the agent can pick up

on—as priors that are context-independent—most human
communication and expression is heavily dependent on
situational factors. This intricacy arises from the complexity of
the cortical hierarchy and the continuous exchange between
environmental and internal states via sensation and action,
making each exchange somewhat unique. For this reason,
to create a successful AI that can decipher emotion, the
environmental priors must include contextual states that
influence how other environmental states will generate respective
data, so that the generative model will treat sensory signals
uniquely based on the situation in which they are presented.

Research in songbird simulations demonstrates how
generalized Bayesian filtering allows the brain to maintain
distinct generative models for different contexts; i.e., to interact
with—and make inferences—about several different agents
about who they are and the content they are communicating
(Isomura et al., 2018). Being able to continuously fluctuate
between different internal models based on changing sensory
information allows an agent to harvest the most relevant
information by continuously switching to the best explanation
for a given sensation. This further suggests that an active
inference approach to communication and inference can
account for the complexities of animal interaction; not only
by synchronizing internal models between communicating
agents, but also through the ability to possess multiple models
simultaneously for group interactions. In turn, this suggests a
basis for how cultural niches update priors and affect behavior
and expectation (Heyes, 2018; Veissiere et al., 2019).

Finally, when it comes to emotion recognition, this type of
inference is also performed by individuals that have their own
emotional awareness. This could draw upon recent advances
in the formal modeling of emotional inference using active
inference and Markov decision processes (Smith et al., 2019b).
This research also covers emotion conceptualization in childhood
(Ainley et al., 2012; Fotopoulou and Tsakiris, 2017); i.e., how one
can form a model of emotion recognition without any initial
prior beliefs or expectations about emotional content. This line
of work suggests that as long as an agent is provided with a fairly
consistent sample of emotional experience in “childhood”—that
allows it to form relatively precise priors over time—it can
reach a 100% accurate model of emotion recognition (Smith
et al., 2019b). Moreover, the model continues into “adulthood”
and explains how new emotions can be learned and how
this affects existing emotional priors, while demonstrating the
extent to which unstable emotional environments of childhood
can bias or inhibit emotion conceptualization (Smith et al.,
2019b). This work stands as a proof of concept for an active
inference approach to emotion recognition and the wider scope
of what it could explain about the emotional human brain
throughout development.

The potential applications of an emotionally intelligent system
are diverse. Opportunities in psychological research have already
been mentioned, in terms of adjusting a computer model
to simulate a brain with a psychological disorder such as
schizophrenia or autism—aiming to understand how patients
interact with emotive content in their internal models of the
world (Beedie et al., 2011). Furthermore, it could be used for

Frontiers in Computational Neuroscience | www.frontiersin.org 12 April 2020 | Volume 14 | Article 30

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Demekas et al. Active Inference in Emotion Recognition

anthropological and psychological research in understanding
how different cultures express emotions differently, which could
be useful for economic and political matters; e.g., engaging with
other markets or cultures in an informed way.

In addition, effective emotion recognition technology is
already being looked into for industry and government
applications; such as in classrooms—to understand how different
students learn differently—in order to improve educational
methods (Toor, 2017), as well as retailers such as Walmart that
hope to implement emotion recognition technology in stores
to understand how humans react to certain products in the
aisles (O’Shea, 2017). The current applications implement the
first wave of emotion recognition devices; namely, deep learning
technology. However, if research is pursued in the direction
of active inference, this may establish the future of accurate
emotional inference across cultures, personalities and stages
of development.

CONCLUSION

It is important to return to the nature of the free energy principle
as a scientific construct. The free energy principle was formulated
to explain how adaptive agents learn, and to encompass all of
self-organizing entities into a unifying scientific theory. So, where
does this leave us, as humans trying to understand ourselves from
the inside out?

Humans are self-organizing creatures with an abundance of
sensory information that we must carefully filter in order to
properly operate in the world around us. Because of each of our
unique paths through evolution, genetics and the environment,
we process sensory data and behave in different ways, and
for those of us with mental disorders, these distinctions are
much more severe. Nevertheless, the Bayesian brain and free
energy minimization provide us with a scientific approach for all
forms of perception, inference and behavior—in the same formal
framework. This is a new and deeper answer to the question
“Why?” when it comes to human behavior, psychology, and
society, and if implemented correctly, could potentially be the

starting point for a new chapter of human knowledge, with a
deeper insight into ourselves, as well as more effective, intelligent
and “humanoid” computers.

For this reason, it seems that an interesting way to
perform future research on derivations of the free energy
principle in psychology and machine learning could be to
integrate the Bayesian brain model for perception into emotion
recognition. Through building complex generative models—
in which simulated agents can actively infer emotions—in the
same way that a human does throughout its lifetime, we could
speed up emotional learning artificially and better understand
its influences and patterns. In addition, if we eventually manage
to synchronize an artificial generative model with that of a
human brain, we could potentially establish machine-human
emotional connections that could commence a new chapter in
psychiatric diagnosis and treatment. In sum, the information
that these potential simulations can provide will allow the
members of our species to answer long-sought questions
about emotional development, social interactions, and disorders
of the mind.
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GLOSSARY:

• Generativemodel: or forwardmodel is a probabilisticmapping
from causes to observed consequences (data). It is usually
specified in terms of the likelihood of getting some data
given their causes (parameters of a model) and priors on the
parameters.

• Markov Blanket: a statistical boundary that renders everything
outside the blanket conditionally independent of everything
inside of it.

• Self-organization: the process by which the local interactions
between systemic states spontaneously develop order.

• Bayesian Brain: Bayesian approaches to brain
function investigate the capacity of the nervous

system to operate in situations of uncertainty in a
fashion that is close to the optimal prescribed by
Bayesian statistics.

• Entropy: The average surprise of outcomes sampled
from a probability distribution or density. A density
with low entropy means that, on average, the outcome
is relatively predictable. Entropy is therefore a measure
of uncertainty.

• Surprisal: The negative log-probability of an outcome. An
improbable outcome (for example, water flowing uphill) is
therefore surprising.

• Prior: The probability distribution or density of the causes of
data that encodes beliefs about those causes before observing
the data.
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